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In the world of high-throughput sequencing there are numerous challenges to effective
data quality control. There are no single quality metrics which are appropriate in all
conditions. Here we detail the different open source software used at the Exeter
Sequencing Service to provide generic quality control information, as well as more specific
metrics for genomic and transcriptomic libraries run on Illumina platforms.
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INTRODUCTION
High-throughput production in any field requires quality met-
rics. Often it is motivated by the need to ensure that clients and
downstream users obtain products in good condition. However,
it is also used to monitor processes and improve them. In the con-
text of DNA sequencing, the challenges posed by the high sample
throughput of a single instrument necessitate the generation of
informative quality metrics. These challenges include evaluation
of sample input, library quality and whether project require-
ments can be met using the data generated from a given set of
results.

The accessibility of high-throughput sequencing instruments
means that sequencing itself will eventually become as ubiquitous
as simple PCR. However, in much the same way as a conceptually
simple operation is subject to a myriad of parameters, sequencing
is an imperfect process subject to many biases. The role of a good
sequencing service provider is to identify any such biases, cor-
rect where possible and highlight potential downstream impacts
to those interpreting the data.

The Exeter Sequencing Service has been operating Illumina
(San Diego, CA) sequencing platforms since 2008. It is a small
to mid-size sequencing academic core-facility which today oper-
ates MiSeq and HiSeq instruments. It is the type of facility which
often operates within limited financial constraints and whose staff
are heavily relied upon to provide expert advice to researchers. It
is often the case that such facilities are heavily reliant on exist-
ing tools produced by the community to generate informative
quality control data. As such, they are often test-beds for new
tools/techniques within the institution.

WET LAB QUALITY CONTROL
Prior to samples being received by the facility, all projects are dis-
cussed to evaluate requirements and to determine which method-
ologies are likely to provide the best value for the analysis at hand.

DNA or RNA samples are received from users using a cus-
tom LIMS system to capture a number of metrics and meta-
data regarding samples. This satisfies the requirements of public
metagenomics, transcriptomics, and genomics databases. Many
of these standards are developed and published by the Genomic
Standards Consortium (GSC) (Field et al., 2008) or form part
of the National Center for Biotechnology Information databases
(Edgar, 2002; Wheeler et al., 2008). Most importantly, it enables
the facility to insist on various quality control checks to be sub-
mitted for evaluation prior to sample receipt. Any issues with
poor quality samples can be detected prior to any sequencing or
library preparation cost being incurred by the downstream user.

ASSESSING THE QUALITY OF NUCLEIC ACIDS PRIOR TO LIBRARY
PREPARATION AND ILLUMINA SEQUENCING
Fluorescent dyes that intercalate between bases of nucleic acids
are used as a basis for quantification of nucleic acids and, in
conjunction with gel electrophoresis, to determine the size of
the molecules resolved, and therefore make judgments about the
quality of the isolated DNA or RNA. By using specific dyes for
DNA and RNA that have very low fluorescence until they bind
the target molecule it is possible to accurately determine the con-
centration of each type of molecule in a mixture even if other
biomolecules are present. This results in more precise quantifica-
tion than UV absorbance methods which are not selective. Qubit
assays (Life Technologies) uses the Qubit fluorometer for quan-
tification, whereas the Pico Green assay (Life Technologies) uses a
microplate reader to determine fluorescence in a liquid assays.

Nucleic acids separated by fluorescent agarose gel elec-
trophoresis provide the simplest method for assessing the quality
where the concentration of DNA is sufficiently high. The agarose
gel image should provide information about the quality of the
DNA sample indicating the ratio of degraded DNA to high
molecular weight DNA.
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Assays that use fluorescent dyes in conjunction with microflu-
idic electrophoresis include Bioanalyser (Agilent), Labchip GX
(Perkin Elmer), QIAxcel (QIAGEN), and Fragment Analyser (VH
bio ltd); these instruments can be used to analyse dsDNA frag-
ments, RNA or prepared NGS libraries where material is precious.

