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A B S T R A C T   

Vascular cognitive impairment (VCI) refers to all forms of cognitive decline associated with cerebrovascular 
diseases, in which white matter (WM) is highly vulnerable. Although previous studies have shown that blood 
oxygen level-dependent (BOLD) signals inside WM can effectively reflect neural activities, whether WM BOLD 
signal alterations are present and their roles underlying cognitive impairment in VCI remain largely unknown. In 
this study, 36 subcortical VCI (SVCI) patients and 36 healthy controls were enrolled to evaluate WM dysfunction. 
Specifically, fourteen distinct WM networks were identified from resting-state functional MRI using K-means 
clustering analysis. Subsequently, between-network functional connectivity (FC) and within-network BOLD 
signal amplitude of WM networks were calculated in three frequency bands (band A: 0.01–0.15 Hz, band B: 
0.08–0.15 Hz, and band C: 0.01–0.08 Hz). Patients with SVCI manifested decreased FC mainly in bilateral pa
rietal WM regions, forceps major, superior and inferior longitudinal fasciculi. These connections extensively 
linked with distinct WM networks and with gray-matter networks such as frontoparietal control, dorsal and 
ventral attention networks, which exhibited frequency-specific alterations in SVCI. Additionally, extensive 
amplitude reductions were found in SVCI, showing frequency-dependent properties in parietal, anterior corona 
radiate, pre/post central, superior and inferior longitudinal fasciculus networks. Furthermore, these decreased 
FC and amplitudes showed significant positive correlations with cognitive performances in SVCI, and high 
diagnostic performances for SVCI especially combining all bands. Our study indicated that VCI-related cognitive 
deficits were characterized by frequency-dependent WM functional abnormalities, which offered novel appli
cable neuromarkers for VCI.   

1. Introduction 

Vascular cognitive impairment (VCI) is the second most common 
cause of clinically diagnosed dementia following Alzheimer’s disease, 
ranging from subjective cognitive decline, mild cognitive decline to full- 
blown dementia (O’Brien et al., 2003; van der Flier et al., 2018). Various 
cerebrovascular diseases contribute to VCI, such as small vessel disease, 
large artery atherosclerosis, and brain hemorrhages. Chronic cerebral 

hypoperfusion (CCH), as a result of vascular diseases, are critical drivers 
of pathogenic mechanisms in VCI. White matter (WM) was considered to 
be highly vulnerable to CCH due to less metabolic reserve and relative 
hypoperfusion than gray matter (GM) (Iadecola 2013). WM damages are 
a significant contributor to cognitive impairment and the main patho
logical features of VCI, characterized by hyperintensities and infarcts on 
MRI (Kalaria, 2016; van der Flier et al., 2018). Microscopically, WM 
damages are primarily formed from axonal demyelination that is usually 
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derived from the loss of oligodendrocytes and accompanied by glial 
activation and loss of axon-glial integrity (Masumura et al., 2001; 
Reimer et al., 2011; Barker et al., 2013; Holland et al., 2015), which 
have been observed in both patients and animal models with VCI 
(Kalaria, 2016; Trigiani et al., 2020). In addition, recent studies have 
demonstrated that WM pathology severity was correlated with cognitive 
impairment and dementia (Boyle et al., 2016; Kantarci et al., 2017). 
Therefore, assessing WM dysfunction and characterizing its underlying 
pathological correlates would be critical for managing and preventing 
VCI. 

Diffusion tensor imaging and other similar neuroimaging techniques 
have allowed for great strides to be made in our understanding of the 
structural integrity and connectivity patterns of WM (Gao et al., 2012a; 
Gao et al., 2012b; Zhang et al., 2014; He et al., 2022; Zhang et al., 2022). 
In VCI, these approaches have been widely used to probe WM structural 
abnormalities by combining voxel-wise (Mascalchi et al., 2019), region- 
of-interest (Qin et al., 2021), and graph-theoretical analyses (Tuladhar 
et al., 2016). These studies have mainly evaluated the structural ab
normalities of WM, however, they failed to uncover any functional 
changes within the WM region in VCI. 

Over the past two decades, resting-state functional MRI (fMRI) has 
become a promising technique to assess the brain’s intrinsic activity of 
the GM in physiological status and various neuropsychiatric disorders 
(Biswal et al., 1995; Liu et al., 2013). Recently, several studies have 
demonstrated that blood oxygen level-dependent (BOLD) signals within 
WM can be detected and effectively reflect specific neural activities (Ji 
et al., 2017; Ding et al., 2018; Liu et al., 2017; Xue et al., 2020). In 
addition, Peer and colleagues identified symmetric WM functional net
works in BOLD signals during the resting state, similarly to the GM (Peer 
et al., 2017). Li et al. further quantified the functional importance of 
individual WM voxels using engagement (Li et al., 2020). To date, WM 
functional abnormalities have been demonstrated to characterize the 
underlying pathological processes of many brain disorders including 
schizophrenia (Fan et al., 2020), bipolar disorder (Lu et al., 2021), and 
autism spectrum disorder (Ma et al., 2022). Therefore, it is feasible to 
characterize the WM dysfunction in VCI using fMRI. 

