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Abstract: Background: This study presents an intelligent table tennis e-training system based on a
neural network (NN) model that recognizes data from sensors built into an armband device, with the
component values (performances scores) estimated through principal component analysis (PCA).
Methods: Six expert male table tennis players on the National Youth Team (mean age 17.8 ± 1.2 years)
and seven novice male players (mean age 20.5 ± 1.5 years) with less than 1 year of experience were
recruited into the study. Three-axis peak forearm angular velocity, acceleration, and eight-channel
integrated electromyographic data were used to classify both player level and stroke phase. Data
were preprocessed through PCA extraction from forehand loop signals. The model was trained
using 160 datasets from five experts and five novices and validated using 48 new datasets from
one expert and two novices. Results: The overall model’s recognition accuracy was 89.84%, and
its prediction accuracies for testing and new data were 93.75% and 85.42%, respectively. Principal
components corresponding to the skills “explosive force of the forearm” and “wrist muscle control”
were extracted, and their factor scores were standardized (0–100) to score the skills of the players.
Assessment results indicated that expert scores generally fell between 60 and 100, whereas novice
scores were less than 70. Conclusion: The developed system can provide useful information to
quantify expert-novice differences in fore-hand loop skills.

Keywords: wearable technology; electromyography; inertial measurement unit; artificial neural
network; table tennis teaching

1. Introduction

As wearable devices become cheaper and more popular, athletes have gradually
begun to use them to analyze the extent and quality of their training. Apps installed on
wearable devices can provide personalized fitness data and assist in self-tracking and
quantifying exercise data [1–3]. In addition to benefiting professional athletes during
training, wearable devices can assist physical education teachers. Monitoring systems can
improve the effectiveness of students’ learning and allow them to practice sports-related
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skills more easily. One wearable device, the Myo Armband (Thalmic Labs, Inc., Kitchener,
ON, Canada), was used in several applications, such as gesture recognition [3–5], gesture
based controller [6–8], or providing medical solutions [9,10]. In the field of sports,
Raina et al. (2017) used the Myo Armband to track changes in muscle exertion and arm
swing as badminton shots were performed [3]. The advantage of this system is its sensors,
namely, eight dry-surface electromyography (EMG) sensors and one nine-axis inertial
measurement unit (IMU) sensor (three-axis gyroscope, three-axis accelerometer, and
three-axis magnetometer), which are built into a simple, lightweight elastic armband.

Studies have used various sensors and data analysis methods for table tennis ob-
servations, such as video analysis to track the ball’s trajectory during service [11]; force
sensors and electronic circuits to monitor the net [12,13] and detect ball–net impact during
service [13]; inertial sensors mounted on the paddle to assess the ball’s speed and spin [14],
estimate the trajectory of the paddle [15], and detect the type of stroke [16,17]; and inertial
sensors worn on the limbs to detect shots [18], estimate kinematic parameters [19], and
recognize stroke motions [20–26]. Machine learning classification algorithms are a reliable
approach for recognizing basic human motions. The authors of related studies have recom-
mended various expert machine learning models for table tennis observations, such as the
k-nearest neighbor algorithm [20,21], support-vector machines (SVMs) [13,14,16,17,21,24],
neural networks [17,18,22,23,25], or Long Short-Term Memory deep learning methods [26],
all of which can achieve a sufficient level of accuracy for recognizing and classifying table
tennis strokes. Because of their excellent nonlinear mapping and learning capabilities,
neural networks can fully link information into network nodes and create a network mod-el
with which to produce an effective prediction model. The aim of this study was to use
artificial neural networks (ANNs) to build an expert model of a proposed system.