UV absorbance ratios at 230:260 nm and 260:280 nm can pro-
vide additional information regarding purity of the sample, in
particular, presence of phenol which absorbs with a peak at
270 nm, can contribute to the over-estimation of DNA concentra-
tion, whereas, humic acids that may be present in DNA isolated
from soil absorb at 230 nm, as do phelolate ions and thiocyanates
that may be used to isolate RNA.

In general pure DNA, A260/280 is ∼1.8 when measured in
10 mM TrisHCl pH7.5, and for pure RNA A260/280 is ∼2 when
measured in water. Chitin is a structural polysaccharide that is
a major component of the carapaces, crusts and shells of crus-
taceans such as shrimps, crabs and lobsters; it is also an ingredient
of cell walls in fungi and yeast which may bind to DNA and impact
on library preparation, possibly by artificially depressing DNA
concentration (Kumirska et al., 2010; Azofeifa et al., 2012). RNA
contamination may inhibit some downstream steps. When RNA
contamination is evident treatment with DNase-free RNase I is a
simple remedy.

DNA SUBMISSION
For DNA fragment library preparation fragmentation should be
as random as possible therefore high molecular weight DNA is
required. In circumstances where only degraded DNA is available
library preparation may be less efficient which may require greater
sequencing coverage to enable genome assembly.

RNA SUBMISSION
For RNA samples, microfluidic electrophoresis instruments pro-
vide an electropherogram and a measure of RNA integrity such
as RIN (Agilent), RIS (QIAGEN) RQS (Perkin Elmer) RQN (VH
bio) calculated by the software based on the entire electrophoretic
trace of the RNA sample including the presence or absence of
degradation products. The RNA quality/integrity score is inde-
pendent of sample concentration, instrument and analyst there-
fore provides a standard for vertebrate, plant or bacterial RNA
integrity (Mueller et al., 2004; Imbeaud et al., 2005; Schroeder
et al., 2006). One drawback with the RIN assay is highlighted for
samples where the ribosomal RNA subunits behave differently to
standard “vertebrate” RNA, for example, the 28S rRNA subunit of
most insects and a number of species of crustacean consist of two
separate fragments that are hydrogen bonded together; depend-
ing on pre-treatment and electrophoresis conditions, disruption
of these hydrogen bonds occurs and the two fragments co-migrate
with the 18S rRNA (Winnebeck et al., 2010) resulting in irregular
or meaningless RIN scores. DNA contamination of RNA can be
observed in traces around the 28S RNA peak which is remedied by
RNAse-free DNAse1 digestion followed by re-purification of the
RNA to remove the enzyme and buffer rather than heat denat-
uration of the enzyme which risks degradation of the RNA and
retention of the enzyme buffer. The effectiveness of poly-A isola-
tion or ribosomal RNA depletion, used to enrich for mRNA, can
be confirmed or compared using the bioanalyser (Figure 1).

OTHER CONSIDERATIONS FOR LIBRARY PREPARATION
The importance of sample quality before library preparation is
emphasized to users of the service however occasionally libraries
may be prepared from poorer quality material because no other
material is available.

For cases where GC bias is expected and PCR is required as part
of library preparation, caution must be exercised in the choice of
polymerase (Aird et al., 2011; Ross et al., 2013). Typically we use
Kappa HiFi polymerase for most genomic libraries requiring PCR
(Quai et al., 2012).

If service users have prepared sequencing libraries themselves
we ask for the same QC of the final libraries as we would under-
take if libraries had been prepared by Exeter Sequencing Service,
including Bioanalyser DNA traces and/or qPCR quantitation.
Bioanalyser DNA assays allow the size distribution of the final
library to be determined together with presence of any remain-
ing adapter-dimers. The size of fragments in the library includes
the insert DNA for sequencing and adapters sequences which, for
standard libraries, add 126 bases. After sequencing, the distance
between the paired-end reads can be compared to the fragment
sizes for the library (Figure 2); libraries with small inserts clus-
tering is efficient for all molecules sizes (Figure 2A) whereas as
fragment sizes increase clustering is more efficient for smaller
fragments (Figures 2B,C) leading to a shift to the left in the paired
end read distance relative to the Bioanalyser trace.