Functional connectivity (FC), measuring the temporal interaction 
between spatially distinct brain areas, was taken as a crucial indicator 
for estimating brain connectivity and further diagnosing brain diseases 
Woodward and Cascio, 2015; Liu et al., 2015. Recently, FC has been 
reported to track BOLD signal correlations in WM and be associated with 
the pathological conditions such as mild cognitive impairment (Chen 
et al., 2017), Alzheimer’s disease (Makedonov et al., 2016), and epilepsy 
(Jiang et al., 2019b). In addition to the FC, power spectral analysis of 
signals, depicting the intensity of BOLD signals in component fre
quencies (Zou et al., 2008), was considered as an alternative approach to 
characterize the features in interest. Up to now, power spectral analysis 
has been widely employed to discover the significant differences in the 
signal amplitude between different pathophysiologic conditions or 
different brain regions in GM (Yang et al., 2007; Zuo et al., 2010). Thus, 
making explicit the between-region functional interactions and within- 
region spontaneous activities in WM functional networks may facili
tate the illustration of the pathological mechanisms in VCI. 

Here, to evaluate WM dysfunction of VCI, we investigated WM 
functional networks using resting-state fMRI in 36 patients with 
subcortical VCI (SVCI) and 36 healthy controls (HCs). First, the WM 
functional networks were constructed via K-means clustering approach 
based on the WM voxel-wise correlation matrix. Second, considering 
that different frequency bands depict distinct physiological status and 
specific-disorder alterations (Han et al., 2011), the entire frequency 
range was divided into two sub-bands as previously suggested (Jiang 
et al., 2019a). The FC and signal amplitudes of WM were evaluated in 
each sub-band and the whole band. Third, we investigated the re
lationships between WM functional networks changes with cognitive 
variables. Finally, we constructed a WM network-based classification 
model to separate SVCI patients from HCs. We hypothesized that WM 

functional networks would exhibit frequency-dependent disruptions in 
SVCI, and these disruptions would be correlated with patients’ cognitive 
performances and be neuromarkers for the early diagnosis of VCI. 

2. Materials and methods 

2.1. Subjects 

The study was approved by the Research Ethics Committee of Tianjin 
Medical University General Hospital, and signed informed consent was 
obtained from all participants. In total, 36 SVCI patients were recruited 
and diagnosed by two trained neurological physicians based on the 
following criteria: (1) subjective cognitive complaint by patients or their 
caregivers for at least 3 months; (2) objective cognitive impairment in at 
least one domain regarding visuospatial, executive, memory, and lan
guage function on neuropsychological tests; (3) subcortical small in
farcts (≤ 20 mm in diameter) with/without WM hyperintensities on 
brain MRI scans; (4) Hachinski Ischemic Score ≥ 7; (5) focal neurologic 
signs or symptoms. Exclusion criteria included: (1) pre-existing cogni
tive impairment; (2) a history of hemorrhagic stroke, traumatic brain 
injury, Parkinson disease, psychiatric disorders or cortical infarct 
affecting cognitive function; (3) acute-phase cerebrovascular disease; 
(4) gross morphological anomalies on brain MRI scans. In addition, 36 
age-, gender- and education-matched HCs were recruited from local 
community, and they were interviewed to confirm: (1) no history of 
known neurologic or psychiatric disorders; (2) normal cognitive func
tion determined by neuropsychological tests. 

All participants underwent brain MRI scans and neuropsychological 
tests. Specifically, the Mini-Mental State Examination (MMSE) and 
Montreal Cognitive Assessment (MoCA) were used to evaluate their 
cognitive function The schematic flowchart of this study was shown in 
Fig. 1. 

2.2. Data acquisition 

The MRI data were obtained using a 3.0 Tesla Siemens Prisma MR 
scanner equipped with a 64-channel head coil at Tianjin Medical Uni
versity General Hospital. Foam paddings and soft earplugs were utilized 
to minimize head movement and reduce scanner noise, respectively. 
During data acquisition, all subjects were instructed to remain awake 
and think of nothing. High-resolution T1-weighted anatomical images 
were acquired by a magnetization-prepared rapid gradient-echo 
sequence as follows: repetition time (TR) = 2000 ms, echo time (TE) 
= 2.26 ms, inversion time = 900 ms, flip angle (FA) = 8◦, field of view 
(FOV) = 256 × 256 mm2, voxel size = 1 × 1 × 1 mm3, matrix = 256 ×
256, slice thickness = 1 mm, 192 sagittal slices, and no gap. Resting- 
state functional images were acquired by a single-shot echo-planar-im
aging sequence with the parameters: TR = 750 ms, TE = 30 ms, FA =
54◦, FOV = 222 × 222 mm2, voxel size = 3 × 3 × 3 mm3, matrix = 74 ×
74, slice thickness = 3 mm, 48 axial slices, and 640 volumes. 

2.3. Data preprocessing 

Resting-state functional images were preprocessed using the Data 
Processing Assistant for Resting-State fMRI (DPARSF, https://rfmri. 
org/DPARSF), Statistical Parametric Mapping toolkits (SPM12, http 
s://www.fil.ion.ucl.ac.uk/spm) and open MATLAB scripts (https://mi 
nd.huji.ac.il/white-matter.aspx) (Peer et al., 2017). Briefly, the fMRI 
scans were first realigned to the mean functional image to correct for 
head motion. Participants with maximum motion > 3 mm translation or 
3◦ rotation were excluded. For each subject, T1-weighted anatomical 
images were then co-registered with the mean motion-corrected func
tional images, and further segmented into tissue probability maps of 
GM, WM, and cerebrospinal fluid (CSF). Based on segmented images, the 
normalization parameters from native space to Montreal Neurological 
Institute (MNI) standard space were estimated using DARTEL algorithm 
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(Ashburner 2007). Subsequently, several nuisance covariates were 
regressed out, including linear drift, mean CSF signals, and Friston-24 
head motion parameters (Friston et al., 1996). To avoid eliminating 
signals of interest, WM and global brain signals were not regressed from 
the BOLD signals (Peer et al., 2017; Jiang et al., 2019a). Next, a band- 
pass filtering (0.01–0.15 Hz) was performed to minimize high- 
frequency non-neuronal noise sources in accordance with prior WM 
functional network studies (Jiang et al., 2019a; Wang et al., 2020). To 
avoid partial volume effect, the functional images were smoothed 
separately for WM and GM with a Gaussian kernel of 4-mm full width at 
half-maximum. Specifically, individual WM or GM voxels were identi
fied using a 50 % threshold on above-mentioned GM/WM probability 
maps for each subject (Peer et al., 2017). Finally, the functional images 
were normalized to MNI space using the normalization parameters and 
resampled to a voxel size of 3 × 3 × 3 mm3. 