In addition to kinematic data, physiological signals, such as EMG signals, can be used
to detect the degree of muscle activation during any movement [27]. In a table tennis
study, Kondrič et al. (2006) examined the difference in upper arm EMG signals between
forehand top spin strokes when 38-mm and 40-mm balls were struck [28]. Meghdadi
et al. (2019) used EMG analysis to investigate differences among players with and without
shoulder impingement syndrome in timing and activity intensity in the shoulder girdle
muscles when a forehand topspin loop was being performed [29]. Chanavirut et al. (2017)
assessed the effects of 6 weeks of training on wrist muscle strength, grip strength, and
performance and used EMG as a measure of amateur players’ wrist flexor and extensor
muscle conditions [30]. These studies suggest that EMG signals can be used to analyze
players’ performance by indicating muscle activation during play. For this reason, the
aim of this study was to use EMG signals generated by the wearable Myo Armband to
under-stand differences in forearm and wrist movements among novice and expert table
tennis players and to design an expert system for providing feedback on training.

Although wearable artificial intelligence devices can help to classify table tennis
strokes [16,17,26] and distinguish the players’ levels [26], the basic classifications of “ex-
pert” and “novice” do not give coaches sufficient information to support their teaching.
To bolster table tennis education, this study proposed an intelligent expert system based on
principal component analysis (PCA) that projects data points from IMU and EMG sensors
built into the Myo Armband onto each principal component. The information derived from
this data can be interpreted into appropriate instructions for teaching. In the system, data from
IMU and EMG signals during each stroke are extracted and clustered. After PCA is used to
filter out the input variables of machine learning, the cluster results reveal the corresponding
skill requirements. Using this innovative combination of ANN and PCA approaches for the
development of our system, it can provide the automated scoring checks for each player.

2. Materials and Methods
2.1. Participants

The participants in this study were six expert male table tennis players on the Na-
tional Youth Team (mean age 17.8 ± 1.2 years) and seven novice male players (mean
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age 20.5 ± 1.5 years) with less than 1 year of experience. Players who in the 6 months
prior to the study had had musculoskeletal disorders or obvious trauma to the upper or
lower extremities (such as fractures) that resulted in pain or inability to perform the test
normally were excluded from the study. Each participant was informed of the purpose
and content of the experiment and signed a consent form beforehand. The study was
conducted in accordance with the Declaration of Helsinki, and the protocol was approved
by the Ethics Committee of Kaohsiung Medical University Chung-Ho Memorial Hospital
(KMUHIRB-E(I)-20190192).

2.2. Experimental Instruments and Equipment

The Myo Armband (Thalmic Labs Inc., San Francisco, CA, USA, Figure 1) is a wearable
armband for the forearm with eight parts. Each part consists of an EMG sensor containing
three metal electrode contacts and a signal amplifier. The device also features a nine-axis
IMU unit, installed in the fourth sensor (Figure 1); it contains a three-axis gyroscope, a three-
axis accelerometer, and a three-axis magnetometer. The dynamic ranges of measurement
for accelerometer and gyroscope were ±16 g and ±2000 deg/s, respectively. The armband
provides two sources of information: EMG signals with a frequency of 200 Hz and IMU
signals with a frequency of 50 Hz [31,32]. Wireless data transmission occurs through a
Bluetooth 4.0 connector. Previous study has reported that the armband sensor data is
comparable to conventional EMG and IMU data and has high test-retest (trial-to-trial and
day-to-day) reliability of acceleration, gyroscope, and EMG data [33]. The armband is
light weight (93 g) and has an adjustable circumference ranging from 19 to 34 cm; thus,
wearer comfort was considered in its design. It was worn on the dominant arm during
data recording. Sensor 4 (IMU unit) was positioned approximately 3 cm below the lateral
epicondyle, which is the origin of the extensor tendons of the wrist and fingers, and
oriented in the direction of the X-axis (negative direction) toward the palm. The armband
was then fastened accordingly. According to the previous study [34], in above-mentioned
armband setting, the EMG signals in sensors 3, 4, 5 correspond to the activation of the wrist
extensors. In contrast, sensors 1, 7 and 8 correspond to the wrist flexors, and the signals in
sensors 2 and 6 correspond to both of them.

