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ABSTRACT
Increasing evidence points to the respiratory Complex II (CII) as a source and modulator of reactive
oxygen species (ROS). Both functional loss of CII as well as its pharmacological inhibition can lead
to ROS generation in cells, with a relevant impact on the development of pathophysiological
conditions, i.e. cancer and neurodegenerative diseases. While the basic framework of CII
involvement in ROS production has been defined, the fine details still await clarification. It is
important to resolve these aspects to fully understand the role of CII in pathology and to explore
its therapeutic potential in cancer and other diseases.
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Introduction

For decades, reactive oxygen species (ROS) have captivated
many researchers because of their intractable nature and
both beneficial and detrimental roles in cell physiology and
pathology. Mitochondria, the site of cellular respiration, are
considered the primary site of endogenous ROS production
in most cell types. Depending on their concentration, ROS
can initiate diverse cellular actions. At physiological levels,
they support signaling pathways involved in cell growth
and protection, while their high levels lead to cellular
damage followed by cell death. The balance between ROS
generation and ROS scavenging needs to be tightly regulated
[1–3]. Indeed, mitochondrial ROS production has been con-
nected to numerous pathological conditions including neuro-
degenerative diseases [4], aging [5], oxidative damage during
ischemia/reperfusion injury [6], and cancer [7,8].

Initially, respiratory Complex I (NADH:ubiquinone oxidoreduc-
tase, CI) and Complex III (ubiquinol:cytochrome c oxidoreduc-
tase, CIII) were considered the main sources of mitochondrial
ROS, while the contribution of Complex II (succinate dehydro-
genase, SDH, CII) was overlooked [9–11]. Identification of
mutations in CII resulting in increased ROS production in
cancer and neurodegenerative diseases [12–14] and realization
that CII plays a crucial role in ROS production also during the
reverse electron transfer (RET) through CI [15–18] changed the
traditional view. Presently we know that CII contributes signifi-
cantly to ROS both directly and indirectly (via RET), with impor-
tant implications in physiology and disease. Mutations in CII
are associated with familiar and sporadic forms of cancer, par-
ticularly with pheochromocytoma/paraganglioma (PHEO/PGL),
gastrointestinal stromal tumors (GIST), and renal cancer, but
also with the Leigh syndrome, a neurodegenerative disease.
Moreover, CII inhibitors are cardioprotective in ischemia/reperfu-
sion injury (I/R), and can be also applied to cancer therapy [19].

Complex II structure and function

The research on mitochondrial CII as a source of redox cofac-
tors dates back more than 6 decades [20]. CII is unique in
linking the tricarboxylic acid (TCA) cycle and the respiratory
chain. CII catalyzes the oxidation of succinate to fumarate,
which does not directly contribute to the generation of the
proton motive force, but concurrently transfers two electrons
derived from this reaction to membrane-bound ubuiquinone.
Ubiquinone is thereby reduced to ubiquinol, which fuels CIII
and CIV. Interestingly, unlike the other members of the respir-
atory chain, none of CII subunit is encoded by mitochondrial
DNA [21].

Human CII consists of four subunits, SDHA-D (Figure 1).
SDHA is the largest subunit and contains an active site with
covalently bound flavine adenine dinucleotide (FAD), which
removes electrons from succinate. SDHB carries three linearly
aligned iron–sulfur clusters that mediate electron transfer to
the ubiquinone molecule located in the ubiquinone-binding
(Q) site, jointly formed by SDHB, SDHC, and SDHD. Subunits
SDHC and SDHD anchor CII to the mitochondrial inner mem-
brane [22,23]. Four assembly factors participate in CII biogen-
esis [24–27]. SDHAF2 and SDHAF4 are involved in the
maturation of SDHA, and may facilitate covalent flavinylation
[24,27,28]. SDHAF1, assisted by SDHAF3, promotes insertion of
Fe-S clusters into SDHB [25,26]. Mature SDHA is attached to
mature SDHB to be linked to membrane-bound SDHC/
SDHD. While the crystal structure of CII was described more
than 10 years ago [21,22], additional alternative assembly
forms were discovered recently in bacteria [29–31]. One
such alternative CII, designated CIIlow and containing SDHA,
SDHAF2, and SDHAF4, was identified also in mammalian
cells. CIIlow is induced in the absence of SDHB or during respir-
atory dysfunction and may orchestrate cellular adaptations to
energy stress [32].
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Complex II and generation of ROS