2.4. Clustering WM functional networks 

To investigate WM functional networks, group-level WM mask was 
first generated with subsequent procedures: (1) individual WM mask 
was first obtained according to the T1 anatomical image segmentation 
results; (2) individual WM mask was then averaged across all subjects 
and voxels identified as WM in > 60 % of all participants were utilized 
for group-level WM mask creation (Peer et al., 2017; Wang et al., 2020); 
(3) we removed voxels identified as WM or GM without having func
tional data in > 80 % of the subjects, for instance, parts of the medulla, 
spinal cord and cerebellum; (4) the subcortical structures were removed 
from the group-level WM mask as these areas had been erroneously 
identified as WM (Desikan et al., 2006; Babalola et al., 2009; Lorio et al., 
2016). Finally, the group-level WM mask (included 15354 voxels) was 
obtained. 

To cluster WM functional networks within group-level WM areas, 
voxel-level correlation matrix should be calculated. Considering the 
computational complexity, an interchanging grid method was used to 
subsample the WM mask (Peer et al., 2017; Jiang et al., 2019a). Pear
son’s correlation coefficient was calculated between all of the WM 
voxels and each subsampled WM voxel, resulting in a correlation matrix 
(15354 × 3840) for each participant (Yeo et al., 2011; Craddock et al., 
2012). K-means clustering algorithm was carried out on the mean cor
relation matrix across all subjects (MATLAB “kmeans” function with the 

options of distance measure: correlation and replicates: 10) (Blumensath 
et al., 2013; Yeo et al., 2014), clustering all the WM voxels into K in
dependent spatial networks. To detect the most stable number of WM 
networks, the stability of the clustering solution was evaluated for each 
number of clusters (K) ranging from 2 to 22 (Lange et al., 2004; Yeo 
et al., 2011). Specifically, the mean correlation matrix (15354 × 3840) 
was randomly divided into four subgroups (15354 × 960). The same 
clustering approach was performed on each submatrix separately; the 
clustering showing approximately similar pattern on each subgroup 
represented stable clustering solutions (Lange et al., 2004; Yeo et al., 
2011). As K-means clustering attached random labels to clusters, there 
was difficulty in similarity evaluation in clustering solutions between 
subgroups. Thus, adjacency matrix was utilized to measure the between- 
subgroup similarity of the clustering results, and these adjacency 
matrices were compared using Dice’s coefficient for all subgroup pairs. 
The average Dice’s coefficient was acquired for each K and used to select 
the most stable number of WM networks. 

In addition, to assess the symmetry of identified WM functional 
networks, we compared the clustering solutions for two hemispheres via 
Dice’s coefficient. First, the half of the clustering whole-WM networks 
were flipped along the midsagittal plane to identify the clustering results 
in each hemisphere. Second, adjacency matrices were calculated for 
each hemisphere separately. Third, the clustering results were compared 
using Dice’s coefficient across the two hemispheres. Fourth, a permu
tation test was performed to measure the significance of the symmetry 
values. Specifically, the P value was obtained after the adjacency matrix 
in each hemisphere was randomly permuted 5000 times. 

2.5. FC and signal amplitude of WM functional networks 

Considering frequency-dependent properties of the FC and signal 
amplitude (Salvador et al., 2005; Jiang et al., 2019b), the full band range 
(band A: 0.01–0.15 Hz) was further divided into two sub-bands (band B: 
0.08–0.15 Hz and band C: 0.01–0.08 Hz) (Jiang et al., 2019a). The FC 
and amplitude were computed in each sub-band and the whole band. 

To obtain the FC of WM functional networks, the Pearson’s corre
lation coefficient between the mean time series of any two WM func
tional networks was calculated for each subject in each band. In 
addition, we also calculated the FC between each WM and GM func
tional networks, and between distinct GM functional networks to 

Fig. 1. Schematic flowchart of this analysis. Band A, 0.01–0.15 Hz; band B, 0.08–0.15 Hz; band C, 0.01–0.08 Hz. Abbreviations: FC, functional connectivity; fMRI, 
functional magnetic resonance imaging; HCs, healthy controls; SVCI, subcortical vascular cognitive impairment; WM, white matter. 
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examine functional interaction and differences between WM and GM. 
Given the existence of reliable and repeatable clustering networks 
within GM voxels (Yeo et al., 2011; Schaefer et al., 2018), we directly 
utilized the 7-network parcellation atlas to define GM functional net
works (Yeo et al., 2011; Schaefer et al., 2018). The original FC was 
transformed to the z-scores using a Fisher’s z transformation to improve 
data normality for further analyses. Moreover, considering that coarse 
parcellation schemes of GM may lead to the aggregation of signals from 
distinct functional regions, we also utilized a high-resolution parcella
tion with Yeo’s 17 GM network atlas to define GM networks, and to 
further assess the FC alterations in patients with SVCI. The above 
internetwork FC calculation procedures were repeated for the high- 
resolution GM parcellation scheme. 