Figure 1. Placement of the Myo Armband on the forearm (A) and the direction of IMU sensors (B).
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2.3. Data Acquisition and Processing

The SMARTPONG table tennis robot (TJ-3000, TEH-JOU Science and Technology Co.,
Ltd., New Taipei City, Taiwan) was used to serve backspin balls at a rate of 30 balls per
minute. Each participant had one minute (30 balls) forehand loops practice to familiarize
the ball speed, then performed 10 forehand loops, and the data on 8 of these loops were
analyzed. The data acquisition was stopped and retested according to the actual situation
such as participant failed to keep up with the serve speed. Data from each stroke were then
divided into backswing (BP) and forward swing phases (FP) according to the forearm angular
velocities measured by the z-axis gyroscope (Figure 2). For the analysis of phases, the following
steps were taken. First, we defined the maximal positive value of the forearm angular velocity
as point A. Second, we identified point B as the point where the angular velocity returned
to 0 before point A. Third, we identified the point where the peak negative angular velocity
before point B occurred and then found the point at which velocity that returned to 0, point C.
Fourth, we identified point D, a drop to 0 after point A. The intervals between points C and
B and points B and D represent the BP and FP phases, respectively. We defined the greatest
positive and negative angular velocities as the maximum forearm angular velocities in the
FP and BP phases, respectively. The peak acceleration values were also recorded, and they
could be either positive or negative values. In addition, data from the eight EMG sensors were
segmented according to the previously mentioned intervals. Signal rectification and envelope
detection with cutoff frequencies of 10 Hz were used to process the data from the EMG signals
to yield a smoother output. The final step was to calculate the integrated EMG (iEMG) values.
In total, 14 parameters were recorded in each phase: the three-axis peak forearm angular
velocity, the three-axis peak forearm acceleration, and the eight iEMG values. Data after each
capture were obtained, and the subsequent stroke data were retrieved from the remaining
data to avoid repeated capture of the same data. Capture ended after data from eight strokes
were recorded. All analyses and machine learning procedures in this study were performed in
Python (version 3.7.8) using the Jupyter Notebook. The research data were standardized such
that they had zero mean before modeling.

Figure 2. Forearm angular velocity measured from a gyroscope reading of the z-axis.
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2.4. Feature Selection and Modeling

Figure 3 shows the steps of the modelling process. This study used PCA when selecting
features to reduce the input space in the ANN models. PCA selects variables according
to the magnitude (from largest to smallest absolute value) of their coefficients (loadings).
Kaiser criteria, according to which principal components with eigenvalues greater than 1
are retained for further analysis, were used to select the number of components retained in
the PCA. After the principal components were extracted, varimax rotation was performed
to achieve the linearly independent factors and create a straightforward, easy-to-interpret
structure. Finally, after the dimension reduction, the factor score data were used as the
neural network input. The factor score coefficient matrix was recorded to calculate the
factor scores of the new input data outside the model. A total of 160 pieces of data (2 levels
[5 expert + 5 novice] × 2 phases × 8 strokes) were included in the neural network models,
with 80% used for training and 20% used for testing the models. Data for the remaining
three participants (one expert and two novices) were used as the new data set for testing.
We focused on performing multiclass classification on the players’ levels (expert and
novice) and motion phases (BP and FP). Table 1 shows the label names for each player
action. To create a classification model, a deep learning neural network (see Figure 4) was
used with three hidden layers, each containing 20 neurons, and the rectified linear unit
activation function (ReLU) was applied. The last layer was a sigmoid output layer with
four nodes, one for each class.

Figure 3. Flowchart of modeling steps.

Table 1. Labeling of multiclass classification tasks.

Classification Label Name

Expert backswing phase E-BP
Expert forward swing phase E-FP

Novice backswing phase N-BP
Novice forward swing phase N-FP
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Figure 4. Artificial neural network (ANN) architecture.

2.5. Model Evaluation

We calculated the accuracy, recall, precision, and F1-score from the confusion matrix to
fully evaluate the model. The accuracy is the ratio of correct predictions to the total number
of predictions. Recall is the ratio of true positive predictions to all positive predictions.
In contrast, precision measures the number of correct positive predictions, which is the
ratio of true positives to total positive predictions. F1 score is the weighted average of
precision and recall. For good classifiers, accuracy, recall, precision, and F1 score should be
nearer to 100%.