In recent years, it has become apparent that CII has an impor-
tant role in ROS production. This role is either direct, when
ROS are generated at CII, or indirect, when ROS are produced
at other sites from electrons supplied by CII (Figure 2). The
indirect role was described first, because of the old obser-
vation that isolated mitochondria produce large amounts of
ROS in the presence of high concentrations (≥5 mM) of succi-
nate, the substrate of CII [15–17,33,34], implicating CII in the
process. This is due to RET, when succinate-derived electrons
from CII reduce the ubiquinone pool, and electrons are forced
backwards from ubiquinone towards CI, where vast quantities
of ROS are formed. It was suggested that also CII can produce
ROS under these conditions, but this is somewhat controver-
sial and may be tissue-specific [35].

The direct role of CII in ROS production went long unrecog-
nized. This is because the primary ROS producing site in CII,
FAD in SDHA, cannot generate ROS when succinate concen-
tration is high (≥5 mM). The mechanism of succinate-
mediated inhibition of ROS production at FAD is not entirely
clear, but succinate may block access of oxygen to FAD [36].
Respiratory measurements are traditionally performed at 5-
10 mM succinate, which masks FAD contribution to ROS pro-
duction. At 0.5 mM succinate, a concentration similar to
normal intracellular succinate levels, the contribution of CII’s
FAD to ROS generation can be substantial when electron
transport through CII is blocked at the Q site or further down-
stream (at CIII, for example), suggesting that ROS is produced
when FAD is reduced, but the active site is not occupied
[36,37]. Under specific conditions, ROS generation was also
observed at the Q site [38], however, this is likely infrequent
in mammalian CII.

Inhibitors of CII show ambivalent effect on mitochondrial
ROS production depending on substrate supply, membrane

potential and overall metabolic activity of the cell as well as
intracellular succinate concentration [39,40]. Specific inhibi-
tors of CII bind either to the succinate-binding site, i.e. oxa-
loacetate and malonate (reviewed in [14]), or to the Q site,
i.e. thenoyltrifluoroacetone (TTFA) [22], atpenin [41], α
−tocopheryl succinate [42], or mitochondrially targeted
vitamin E succinate (MitoVES) [43–45]. Generally, succi-
nate-binding site inhibitors suppress ROS production from
CII as they block FAD, while Q site inhibitors stimulated
ROS generation as they reduce FAD by blocking electron
transfer to ubiquinone. However, in intact cells only inter-
mediate affinity (TTFA, MitoVES) Q site inhibitors induce
ROS (and cell death), while high-affinity Q site inhibitors
such as atpenin do not induce ROS [45]. The explanation
is that the plasma membrane is impermeable for succinate,
and succinate rapidly accumulates when high-affinity Q site
inhibitors are employed, canceling ROS production from
FAD. This is perhaps the case for atpenin A5, which
immediately blocks all CII molecules in a cell, so that succi-
nate cannot be consumed. Lower affinity Q site inhibitors
do not occupy all CII molecules at the same time, which
keeps succinate down, allowing ROS production at FAD
of those CII molecules that have the Q site blocked.
Indeed, atpenin treatment [46], unlike TTFA and MitoVES,
do not induce ROS-mediated cell death [45], and atpenin
is quite well tolerated by cultured cells. Finally, both the
succinate-binding site and the Q site inhibitors suppress
ROS production under high succinate concentrations
during RET [47] as they all prevent the transfer of electrons
from succinate via CII to the ubiquinone pool.

The paradox of ROS production from CII

It has been shown that functional loss of CII can lead to succi-
nate accumulation and ROS generation in cells [19]. Guzy et al.