Existing studies have found that low-frequency oscillatory amplitude 
was a sensitive and reliable neurophysiologic index and related to 
spontaneous neural activities in the resting state (Fox & Raichle, 2007). 
In the current study, the power spectral frequency distribution of the 
amplitude was calculated by the Fourier transform in each WM network. 
Moreover, individual averaged amplitude in each WM network was 
computed and compared between the SVCI and HCs group for band A, B 
and C. To avoid the partial volume effect, only individual WM or GM 
voxels identified based on the T1 image segmentation results were used 
for signal averaging in FC and amplitude analyses. 

2.6. Statistical analyses 

Chi-square test was performed to test the differences in gender, and 
two-sample t-tests were performed to test the differences in age, edu
cation, and cognitive test scores between the SVCI and HCs group. 

The network-based statistic (NBS) approach was utilized to identify 
the clustering structures of FC alterations in SVCI (Zalesky et al., 2010). 
A cluster-defining primary threshold (P = 0.05) was first applied to 
identify a set of connected components controlling for the effects of age 
and gender, in which each component size (number of edges) was then 
determined. To assess the significance for each component, the empir
ical null distribution of the maximal connected component size was 
derived using a permutation test (5000 permutations). For a component 
of size M obtained in the original data, the corrected P value was esti
mated as the proportion of permutations that the maximal component 
sizes were greater than or equal to M. All the aforementioned steps were 
conducted using the NBS software package (https://www.nitrc.org/proj 
ects/nbs/). 

In addition, to determine the effects of group and frequency band on 
signal amplitude, we performed a two-way mixed analysis of variance 
(ANOVA) with group (SVCI and HCs) as a between-subject factor and 
frequency band (band A, B and C) as a within-subject factor. Multiple 
comparisons were corrected by the Benjamini-Hochberg false discovery 
rate (BH-FDR) method at the P < 0.05 level. Then, for those WM net
works with significant main effects of group and interaction between 
group and frequency band, post-hoc two-sample t tests were carried out 
to detect group differences in signal amplitudes, with BH-FDR for mul
tiple comparison correction (P < 0.05). Of note, before the mixed 
ANOVA, a linear regression model was applied to remove the effects of 
age and gender. 

Moreover, to examine whether the WM network alterations were 
associated with cognitive performances in SVCI, the partial correlation 
coefficient was calculated between altered functional connections and 
signal amplitudes and cognitive test scores (MMSE and MoCA scores) for 
each band in SVCI group, regarding age and gender as covariates. P <
0.05 was considered significant. 

Furthermore, a step-wise logistic regression model and receiver 
operator characteristic (ROC) curve analyses were performed to test 
whether FC and signal amplitudes can be used to discriminate SVCI 
patients from HCs. Specifically, the FC and amplitude values were first 
extracted between each significant pair of networks and within each 
significant network, respectively. Subsequently, these extracted values 

were entered into step-wise logistic regression and ROC curve analyses 
to investigate their diagnostic values in each frequency band, while 
removing the effects of age and gender. In addition, to explore whether 
the complementary information of distinct frequency bands would 
improve the results, the extracted values of FC and amplitudes of all 
bands (band A, B and C) were separately combined into the above- 
mentioned predictive model. The significance level was set at P <
0.05 in the classification analyses. 

2.7. Validation analyses 

To verify the reproducibility of the results, a split-half approach was 
first conducted (Zhang et al., 2011). Briefly, both the SVCI and HCs 
group were divided into two matched subgroups (Table S1), and no 
significant differences were observed in the age and gender between two 
subgroups (HC1 and HC2, SVCI1 and SVCI2) (all Ps > 0.72). To identify 
whether there was a similar data distribution in the subgroups, Pear
son’s correlation coefficients were separately computed for the FC and 
amplitude between HC1 and HC2 subgroups and between SVCI1 and 
SVCI2 subgroups. Then, the significantly different functional connec
tions and amplitudes obtained from the whole-group analysis were 
compared between two subgroups (HC1 and SVCI1, HC2 and SVCI2), 
and the same correlation and predictive analyses were performed. 

Furthermore, we performed additional analyses to further examine 
the consistency of the results. In the current study, a threshold of 50 % 
through SPM12′s tissue segmentation was used to generate an 
individual-level WM mask, and the threshold of percentage > 60 % was 
used to generate a group-level WM mask, which was in line with prior 
studies (Jiang et al., 2019a; Jiang et al., 2019b; Lu et al., 2021). 
Furthermore, another three individual-level (40 %, 60 %, and 70 %) and 
three group-level (50 %, 70 %, and 80 %) thresholds were utilized to 
validate the consistency of the main results. 

Finally, to verify the impact of head motion and motion correction 
strategies on these WM network metrics in the resting state, additional 
analyses were carried out. Specifically, scrubbing was performed using 
head motion “spikes” (identified by framewise displacement > 1 mm, 
along with 1 preceding and 2 subsequent volumes) as separate re
gressors. With scrubbing, we also performed the clustering of the WM 
functional networks, FC and signal amplitude analyses, and correlation 
and predictive analyses. All these validation analyses were carried out 
while controlling for the effects of age and gender. 

3. Results 

3.1. Demographics and clinical characteristics of the participants 

The results indicated that the two groups were well-matched for 
gender (23 males for the SVCI and 15 males for the HCs; P = 0.059), age 
(57.94 ± 6.60 years for the SVCI and 57.25 ± 6.60 years for the HCs; P 
= 0.657), and education (11.50 ± 3.40 years for the SVCI and 13.00 ±
2.72 years for the HCs; P = 0.061). The significantly lower MMSE (P <
0.001) and MoCA scores (P < 0.001) were observed in SVCI group 
compared with HCs. Details of demographics and clinical information 
on the subjects were provided in Table 1. 