Once accepted by the facility all samples are assigned
project and sample identifiers. When necessary qPCR or MiSeq
nano runs are undertaken to determine optimum loading
concentrations.

DATA MANAGEMENT
The Illumina Genome Analyser, HiSeq and MiSeq instruments
generate basecall data during a run using Illumina’s RTA soft-
ware. To reduce time spent during data transfer and to ensure
maximum uptime, we connect each of our HiSeq 2500 instru-
ments over a dedicated 1Gbit Ethernet link to a separate Dell R510
server each with 60Tb attached MD3xxx storage. The lower data
volumes produced by the MiSeq instrument means that it is pos-
sible to connect such instruments to a single server over a shared
1 gigabit Ethernet link.

The Illumina bcl2fastq package is used to convert the propri-
etary Illumina BCL files to Sanger fastq format and demultiplex
samples based on the information provided in the standard
Illumina-formatted sample sheet. A simple perl script ensures
that the sample sheet is in the correct format prior to initiating
the demultiplexing.

Once complete a series of generic quality control metrics are
generated using open source programs (see below). The results
of these are collated into a summary html-formatted file. After
these steps are completed the data for each project is copied to a
compute cluster which shares storage with an FTP server. FASTQ
data is archived after 6–9 months to Amazon Glacier (Seattle, WA)
unless otherwise requested.

DATA TRANSFER
Once generic data QC and any subsequent analysis is completed,
data is delivered to users via an FTP server. We use pure-ftp for the
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FIGURE 1 | Examples of Bioanalyser assay interpretation for a variety of

RNAs. (A) Standard Eukaryotic RNA shows a 28S rRNA band at 4.5 kb that
should be twice the intensity of the 18S rRNA band at 1.9 kb (human)
resulting in a RIN = 8.0–10.0. Small peaks are sometimes present after the
marker that represent 5S and 5.8S subunits, tRNAs and small RNA
fragments about 100 bp; these are more obvious when using phenol or trizol
exterection methods, QIagen columns will generally remove small RNAs.
When degraded 28S RNA is reduced and more fragments are detected

around the 18S RNA subunit resulting in RIN = 6.4, which is below the
quality required for high throughput DNA sequencing. Invertebrate RNA
results in fragmentation of the 28S rRNA into two bands that co-migrate with
the 18S rRNA resulting in aberrant RIN score of <8.0 although the mRNA is
unaffected and suitable for sequencing. Genomic DNA can skew the 28S
RNA peak but can easily be remedied by RNAse-free DNase1 digestion.
(B) Ribosomal RNA removal by isolation of poly-A-RNA assessed by
Bioanalyser RNA assay.

purpose as it enables relatively straightforward auto-generation
of FTP accounts and passwords (http://www.pureftpd.org). These
are then emailed to users along with a guide to their data and
instructions on how to access it. Many users are unfamiliar with
FTP clients and terms such as “host,” “server” or applicable port

numbers, so it is important to provide such instructions in simple
language with screenshots to help guide the user.

MD5 checksums (Rivest, 1992) are strings of 32 characters
produced by hash functions applied to files. A file with unique
content should produce a unique checksum. These checksum
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FIGURE 2 | Library fragment size distribution. Bioanalyser fluorescence values (black), realignment of paired end reads against reference genome or de novo
assembly and adjusted by 126 bases to account for adapters (red) for libraries with average sizes of 360 bases (A), 550 bases (B), and 810 bases (C).

values can be used to check whether files have been transferred
with fidelity. It should be noted however that MD5 checksum
collisions have been known to occur (i.e., two files with different
contents producing the same checksum), however, the likelihood
of this happening for a given file and a corruption or truncation
of that same file is very low. We produce checksums for FASTQ
files only. Due to their size and vulnerability to corruption, users
are unlikely to notice a problem with their FASTQ files until they
are some way into their analysis.