Figure 1. Complex II assembly and its metabolic activity. (A) CII is assembled from four structurally different subunits SDHA-D. SDHA, with covalently bound FAD,
requires two assembly factors SDHAF2 and SDHAF4 that assist with SDHA maturation and flavinylation. SDHB contains three iron-sulphur (FeS) clusters, and two
additional assembly factors SDHAF1 and SDHAF3 are needed for their insertion. Dimer of SDHA/B is then linked to transmembrane subunits SDHC/D. Under
some conditions, an alternative assembly species of CII consisting of SDHA, SDHAF2, and SDHAF4 (described as CIIlow) is stabilized and has an independent biological
function. (B) Metabolic activity of the mature CII. CII promotes oxidation of succinate to fumarate. Electrons from succinate are removed by FAD in SDHA and then
passed to FeS clusters of SDHB subunit. FeS cofactors transfer the electrons to ubiquinone (CoQ) within the ubiquinone binding (Q) site formed by SDHB, SDHC, and
SDHD.
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found that pharmacological inhibition of CII or silencing of
SDHB can lead to ROS production and ROS-dependent stabil-
ization of hypoxia-inducible factor-α [48], while others
ascribed this effect to the accumulation of succinate [49].
Similarly, CII dysfunction, increased ROS formation, and
mtDNA mutability were observed in a yeast model with
mutated SDHB [50]. Mutations in the SDHC subunit of CII in
fibroblasts from a transgenic mouse enhance ROS generation
due to dysfunction of mitochondrial respiration [51]. Similarly,
downregulation of the expression of the SDHC subunit in
hepatocellular carcinoma was linked to increased cancer cell
growth and metastasis due to elevated ROS production with
subsequent nuclear factor-κB signaling [52]. A study using
hamster fibroblasts revealed that mutation in SDHD resulted
in elevated ROS production [53]. A similar effect on the pro-
duction of ROS and instability of DNA was observed in yeast
mutant of SDH [54].

These observations are puzzling given recent strong evi-
dence for FAD in SDHA being the principal site of ROS pro-
duction in the mature mammalian CII, coming both from
isolated mitochondria and from intact cells [36,37,45]. We
face the following paradox. Mutations and/or manipulations
that interfere with CII and therefore favor reduced FAD will
also increase intracellular succinate to concentration over
5 mM which is incompatible with ROS production from FAD
in mammalian CII. Indeed, PHEO/PGL-associated mutations
in the SDHC subunit that stimulate ROS at low (0.5 mM) succi-
nate levels in isolated mitochondria often do not stimulate

ROS in intact cells [45]. There are several relevant aspects
that should be considered when thinking about CII-derived
ROS in pathology. When wild-type CII alleles are present (het-
erozygous mutations, incomplete knockdown), these will
control succinate levels to some degree to allow ROS pro-
duction at FAD by mutated CII. Indeed, inherited PHEO/PGL-
associated germline mutations are heterozygous during
tumor development. Yeast results could perhaps be explained
by a different behavior of mammalian/Escherichia coli CII com-
pared to Saccharomyces cerevisiae CII with respect to ROS pro-
duction. While the amount of ROS produced at different
succinate concentrations follows the typical bell-shaped
curve for human and E. coli CII (with a maximum at about
0.5 mM succinate, corresponding to a typical concentration
in normal cells) [36,47,55], this is not the case for
S. cerevisiae CII. In yeast, ROS production at CII is succinate-
insensitive and the likely source is the Q site [56,57]. For this
reason, yeast CII may not be the optimal model to study
ROS-related aspects of CII-dependent tumorigenesis.

Improperly assembled CII, for example incorrect insertion
of FeS clusters into SDHB, can result in increased ROS [26].
Yet, Maklashina et al. showed that free E. coli SDHA flavopro-
teins have only minor catalytic activity and generate little or
no ROS. Their results suggest that the iron–sulfur protein
SDHB in CII is necessary for robust catalytic activity and ROS
generation by incomplete CII [58]. This could explain how
CII could produce ROS to amplify the apoptotic response. In
this scenario, SDHA/SDHB subcomplex disengages from the

Figure 2. Complex II contributes to ROS production in both physiological and pathophysiological conditions. (A) In the presence of high concentrations of succinate,
CII does not produce ROS directly but can contribute to indirect ROS generation via reverse electron transfer (RET) by forcing the electrons onto CI. (B) At lower,
physiological succinate concentration, succinate molecule passes the electrons to FAD forming FADH2 which is then able to react with oxygen within the unoccupied
succinate binding site, therefore directly forming ROS. (C) The ROS generating ability of reduced FAD is significantly increased when the Q site is blocked by an
inhibitor. In contrast, succinate binding site inhibitors block ROS production. (D) Incorrect assembly or damage to CII subunits can induce ROS formation either
via reduced FAD or possibly via exposed FeS clusters.
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membrane-bound SDHC/SDHD, and superoxide is formed
[59]. The precise site of superoxide generation was not ident-
ified, but it could possibly originate from the exposed FeS
clusters of SDHB that would be insensitive to succinate inhi-
bition. This raises the possibility that CII mutations, which
can alter CII conformation (particularly in SDHB), could allow
ROS production even in the presence of accumulated intra-
cellular succinate, circumventing the FAD paradox.