3.2. Identification of WM functional networks 

The WM functional networks were determined using unsupervised K- 
means clustering on the group-level mean correlation matrix. The 
clustering results showed 14 was the largest number of WM networks 
with a high stability (Dice’s coefficient > 0.85) (Fig. S1), which was 
chosen for the further analysis. The detailed information regarding the 
14 WM networks was depicted in Fig. 2 and Table S2. These WM 
functional networks showed relatively high symmetry (permutation test 
P < 0.0002; Dice’s coefficient = 0.72), correlated with several known 
WM tracts and were organized into three layers (superficial, middle and 
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deep), as reported previously (Peer et al., 2017; Jiang et al., 2019a). 

3.3. Frequency-dependent FC changes of WM networks 

The NBS analysis indicated extensive, frequency-dependent reduced 
functional connections in patients with SVCI, mainly linking distinct 
WM networks together with WM and GM networks. Specifically, in band 
A, NBS identified a single component showing significantly (corrected P 
= 0.0456) decreased connections in SVCI group. The component 
comprised 31 connections, involving 17 different networks. The 

involved networks encompassed the parietal (WM1), forceps major 
(WM2), pre/post central (WM4), posterior limb of internal capsule 
(WM5), superior corona radiate (WM6), frontotemporal parietal (WM9), 
superior longitudinal fasciculus (WM10), ventral frontal (WM11), dorsal 
frontal (WM12), inferior longitudinal fasciculus (WM13) and occipital 
(WM14) WM networks, along with visual (GM1), somatomotor (GM2), 
dorsal attention (GM3), ventral attention (GM4), frontoparietal control 
(GM6) and default mode (GM7) GM networks (Fig. 3A). Additionally, in 
band B, a single connected component consisting of 32 connections 
involved in 16 WM networks, including WM1, WM2, WM4, WM5, 
anterior limb of internal capsule (WM8), WM9, ventral frontal (WM11), 
WM12, WM13, GM1, GM2, GM3, GM4, limbic (GM5), GM6, and GM7 
networks. Compared with the HCs, all of the connections in this band 
exhibited a significant decrease in the SVCI compared with the HCs 
(corrected P = 0.0410) (Fig. 3B). Furthermore, a disrupted connected 
component comprising 29 connections was identified in SVCI patients at 
the low-frequency range (0.01–0.08 Hz) (corrected P = 0.0426). These 
connections linked 15 WM networks, including the WM1, WM2, WM4, 
WM5, WM6, WM9, WM10, WM12, WM13, WM14, GM1, GM2, GM3, 
GM4, and GM6 networks. In band C, all impaired connections were 
significantly reduced in SVCI, and only connections between different 
WM networks and between WM and GM networks were involved 
excepting that between GM1 and GM3 (Fig. 3C). In addition, there were 
27 significant altered connections overlapping between the band A and 
C, involving WM1, WM2, WM4, WM5, WM6, WM9, WM10, WM12, 
WM13, WM14, GM1, GM2, GM3, GM4, and GM6 networks, and 10 
significant altered connections overlapping between band A and B 
consisting of WM1, WM2, WM4, WM9, WM11, WM12, GM2, GM3, 

Table 1 
Demographics and clinical characteristics of the participants.  

Variables SVCI (n = 36) 
(Mean ± SD) 

HCs (n = 36) 
(Mean ± SD) 

P value 

Gender (male/female) 23/13 15/21 0.059a 

Age (years) 57.94 ± 6.60 57.25 ± 6.60 0.657b 

Education (years) * 11.50 ± 3.40 
(n = 36) 

13.00 ± 2.72 
(n = 28) 

0.061b 

Cognitive test scores *    
MMSE 24.14 ± 3.88 

(n = 29) 
27.91 ± 2.45 
(n = 22) 

< 0.001b 

MoCA 21.09 ± 4.73 
(n = 23) 

26.52 ± 4.03 
(n = 21) 

< 0.001b  

a P value was acquired from a chi-square test; b P value was acquired by a two- 
sample t-test. * The education years and cognitive test scores of some subjects 
were missing. Abbreviations: HCs, healthy controls; MMSE, Mini-Mental State 
Examination; MoCA, Montreal Cognitive Assessment; SD, standard deviation; 
SVCI, subcortical vascular cognitive impairment. 

Fig. 2. White matter functional networks obtained using K-means clustering approach. 01. Parietal network; 02. Forceps major network; 03. Anterior corona radiate 
network; 04. Pre/post central network; 05. Posterior limb of internal capsule network; 06. Superior corona radiate network; 07. Forceps minor network; 08. Anterior 
limb of internal capsule network; 09. Frontotemporal parietal network; 10. Superior longitudinal fasciculus network; 11. Ventral frontal network; 12. Dorsal frontal 
network; 13. Inferior longitudinal fasciculus network; 14. Occipital network. 

J. Ma et al.                                                                                                                                                                                                                                       



NeuroImage: Clinical 36 (2022) 103245

6

Fig. 3. Differences in FC between SVCI and HCs in three frequency bands. Left panel, significant differences of FC between SVCI and HCs group in band A (NBS 
corrected P = 0.0456). Middle panel, significant between-group differences of FC in band B (NBS corrected P = 0.0410). Right panel, significant differences of FC 
between SVCI and HCs group in band C (NBS corrected P = 0.0426). Significant differences after NBS correction are marked with a black asterisk in each band. The 
color bar represents the T values of between-group comparison. Band A, 0.01–0.15 Hz; band B, 0.08–0.15 Hz; band C, 0.01–0.08 Hz. Abbreviations: FC, functional 
connectivity; HCs, healthy controls; NBS, network-based statistic; SVCI, subcortical vascular cognitive impairment. 