2.6. Table Tennis Skill Scoring System

For automatic scoring, the system used a standard deviation scaling method to trans-
form the PCA factor scores on a scale of 0 to 100. First, the average of the original factor
scores for all experts in the model was set to 80 points. One standard deviation away from
the mean was 70–90 points and two standard deviations from the mean was 60–100 points;
a linear regression model was calculated to rescale and transform the raw data based on
a scale of 0 to 100 points for each phase. Next, the system transformed the factor scores
of the new input data according to this scale and displayed the results on a radar chart to
visualize performance.

3. Results

Table 2 shows the mean (± SD) values of the 14 features across the two player levels
during the BP and FP phases. The peak acceleration or angular velocity can be positive or
negative. Positive or negative values represent different directions of movement. The value
of the z-axis gyroscope is much larger than that of the other two axes, meaning that z-
axis is the main rotation axis of the forehand loop drive; therefore, we used this axis for
distinguishing between the phases.
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Table 2. Data for 14 features across two player levels during BP and FP phases (mean (SD)).

E-BP E-FP N-BP N-FP

Acc X −1.51(0.38) 10.82(1.32) −0.52(0.38) 5.56(3.02)
Acc Y 1.10(0.66) −9.08(1.39) 0.93(0.57) −5.93(2.45)
Acc Z 0.56(0.36) −3.16(0.84) 0.37(0.29) −2.46(1.18)

Gyro X 35.68(32.21) −380.75(82.85) 56.38(45.48) −319.67(200.27)
Gyro Y 136.97(49.42) −465.58(136.51) 196.03(119.91) −351.73(113.47)
Gyro Z −352.28(137.00) 1192.91(69.11) −489.94(226.25) 986.93(149.67)
EMG 1 10.73(4.34) 19.18(4.67) 4.87(1.97) 9.68(3.04)
EMG 2 15.81(3.89) 21.62(4.17) 9.80(5.32) 16.91(6.02)
EMG 3 10.99(3.35) 20.44(4.67) 9.82(4.16) 17.72(6.25)
EMG 4 8.77(2.29) 24.24(3.72) 10.47(5.10) 21.08(7.04)
EMG 5 8.87(3.40) 24.38(3.03) 9.18(5.17) 19.81(5.77)
EMG 6 6.35(3.23) 22.87(5.00) 6.89(5.74) 15.41(6.29)
EMG 7 6.61(1.81) 17.40(4.04) 6.65(5.88) 14.08(6.68)
EMG 8 10.23(3.61) 20.49(4.39) 5.97(5.51) 12.39(7.94)

Acc X, Y, Z, unit: g; Gyro X, Y, Z, unit: deg/s; EMG 1–8, unit: µV*s.

Table 3 shows the significant factors extracted by the PCA. The Kaiser–Meyer–Olkin
Measure of Sampling Adequacy value for the factor analysis was 0.896. An ideal score is
one above 0.8, indicating that the factor analysis was useful for our data. In addition, the
value for Bartlett’s test of sphericity was 3589.490 (degrees of freedom = 91, significance
(Sig.) < 0.01). This test measures whether a correlation matrix is significantly different from
an identity matrix. Our Bartlett’s test value was significant (Sig. < 0.01), indicating that
our variables had a high covariance and that a strong relationship existed among them.
This result meant that the correlation matrix was suitable for factor analysis. Only the
first two principal components met the criteria of having an eigenvalue greater than 1 and
were kept for further analysis. The cumulative percent variance was as high as 83.503%.
Figure 5 displays the score plot of the first two principal components. These scores are
labeled as PC1 (explosive force of the forearm) and PC2 (wrist muscle control). On the plot,
scores falling close together have similar profiles, whereas those far apart are dissimilar.
In Figure 5, data on the expert players’ FP phase fall close together in the upper right-hand
corner, representing similarities in performance; all of the experts had faster arm swing
and a higher degree of muscle control. Their data can be clearly distinguished from those
of the novices. The data for backward swing fall on diagonally opposite quadrants of the
plot. The difference between experts and novices in backward swing was small and less
easy to distinguish.