CII in disease

Isolated defects of CII are relatively rare, accounting for
approximately 2% of all respiratory chain deficiency diag-
noses [60]. Still, accumulating evidence links SDHx mutations
to pathology of the nervous system and the brain. Deficiency
of CII is recognized to cause encephalomyopathy in childhood
and optic atrophy in adulthood [61]. Jain-Ghai et al. reviewed
37 clinical cases of CII deficiency, concluding that neurological
findings, abnormal brain imaging, and developmental delay
were the most common manifestation of CII defects, regard-
less of the large variation in the phenotype [62]. Chronic
administration of 3-nitropropionic acid (3-NPA), an irreversible
inhibitor of succinate dehydrogenase, replicates the neuro-
pathologic and clinical features of Huntington disease (HD)
in nonhuman primates [63]. Later it was shown that patients
with HD have severe defects of CII in caudate nucleus [64],
which can mediate striatal cell death and neurodegeneration
mimicking the development of HD [65]. On the other hand,
Naseri et al. recently measured an elevated SDH activity in
HD patient lymphoblasts [66], pointing to a possible compart-
ment-specific CII regulation.

One of the rare cases of documented autosomal inheri-
tance of SDHA subunit defect was linked to bilateral optic
atrophy, ocular movement disorder, progressive polyneuro-
pathy, psychiatric involvement, and cardiomyopathy [60].
Mutations in SDHA, SDHB and SDHAF1 were reported in leuko-
dystrophy [67], Leigh syndrome and cardiomyopathy [23,68–
70], and infantile leukoencephalopathy [25]. Recently, a case
of encephalomyopathy has been connected to a recessive
germline mutation in SDHD subunit [71]. Moreover, assembly
factor SDHAF4 was implicated in neuroprotection, possibly
decreasing ROS generated by the free SDHA subunit [27].
Hence, ROS production via CII may play a role in neurodegen-
erative processes.

SDHx defects show a strong association with tumorigen-
esis, and SDHx genes are considered tumor suppressors.
Germline mutations in subunits SDHA-D, as well as assembly
factor SDHAF2, were recognized to cause familial PHEO/PGL
[13,23,72]. Further, SDH dysregulation is linked to GIST onco-
genesis [23,73] and renal carcinoma [74,75], but less fre-
quently. In addition, the familiar SDHx defects are
connected to PTEN mutation-negative Cowden syndrome,
associated with breast, thyroid, and endometrial neoplasias
[76].

Unlike in neurological disorders and cancer, in other path-
ologies, the direct genetic link to CII has not been established.
However, evidence is emerging for the role of mitochondrial
ROS in obesity [77–79], insulin resistance/diabetes [79,80], car-
diovascular diseases [81], and non-alcoholic fatty liver disease
[79,82,83]. With regard to CII/ROS, skeletal muscle biopsies
from patients with obesity and diabetes showed changes in
CII activity [78,84,85]. Also visceral adipose tissue in obese
patients exhibits decreased CII activity compared to

subcutaneous adipose tissue which can be restored in vitro
by addition of the mitochondria-specific oxidant scavenger
mito-TEMPO [77]. Chemical inhibition of CI and CII by amio-
darone followed by increased ROS production may result in
steatohepatitis [86]. Moreover, Fazakerley et al. have
suggested that loss of mitochondrial CoQ can drive adipocyte
insulin resistance most likely via CII-dependent mitochondrial
ROS production [87]. Altogether, CII should be considered
when searching for novel therapeutic approaches in meta-
bolic disorders.

Targeting CII/ROS as a therapeutic approach

Mitochondrial malfunction and increased ROS production are
relevant in aging, neurodegenerative diseases, obesity, dia-
betes, and cancer [88,89]. ROS can be countered by antioxi-
dants, but the therapeutic application of antioxidants has
yielded disappointing results, possibly because only a small
fraction of these compounds are taken up by mitochondria
[88]. Hence, mitochondrial targeting was employed to
accumulate antioxidants within mitochondria [89]. One of
the best characterized mitochondria-targeted antioxidants is
mitochondrially targeted coenzyme Q (MitoQ) containing
the triphenylphosphonium (TPP+) moiety (reviewed in
[89,90]). In mitochondria, the reduced form of MitoQ is oxi-
dized, followed by its rapid re-reduction at CII, which was
documented to act as a protective mechanism in different
cell models of mitochondrial oxidative stress [91] and neuro-
protection [92]. Furthermore, MitoQ was studied in metabolic
syndrome and proved to be effective against hypercholester-
olemia, hypertriglyceridemia, mtDNA oxidative damage,
hyperglycemia, and hepatic steatosis (reviewed in [83]).