Fig. 4. Amplitude of WM functional networks. Violin plots show the differences of signal amplitude in each WM network and frequency band between SVCI and HCs 
group (controlling for age and gender). The violin plots contain vertical lines that represent inter-quartile ranges, and black dots on lines indicate the median values. 
The results were obtained using two-way mixed ANOVA and post hoc t-tests, and BH-FDR method was used to correct the multiple comparison correction. * BH-FDR 
corrected P < 0.05 and ** BH-FDR corrected P < 0.01. Band A, 0.01–0.15 Hz; band B, 0.08–0.15 Hz; band C, 0.01–0.08 Hz. Abbreviations: ANOVA, analysis of 
variance; BH-FDR, Benjamini-Hochberg false discovery rate; HCs, healthy controls; SVCI, subcortical vascular cognitive impairment; WM, white matter. 
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GM4, and GM7. 
In addition, Yeo’s 17 GM network atlas was also adopted to define 

the GM networks exploring FC alterations in SVCI with high-resolution 
GM network parcellation. Similar to the patterns found in the low- 
resolution GM network parcellation, FC obtained in the high- 
resolution GM network exhibited an extensive and frequency- 
dependent decrease in patients with SVCI, and these reduced connec
tions mainly linked distinct WM networks together with WM and GM 

networks. All involved networks in band A, and most of these networks 
in band B and C with low-resolution GM network parcellation were also 
confirmed in the high-resolution FC analyses. The details are provided in 
Supplementary Results. 

3.4. Frequency-dependent signal amplitude alterations of WM networks 

All the WM networks showed higher spontaneous activity at low 

Fig. 5. Correlations between FC changes and cognitive performances in patients with SVCI. (A) Six WM functional connections (WM network 1 and 10, 1 and 12, 1 
and 13, 2 and 10, 2 and 13, and WM network 4 and GM network 3) were positively correlated with cognitive performances. (B) FC between WM network 1 and 10 
was positively associated with MMSE scores in band A. (C) FC between WM network 1 and 12 was positively associated with MMSE scores in band B. (D) FC between 
WM network 1 and 13 was positively associated with MMSE scores in band A. (E–F) In band A and C, FC between WM network 2 and 10 was positively associated 
with MMSE and MoCA scores. (G–H) In band A and C, FC between WM network 2 and 13 was positively associated with MMSE and MoCA scores. (I) FC between WM 
network 4 and GM network 3 was positively associated with MoCA scores in band C. The R and P values were obtained from partial correlation analyses. None of 
these correlations did not survive BH-FDR correction (corrected P values not shown). Band A, 0.01–0.15 Hz; band B, 0.08–0.15 Hz; band C, 0.01–0.08 Hz. Ab
breviations: FC, functional connectivity; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; SVCI, subcortical vascular cognitive 
impairment; WM, white matter. 
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frequencies, with a decrease in signal amplitude at higher frequencies 
(Fig. S3). Variance analysis indicated WM networks showing a signifi
cant main effect for group were located in WM1, anterior corona radiate 
(WM3), WM4, WM5, WM8, WM10 and WM13 networks, where the 
amplitudes were decreased within the SVCI group. Moreover, significant 
interaction between group and frequency band on amplitudes were 
found in the WM1, WM3, WM4, WM10 and WM13 networks. Further 
post-hoc t test indicated that between-group differences in amplitudes 
were as follows, the most significant reduction in band C (0.01–0.08 Hz), 
the second in band A (0.01–0.15 Hz), and the least significant decrease 
in band B (0.08–0.15 Hz) for patients with SVCI (Fig. 4). 

3.5. Relationship between impaired WM functional networks and 
cognitive performances 

We performed partial correlation analyses to evaluate the relation
ship between altered WM functional network properties, including 
functional connections and signal amplitudes, and cognitive scores in 
the SVCI group. Five connections (WM1-WM10 and WM1-WM13 in 
band A; WM1-WM12 in band B; WM2-WM10 and WM2-WM13 in both 
band A and C) were positively correlated with MMSE scores in patients 
with SVCI (Fig. 5A–E and Fig. 5G). Moreover, three connections (WM2- 
WM10 and WM2-WM13 in both band A and C; WM4-GM3 in band C) 
were positively associated with MoCA scores (Fig. 5A, F, H, and I). In 
band B, only one connection (WM1-WM12) was significantly correlated 
with MMSE scores, and no correlation was observed between any altered 

connection and MoCA scores. In addition, signal amplitudes in 3 WM 
networks (WM3 in band A, B and C; WM4 and WM8 in band A and C) 
were positively correlated with MoCA scores in SVCI group (Fig. 6A–D), 
while none of amplitudes was associated with MMSE scores within all 
frequency band. However, none of the aforementioned correlations 
were found to be statistically significant after BH-FDR correction for 
multiple comparisons, which may be due in part to the small sample 
size. 