OVERVIEW OF AVAILABLE QUALITY CONTROL TOOLS
There are a wide variety of tools which are capable of gener-
ating QC metrics. These include FastQC (Andrews, 2010a,b),
HTQC (Yang et al., 2013), NGS QC Toolkit (Patel and Jain,
2012), SolexaQA (Cox et al., 2010), Kraken (Davis et al., 2013),
QC-Chain (Zhou et al., 2013).

Each tool has a different set of features available, FastQC
focuses entirely on the calculation and visualization of qual-
ity metrics, and provide no facility to correct problems HTQC
and SolexaQA are strong in this area and also provide some

correction. These also include a tile based quality assessment best
executed be SolexaQA not available in FastQC. The rest lean
toward the trimming and filtering of reads. A summary of a
selection of features can be seen in Table 1.

GENERIC DATA QUALITY CONTROL
Initial quality control is independent of any particular library
type. These metrics include:

• Total numbers of reads generated per sample
• Quality score distribution across reads
• Base-call distribution across reads
• Quantification of any possible contaminants including adaptor

sequences and primer-dimers
• Estimates of read duplication rates

In order to provide an overview of these metrics for all sam-
ples within a project, these metrics are collated into a single
HTML summary overview file (Figure 3). To do this we pro-
cess the Demultiplex_Stats.html file produced by the bcl2fastq
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pipeline. Only information specific to a particular project is
retained. To obtain images for quality score and base-call dis-
tributions we use the FastQC program (Andrews, 2010a,b) for
both read 1 and read 2. This ubiquitous tool provides a wide-
variety of useful metrics in a user-friendly HTML format. The
images themselves are stored separately in PNG format which
can be easily extracted and re-packaged using custom scripts. We
then extract plots relating to quality score and base-call distribu-
tion and base-call and include these in the overview summary file
(Figures 4A,B).

Providing information on potential contaminants is also cru-
cial, both for a facility and for the user. These contaminants
can have a wide variety of sources and may be related to the
original extraction, library preparation or index read barcode

Table 1 | Comparison of features in QC Toolkits.

H
T

Q
C

F
a
s
tQ

C

S
o

le
x
a
Q

A

N
G

S
Q

C
T
o

o
lk

it

K
ra

te
n

Q
C

-C
h

a
in

Language C++ Java Perl Perl C C++
Q score boxplot

Tile based Q scores

Duplication removal

Filtering

Trimming

Adaptor detection

Contamination detection

Comparison of feature of software packages for quality control of Illumina read
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issues. To provide a visual representation of these estimates
we use the fastq_screen tool (Andrews, 2010a,b) to subsam-
ple 500,000 reads from each sample in read 1. These are then
aligned to genomic sequences E.coli, M.Musculus, D.melanogaster,
A.thaliana, H.sapiens, PhiX 174 and a non-redundant set of rRNA
sequences from the Ribosomal Database Project (Wang et al.,
2007) and a non-redundant set of viral sequences. The genomes
were selected as they are among the most commonly sequenced at
our facility. fastq_screen provides data in both textual and graph-
ical png formats. The png plots are included in the overview
summary file. Figure 4C illustrates the effect of PhiX contami-
nation in a library. To demonstrate that this is sufficient to detect
contamination as low as 1–2%, we used data from an RNA-seq
experiment containing 10 million reads. An analysis of the full
dataset showed a 1.86% level of rRNA contamination. We then
sub-sampled the data at different numbers of sequences using
500 bootstrap replicates for each number of sequences. Figure 5
shows that as little as 1000 reads is sufficient to quantify the
proportion of contaminating material. We routinely sample at
larger sample sizes to ensure that in the presence of multiple con-
taminants and larger data volumes we are still able to provide
confident estimates.