Table 3. Significant factors extracted by PCA.

Forearm Explosive Force
(PC1)

Wrist Muscle Control
(PC2)

Gyro Y −0.897
Gyro Z 0.894
Acc Y −0.880

Gyro X −0.857
Acc Z −0.847
Acc X 0.844
EMG 2 0.886
EMG 7 0.796
EMG 8 0.792
EMG 1 0.787
EMG 3 0.722
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Table 3. Cont.

Forearm Explosive Force
(PC1)

Wrist Muscle Control
(PC2)

v EMG 4 0.613 0.684
EMG 5 0.644 0.653
EMG 6 0.604 0.647

Initial Eigenvalues 10.411 1.279
% of Variance 74.367 9.136
Cumulative % 74.367 83.503

Kaiser–Meyer–Olkin Measure of Sampling Adequacy = 0.896; Bartlett’s test of sphericity = 3589.490; degree of
freedom = 91; significance < 0.01.

Figure 5. PCA loading plot of the first two principal components.

Overall, the model’s recognition accuracy was 89.84%. As Table 4 shows, the pre-
diction accuracy was 93.75%, and the macro average recall, precision, and F1-score were
0.93 for the model’s testing data set. For the new testing data set (not used in the model-
building process), several measurements slightly decreased: accuracy dropped to 85.42%,
and the macro average recall, precision, and F1-score were 0.86, 0.85, and 0.84, respectively.
The new testing dataset was fully independent from the training dataset and was more
representative of the general population; it is not a subset sampled for training. A true inde-
pendent validation set can be used more reasonably to evaluate the model performance in
the real environment. Although this approach decreased the accuracy slightly, it remained
within an acceptable range.
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Table 4. Confusion matrix for the model testing and new testing data sets.

Model Testing Data New Testing Data

Predict E-BP E-FP N-BP N-FP E-BP E-FP N-BP N-FP

Label

E-BP 9 0 0 0 6 0 2 0
E-FP 0 7 0 1 0 8 0 0
N-BP 0 0 9 0 1 0 15 0
N-FP 0 1 0 5 0 4 0 12

Figure 6 presents radar charts of the average performance for the one expert and two
novices comprising the new testing data set. The system created a linear regression model
to transform the factor scores into a 0 to 100–point scale. The expert’s four average scores
fell between 60 and 100, while the novices’ scores generally fell below 70. The standard
deviation of each person’s scores in the four items presented in Figure 6 indicated that it
falls within a reasonable range, proving that the system had satisfactory reproducibility in
the judgment of personal skills. Furthermore, the experts had smaller standard deviation,
meaning that their movements were more stable.

Figure 6. Radar graph for an expert and two novices (±1 SD gray shaded areas). (A) New expert and (B) new novice 1:
sufficient wrist stability for paddle control, lack of attack power. (C) New novice 2: lack of grip strength and wrist stability
for racquet control.

Differences in the two novices’ skills can also be identified. For example, Figure 6
shows that in the FP phase, the PC1 score was lower for new novice 1, leading us to infer
that new novice 1 had sufficient wrist stability (PC2) for paddle control but lacked attack
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power (PC1). By contrast, the PC2 score for new novice 2 was lower in the FP phase,
meaning that his main problems were a lack of grip strength and wrist stability for paddle
control in the FP phase. The results of the experiment show that the scoring system created
in this study can effectively detect an individual’s errors.