3.6. Classification performance based on changed WM functional 
networks 

We conducted ROC analysis and used area under the curve (AUC) to 
evaluate the discriminatory power of significant altered functional 
connections and signal amplitudes for diagnosing SVCI. Specifically, the 
AUC for functional connections was 0.7022 in band A, 0.6759 in band B, 
and 0.7631 in band C (all Ps < 0.05) (Fig. 7A). By considering all bands 
together, the AUC for functional connections reached 0.7963 (P <
0.001), which is higher than when each band was considered separately 
(Fig. 7A). Furthermore, we used the same procedure to discriminate 
SVCI patients from HCs by using signal amplitudes of WM networks. The 
findings indicated that the AUC of significant signal amplitudes in WM 
networks were relatively high (band A, 0.7106; band B, 0.7130; band C, 
0.7531; combined band, 0.7531; all Ps < 0.01) (Fig. 7B). Therefore, the 
functional connections and signal amplitudes identified by our method, 
especially in the combined band, could be used as biomarkers for the 

Fig. 6. Correlations between altered signal ampli
tudes of WM functional network and cognitive per
formances in patients with SVCI. (A) Signal 
amplitudes in three WM functional networks (WM 
network 3, 4, and 8) were positively associated with 
MoCA scores. (B) Signal amplitude in WM network 3 
was positively correlated with MoCA scores in band A, 
B, and C. (C–D) Signal amplitudes in WM network 4 
and 8 were positively correlated with MoCA scores in 
both band A and C. The R and P values were obtained 
from partial correlation analyses. None of these cor
relations did not survive BH-FDR correction (cor
rected P values not shown). Band A, 0.01–0.15 Hz; 
band B, 0.08–0.15 Hz; band C, 0.01–0.08 Hz. Ab
breviations: MoCA, Montreal Cognitive Assessment; 
SVCI, subcortical vascular cognitive impairment; WM, 
white matter.   

J. Ma et al.                                                                                                                                                                                                                                       



NeuroImage: Clinical 36 (2022) 103245

9

clinical diagnosis of SVCI. 

3.7. Validation analyses 

The split-half results were largely consistent with our main results. 
Moreover, our main results suggested a high reproducibility in valida
tion analyses with different individual-level (40 %, 60 %, and 70 %) and 
group-level (50 %, 70 %, and 80 %) thresholds to determine WM mask 
(please see Supplementary Results). Furthermore, the validation re
sults with scrubbing (regression of head motion “spikes”) were similar to 
the results without scrubbing (Supplementary Results). 

4. Discussion 

This study identified spatially independent WM functional networks 
using clustering analysis of resting-state fMRI signals as previously re
ported (Peer et al., 2017; Jiang et al., 2019b; Fan et al., 2020). These WM 
networks were correlated with several anatomically established WM 
structures. Compared with HCs, the SVCI group manifested between- 
network FC decreases and within-network signal amplitude reductions 
in WM, which both exhibited frequency-dependent properties. In addi
tion, these FC and amplitude disruptions showed positive correlations 
with cognitive performances in SVCI, and high diagnostic performances 
for SVCI especially combining all bands. Overall, our study demon
strated that VCI-related WM dysfunction can be detected using WM 
functional network and used as applicable biomarkers for the diagnosis 
of VCI. 

Previous studies suggested the multiple WM structural abnormalities 
in cognitive deficits and WM damage played a role in cognition 
dysfunction (Filley 2012; Thong et al., 2014; Chen et al., 2018). For VCI, 
selective involvement of frontal tracts has been recognized to underlie 
executive dysfunction, and frontal and parietal WM integrity has been 
correlated with executive and global cognitive function (Ai et al., 2014; 
Levit et al., 2020). Microstructural changes in bilateral forceps major, 
superior longitudinal fasciculus and inferior longitudinal fasciculus 
were also reported in prior VCI studies (Tu et al., 2017). Recently, BOLD 
signals from WM regions have been correlated with other WM and GM 
areas in the resting state, similarly to FC arising from GM regions (Gao 
et al., 2020). Our results demonstrated the WM-related FC disruptions, 
mainly including bilateral parietal, forceps major, superior longitudinal 

fasciculus, and inferior longitudinal fasciculus WM regions. In addition 
to FC disruptions within WM regions, this study also found SVCI patients 
had FC disruptions between WM and GM regions, which were mainly 
connected to frontoparietal control, dorsal and ventral attention GM 
networks. Moreover, with high-resolution GM network parcellation, 
patients with SVCI exhibited similar FC alteration patterns as those in 
the low-resolution parcellation. These findings showed that both within- 
WM and WM-GM functional interactions were disrupted in SVCI with 
high stability, supporting the important role of cortical-subcortical in
teractions in cognition and the disruption of cortical-subcortical path
ways in SVCI (Mungas et al., 2001; Min et al., 2020). 

In this study, the frequency effect in WM-related FC disruptions in 
SVCI could be viewed from these two aspects. First, several altered 
functional connections were not shared among distinct frequency bands 
(full-, high-, and low-frequency band), which implied SVCI-related FC 
changes were related to specific frequency bands. Second, despite 
extensive disrupted connections linking distinct GM regions in high- 
frequency band, except for GM1-GM3 connection, SVCI patients 
exhibited only WM-related FC (WM-WM and WM-GM) alterations at the 
low- and full-frequency ranges. The frequency sub-bands contained the 
disease-related alterations in the full frequency band but characterized 
more differences (Jiang et al., 2019a), and therefore, the above only 
WM-related FC alterations in SVCI were mainly due to connection 
changes in the low-frequency band. As BOLD signals reflected neuronal 
activities mainly in the low-frequency band (Logothetis et al., 2001), the 
finding confirmed that spontaneous brain activity alterations could be 
sensitively detected using WM-related FC disruptions. 