Duplication rates are also useful information for all library
types. For genomic libraries, identical reads can indicate the pres-
ence of PCR-duplicates or fragmentation biases. These are unin-
formative for analysis and, essentially waste sequencing capacity.
For transcriptomic or ChIP-libraries, the proportion of dupli-
cated reads is less informative, but can be indicative of library
complexity. Libraries dominated by a few transcripts or peaks will
tend to have a higher proportion of duplicated reads. However,
for transcriptomic libraries the RNA-SeqQC (DeLuca et al., 2012)
pipeline described below is more informative. FastQC bases its
calculation of duplication rates on the the first 50 bp of each read
and the first 200,000 reads. Our users typically prefer estimates

FIGURE 3 | Basic read metrics extracted on a per-project basis. Basic read metrics extracted on a per-sample basis from the Illumina Demultiplex_stats.
html file produced by the bcl2fastq pipeline. Additional information has also been added.
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FIGURE 4 | Overview of quality control metrics across multiple samples in a project. These plots are collated into a single HTML summary file for each
project, making it easy to see any quality (A), nucleotide (B), or contaminant (C) issues at-a-glance.
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over a greater part of the read. Instead duplication rates are cal-
culated using the FASTX-toolkit (Hannon, 2010) for each read 1
fastq file and the results collated accordingly. Estimating duplica-
tion rates in this way without remapping to a reference genome
can lead to underestimates of duplication rates as sequencing
errors prevent exact matches. However, as many genomes lack ref-
erences and not all projects we undertake require us to perform
de-novo assembly we have found this methodology to be a good
compromise.

GENOMIC SEQUENCING QUALITY CHECKS
Some projects require remapping of one or more samples to a
reference genome. In these cases there are a number of addi-
tional quality control metrics which can be generated. Typically
we align against one or more reference genomes using the BWA
package (Li and Durbin, 2009). If there are multiple library types
present for a single sample, these can be merged into a single
Binary AlignMent (BAM) file (Li et al., 2009) and can be tracked
separately in a single BAM file.

To generate various statistics a PDF or HTML-formatted
report is produced with the QualiMap package (García-Alcalde
et al., 2012). These include: numbers of reads mapping to the
reference genome; insert size distributions; coverage statistics;
mapping quality; and a variety of plots to identify regions of the
reference genome which may contain structural variants. This

FIGURE 5 | Estimating required read sampling for contaminant checks.

Ten million reads from an Illumina RNA-seq dataset was subsampled at
various numbers of reads. The number of rRNA contaminant reads in this
dataset was 1.86% when calculated over the full dataset. The absolute
percentage difference at different sub-sample sizes was calculated for 500
replicates at each depth and the average shown. The error bars indicate the
95% confidence interval for the absolute percentage difference.

package also provides an alternative estimate of read duplicates
which in most cases is more accurate than simply counting exactly
matching reads.

An additional useful QC check is to perform a de novo assem-
bly on any reads which do not map to the reference sequences.
To do this we utilize the Velvet assembler together with the
VelvetOptimizer package (Zerbino and Birney, 2008). The pres-
ence of the reference genome at a much higher relative abundance
will often allow assemblers to remove most contaminant reads
from the assembly by excluding low-abundance k-mers. However,
this cannot always be relied upon and risks introducing contam-
inant genomes into published genome assemblies. By assembling
only those reads which do not directly map onto one or more
reference genomes, it is often much easier to spot contaminant
genomes. After assembly, the resulting contigs can be searched
against the NCBI non-redundant nucleotide database using the
Megablast algorithm (Morgulis et al., 2008). The resulting out-
put is then processed by the gi2taxonomy.py and t2ps_wrapper.py
scripts (adapted from the Galaxy distribution Goecks et al., 2010).
Figure 6 illustrates this in a microsporidian genome assembly
where contaminating PhiX reads have resulted in PhiX contigs
being generated. This is a clear warning to any downstream user
that the data may need to be cleaned further prior to any de-novo
assembly.