Mitochondrial ROS production is involved in I/R injury,
and CII inhibitors exert protective effects in different I/R
models by suppressing RET [93–96]. Mitochondria-targeted
tanshinone IIA, a new CII inhibitor, was developed and
showed to be protective in I/R oxidative injury [97]. A
similar effect was shown for the ferulic acid derivative
hmy-paa (3-(4-hydroxy-3-methoxyphenyl)-N-(1H-pyrazol-3-
yl)acrylamide) [98]. This is because during the ischemic
phase of I/R accumulated succinate is quickly oxidized
upon oxygen availability, resulting in massive RET and
ROS generation at CI. CII inhibitors, such as malonate, that
prevent electron transfer through CII to the ubiquonine
pool, therefore, prevent RET and ROS production, are pro-
tective during I/R or cold ischemia [99,100]. However, it
has also been proposed that CII-dependent reserved respir-
atory capacity affords cardioprotection during cardiomyo-
cyte recovery from hypoxia [101].

Mills et al. showed that CII-induced ROS production by RET
is involved in LPS-stimulated macrophage activity. Succinate-
dependent ROS generation was observed, resulting in pro-
inflammatory responses, while inhibition of CII by malonate
promoted an anti-inflammatory outcome [102]. Interventions
at CII can thus regulate inflammation which is associated with
numerous metabolic and cardiovascular disorders [103]. Car-
dioprotective effects of diazoxide was linked directly to inhi-
bition of SDH [104]. In addition, inhibition of CII with 3-NPA
reduced glucose-stimulated insulin secretion and ROS pro-
duction, thereby offering new directions in treatment of cell
damage in diabetes [105]. Conversely, while most therapies
are focused on inhibiting CII and ROS production, stimulation
of SDH activity by succinate administration drives production
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of ROS and thermogenic respiration in brown adipose tissue,
which may stimulate protection against diet-induced obesity
and improve glucose tolerance [106]. These findings suggest
that targeting CII and CII-driven ROS production may broaden
the potential treatment of metabolic disorders.

It has been proposed that CII may function as a general
sensor for apoptosis [59,107], making CII a regulator of cell
death [108]. Indeed, blockade of the Q site of CII can induce
apoptosis by stimulating ROS production from FAD. The
amplitude of cell death is directly proportional to the
amount of CII-produced ROS [45]. Thus, CII can be targeted
for cancer therapy, and efficient experimental anti-cancer
agents directed at the Q site have been developed [42–
44,109]. The list of potential chemicals to manipulate CII and
CII-dependent ROS has been recently updated, including α-
TOS, mitoVES, 3-bromopyruvate, malonate, 3-NPA, TTFA, atpe-
nins, lonidamine, and DT-010 as possible candidates for
cancer therapy [110]. In addition to the direct effect on
cancer cells, some agents also reduce tumor angiogenesis
[111,112]. Furthermore, non-toxic doses of the Q site inhibitor
TTFA sensitize cancer cells to cell death regulated by other
drugs [113], suggesting that CII has potential in combinational
cancer therapy. This is in line with CII being an important
player in cell death induction. Additionally, it has recently
been shown that tumors carrying SDHB mutations produce
more ROS and accumulate iron, and disruption of redox
hemostasis by ascorbic acid to induce cell death seems to
be a promising tool for the treatment of SDHB-mutated
PGL/PHEO [114].

Conclusions

Accumulating evidence suggests that CII is an important and
underestimated source and modulator of ROS in physiological
and pathophysiological conditions that can be manipulated
to both induce and suppress cell death, depending on the
scenario. Since literature on the therapeutic application of
CII modulation in cancer, neurodegeneration, and other path-
ologies is still fractional, a better understanding of the basic
mechanisms of ROS regulation by CII in disease may lead to
new therapeutic approaches.
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