In addition, we found that SVCI patients had significantly deceased 
signal amplitudes, which were located in the parietal, anterior corona 
radiate, pre/post central, anterior and posterior limb of internal capsule, 
superior and inferior longitudinal fasciculus WM networks. These areas 
are responsible for distinct functions, for instance, posterior limb of in
ternal capsule is one of regions where myelination first began (Li et al., 
2022). These findings verified WM dysfunction in SVCI, consistent with 
earlier studies reporting that BOLD-fMRI in the WM was useful in the 
clinical characterization of small vessel disease abnormalities (Make
donov et al., 2013). Structural alterations could yield BOLD signal 
changes in WM (Lin et al., 2020), in turn, altered BOLD signals may 
reveal impaired WM integrity in cognitive disorders. In addition, WM 
has been shown to exhibit plasticity, the activity-dependent capacity of 

Fig. 7. ROC curves for classification of SVCI and HCs using altered functional connections and signal amplitudes. (A) Altered functional connections in each of 3 
bands and the combined band (combining band A, B and C) were used to differentiate SVCI from HCs. The AUC for the combined band is higher than those for any 
single band. (B) Changed WM signal amplitudes in each of 3 bands and the combined band (combining band A, B and C) were used to distinguish SVCI from HCs. The 
AUC values for the combined band and for band C were equal, and their ROC curves completely overlapped. Band A, 0.01–0.15 Hz; band B, 0.08–0.15 Hz; band C, 
0.01–0.08 Hz. Abbreviations: AUC, the area under the curve; HCs, healthy controls; ROC, receiver operating characteristic; SVCI, subcortical vascular cogni
tive impairment. 
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neurons to be modified, in normal and neurological individuals (Filley & 
Fields 2016), thus altered spontaneous activities in WM detected by 
fMRI may offer a powerful approach to uncover WM plasticity in SVCI. 
Furthermore, SVCI patients showed specific-frequency WM amplitude 
decreases and the most significant reduction in the low frequency band, 
which were similar to abnormal frequency-specific intrinsic neural os
cillations within GM in patients with SVCI (Li et al., 2014). 

There is increasing evidence that significant correlations between 
cognitive declines and extensive WM lesions such as parietal WM (Ai 
et al., 2014), forceps major (Zamboni et al., 2017), superior and inferior 
longitudinal fasciculus (Chen et al., 2018) in VCI and its risk factors. In 
the present study, five decreased functional connections were positively 
correlated with MMSE-detected cognitive deficit in patients with SVCI, 
and these connections linked parietal WM and superior longitudinal 
fasciculus, parietal WM and dorsal frontal, parietal WM and inferior 
longitudinal fasciculus, forceps major and superior longitudinal fascic
ulus, along with forceps major and inferior longitudinal fasciculus. 
Moreover, three connections linking forceps major and superior longi
tudinal fasciculus, forceps major and inferior longitudinal fasciculus, as 
well as pre/post central WM and dorsal attention GM network were 
positively associated with MoCA-detected cognitive performances in full 
and low frequency band. These positive correlations between WM- 
related connections and cognitive performances support previous find
ings, suggesting the reduction in inter-regional connections may engage 
in cognitive mechanisms in SVCI. Several altered connections, which 
were positively correlated with both MoCA and MMSE scores, high
lighted inherent cognitive deficit-related WM functional connections in 
patients with SVCI. However, signal amplitude changes of WM networks 
were only correlated with MoCA scores in SVCI. This may be attributed 
to the fact that MMSE primarily detects general cognitive deficits, while 
MoCA is more sensitive for mild cognitive impairment, particularly in 
executive function, attention and delayed recall (Pendlebury et al., 
2010). 

Furthermore, we found that impaired WM functional connections 
and signal amplitudes exhibited relatively high diagnostic power for 
SVCI and combined-band AUC value were higher than or equal to the 
greatest individual prediction. These data suggested complementary 
information in distinct bands could improve the diagnostic performance 
for VCI. 

Several limitations should be considered in this study. First, 
numerous studies have shown that BOLD signals within WM reflected 
specific neural activities (Gore et al., 2019; Li et al., 2021), however, the 
precise weighting of the neuron activity, spiking-related metabolic de
mands and hemodynamic factors contributing to the WM BOLD signals 
is still unclear. Future studies should further quantify signal changes in 
WM. Second, as WM tracts cross each other, the signal at a certain 
location may be a mixture from distinct functional systems (Tournier 
et al., 2004). The K-means clustering approach used in this study might 
not consider the fiber crossings, which need to be improved in the 
future. Third, etiological heterogeneity is a potential factor affecting 
brain functional and structural changes in individuals with VCI. This 
study did not subdivide the VCI group into subgroups with different 
vascular etiologies, studies with the larger sample size are needed to 
establish whether or not etiological heterogeneity affect WM dysfunc
tion in VCI. Finally, due to the small sample size, this study was limited 
by the its statistical power to detect significant effects. Future studies 
with larger sample sizes will make conclusions more reliable. 

5. Conclusions 

This study investigated WM dysfunction in SVCI using resting-state 
fMRI. SVCI patients exhibited extensive WM functional injuries, 
mainly including widespread disrupted WM-WM and WM-GM func
tional connections as well as signal amplitudes in WM regions. Impor
tantly, these abnormalities of WM function exhibited frequency-specific 
properties. Furthermore, these impaired FC and signal amplitudes were 

positively correlated with cognitive decline and exhibited high diag
nostic performances for SVCI. In summary, this study demonstrates that 
VCI is associated with frequency-dependent WM functional abnormal
ities, extending the understanding of WM dysfunction’s role in patho
logical mechanism of VCI. 
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