RNA-seq QUALITY CHECKS
RNA-seq involves a number of additional steps during library
preparation which can result in biases being introduced. These
include the polyA extraction/ribosomal depletion steps, cDNA
synthesis and PCR amplification (Hansen et al., 2010). Some
parts of the generic quality control pipeline can provide indi-
cations of problems (e.g., rRNA contamination, low library
diversity).

To ensure that the final library is a reasonable facsimile of
the original RNA transcripts, we spike in 1% of the External
RNA Control Consortium (ERCC) spike-in mix (Jiang et al.,
2011) to the total RNA of each sample prior the library prepa-
ration. These are a set of 96 synthetic transcripts derived from
bacterial genomes present at a variety of known abundances.
As these are of a known sequence, we are able to use these to
evaluate the success of an RNA preparation. (If sequencing bac-
terial transcriptomes, caution must be exercised to ensure none
of the spike-in transcripts map to the bacterial species in the
experiment.)

To evaluate the success of an RNA preparation we map the
full set of reads to the set of ERCC transcripts using the Bowtie
package (Langmead et al., 2009). The number of reads mapping

FIGURE 6 | Taxonomy of unmapped reads assembled into contigs. A graphical representation of the number of contigs mapping to each level of the NCBI
Taxonomy. The colors represent the number of contigs mapping to each branch.
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FIGURE 7 | Evaluating ERCC spike-in control results. Examples of cDNA
libraries prepared from Arabidopsis thaliana RNA and Mouse infected with
Burkholderia pseudomallei RNA containing ERCC Spike-In. Spike-In mix was
added to total RNA before preparation of the sequencing library.
(A) A. thaliana poly-A RNA was isolated, and a sequencing library prepared
using ScriptSeq v2 (Epicentre). (B) Trial B. pseudomallei sequencing library
was prepared from RNA extracted from liver of a B. pseudomallei infected
mouse; prokaryotic RNA was enriched using Microbe enrich kit (Invitrogen)
and bacterial ribosomal RNA was reduced using MicrobeExpress (Invitrogen)

before ScriptSeq v2 sequencing library preparation. ERCC spike in mix is
polyadenlyated and the majority would be expected to have been removed
during the library preparation resulting in a poor correlation and lower limit of
detection, thereby contributing to the protocol development. Libraries were
processed and sequenced on the Illumina HiSeq2500. The data were
normalized to reads per kilobase of exon model per million mapped reads
(RPKM) and filtered using a sensitivity threshold set arbitrarily at 1 RPKM
(shown by the horizontal dotted line in at log2 RPKM = 0; Mortazavi et al.,
2008).

to each transcript are then extracted using the samtools idxstats
package (Li et al., 2009) and RPKM values calculated (Mortazavi
et al., 2008). These are then compared to the expected abundances
and a log-log plot is produced. This enables the calculation of a
lower-limit of detection for each sample and ensures that tran-
script abundance for the controls is consistent across the range
of expression. Figure 7 illustrates this and shows the result of a
“good” sample vs. a “bad” sample. As technology changes, it is
our hope that such spike-in control data can be used to help com-
pare samples between platforms. Reads which do not map to the
ERCC transcripts can then go on to an RNA-seq analysis.

An excellent quality control package for RNA-seq data is
the RNASeqQC package. Unfortunately, it has very particular
requirements relating to the annotation format and thus can
only be used with organisms with GTF-formatted annotation.
Nonetheless, we find it to be a very valuable tool. This tool is used
after the removal and evaluation of reads mapping to the ERCC
reference transcripts. The system is capable of outputting metrics
such as:

• Estimated library size
• Number of genes/transcripts detected
• Intragenic mapping rates
• Strand-specificity rates
• Correlation matrices to identify similar samples
• Mean coverage of transcripts along transcript lengths

These can provide valuable first-pass checks for both the sequenc-
ing service and downstream users. Figure 8 illustrates a figure

demonstrating a bias of reads toward the start and end of
transcripts—possibly caused by polyA extraction. In this case
we would conclude that the start of transcripts are likely
to be under-represented and that downstream tools such as
Cufflinks (Trapnell et al., 2010) may have difficulty reconstruct-
ing the start and end of transcripts accurately due to lower
coverage.

IMPROVEMENTS
There are a number of potential improvements to the quality-
checks described above.

The ERCC spike-in plots are informative, but at present they
require manual review. An automated system to fit and model the
goodness of fit would be beneficial. Additionally the ERCC spike-
in controls can be used to measure relative abundance between
samples and can be used to normalize RPKM counts between
samples. However, at present no existing software makes use of
such spike-in data.

A concern regarding potential bacterial contamination of DNA
and RNA extraction kits means that low abundance samples
require special care during analysis (Evans et al., 2003; Erlwein
et al., 2011). This is of particular concern with low-input library
preparations where contaminants may be present at similar abun-
dance to sample material. In particular the transposon based and
low-input RNA library preparation methods are at risk when per-
forming metagenomics or metatranscriptomics. The most obvi-
ous solution is to run at least one negative control from each kit
used for each of the samples. The results of this can be used to
eliminate contaminants from any final analysis. The potential for
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FIGURE 8 | Transcript coverage using RNASeqQC. An example plot from RNASeqQC detailing mean coverage of top 20 transcript abundances for 6
samples. A clear bias can be seen at both 3′ and 5′ ends which may impact on downstream analysis.

library preparation kits containing contaminants also needs to be
investigated as a matter of urgency.

Other tools have also been developed which may prove to be
useful quality control tools. These include the Blobology tools
(Kumar et al., 2013) to investigate the GC and genome of sequenc-
ing libraries. In addition the PAUDA (Huson and Xie, 2014) tool
can be used to rapidly identify the taxonomic ID of reads in much
the same way as BLAST can be used to classify contigs.

In terms of hardware infrastructure, with Illumina’s develop-
ment of the BaseSpace infrastructure on the Amazon cloud plat-
form, there is also an argument to develop generic “sequencing
service infrastructure” platforms on cloud infrastructure. Privacy
and data retention policies may not currently permit this for the
processing of some samples. However, the economic incentives
mean that these issues are likely to be resolved. One could then
envisage that a “best-of-breed” infrastructure could be built and
deployed for all core facilities, incorporating LIMS, sample track-
ing, reagent tracking, quality control and data delivery. In that
way the collective expertise of the community could be adapted
by each facility to best serve its users.

FEEDBACK
Regardless of which library types are sequenced or how much
analysis is performed, one of the most important aspects of
providing data is to provide personal feedback to users. If there
is a problem with any data generated at a facility, it is important
that this is communicated to users at the earliest possible oppor-
tunity. It is crucial that this is done regardless of the source of
the problem. Data generation should be a partnership between
the end-user and the facility generating the data. Despite the
decreasing cost of sequencing, biologists often lack the skill and

confidence to analyse resulting datasets. The potential for sub-
tle but serious biases affecting downstream analyses requires that
sequencing providers undertake an earnest obligation to provide
high quality feedback as well as high-quality data.

SUMMARY
Operation of a sequencer is becoming a relatively routine task for
any laboratory with experience of molecular biology. However,
the methods involved in sample extraction, library preparation
and sequencing are all potentially subject to a variety of biases.
The importance of quality control at every step ensures that
these biases can be monitored, minimized and enables correc-
tion downstream. Most crucially it enables end-users to have
confidence in their final results.
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