4. Discussion

In a study by Wang et al. (2019), three portable six-degree-of-freedom inertial sensors
were placed on the upper arm, forearm, and wrist. The sensors detected stroke motions and
recognized technical movements during table tennis training [20]. After PCA dimension
reduction, an SVM algorithm was able to recognize and classify strokes. The authors stated
that the main advantage of PCA is that the principal components became orthogonal to
each other after the dimension reduction, which can eliminate interaction among compo-
nents in the original data. We found that angular velocity and acceleration were highly
correlated, and we classified them into the same component (PC1) after PCA. To render
the data easier to interpret after the dimension reduction, we defined the principal com-
ponent as the explosive force of the forearm (PC1). Angular velocity and acceleration
increased significantly with greater explosive force. The data obtained by integrating the
measures of acceleration and angular velocity on the forearm provided information about
the trajectory and orientation of the arm players used to execute strokes. In addition, the
trained classification model used in the study by Wang et al. reached a 96% recognition
rate for five common strokes. The recognition rate of the two phases in our study using
the ANN model was nearly 100% both for the testing data set and the new testing data
set. Therefore, our model has clear practical importance and has broad usage potential.
In addition, the multiclass classification rate (2 phases × 2 levels) was approximately 90%;
occasional classification errors occurred when distinguishing between novices and experts.
The sample characteristic scatter plot shows that movements, especially in the BP phase,
were difficult to distinguish between novice and expert; the difference between the experts
and novices was small. Experts had slightly stronger muscle recruitment (the scatter dia-
gram shows an upward tendency on the Y-axis), but this difference was not remarkably
large. To accurately detect whether a player has performed the BP motion correctly, that
is, using the body as an axis to turn the waist back and extending the distance between
the hand holding the paddle and the incoming ball, researchers of future studies should
attach IMU sensors to participants’ waists, facilitating the collection of more accurate and
detailed information.

After PCA, the second component, PC2 (wrist muscle control) was extracted. Contrary
to popular belief, table tennis is a whole-body sport. The limitation of this study was that it
only focused on the differences in minute adjustments of the forearm and wrist between
experts and novices and did not analyze whole-body movements, such as the contribution
of upper arm [28,29] and lower limb muscles [35–37]. Moreover, players’ fingers and wrists
are integral parts of performance from a young age. In the entire movement that involves
making contact with the ball, the fingers and wrist play a critical role in controlling position,
arc, and spin. For example, the paddle must not be clenched too tightly or else the muscles
will easily be fatigued and unable to release a burst of strength upon contact with the ball.
The paddle must also not be held too loosely or else the orientation of the paddle will shift,
and the player will not be able to concentrate their strength into one area of the paddle.
Further investigations can improve our understanding of the benefits of finger and wrist
strength during training.

Hegazy et al. (2020) addressed the use of infrared depth cameras on online matches
to detect and classify players’ stroke errors in incorrectly played points [38]. Their results
showed an average accuracy of 88–100% for backhand push and forehand push. In physical
education courses, the most common strokes that beginners learn are the backhand push
and the forehand push. However, the forehand loop is likely the most crucial stroke
advanced table tennis players learn. The forehand loop builds on the foundation of the
forehand drive by adding additional speed, spin, and power. A player should have
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mastered the basic strokes and developed a technically correct forehand drive before
beginning to learn the forehand loop. The motion of the forehand loop resembles an
exaggerated forehand drive, but with a lower stance, slightly more weight transfer, slightly
more rotation, slight closure of the bat angle, faster acceleration, and more brushing of
the ball. A player should always strive to improve their loop by adding more speed or
spin. When returning a ball with spin, players must exert greater muscular activity when
receiving a backspin forehand drive than when receiving a topspin forehand drive [39].
From the perspective of learning concepts, through appropriate integration of technology
in physical education, such as real-time personal video records combined with expert
videos, and integrating knowledge education, such as automatically displaying tips to
improve stroke quality, beginners can acquire skills accurately and more directly after
receiving feedback from our expert system.

One limitation of this study was the small sample size, which is a problem that most
cost- and time-intensive data collection experiments must overcome in modeling. A small
sample size can lead to biased machine learning performance estimations. First, this study
used train/test split approaches to produce robust and unbiased performance estimates
regardless of sample size. This ensured that the data used to validate the classifier were
not among the data used for training, thus avoiding polling training and testing data to
produce an almost unbiased estimate. In addition, the higher the ratio of features to sample
size, the more likely the machine learning model is to fit the noise in the data instead of
the underlying pattern. This study used PCA to reduce the number of features used to
develop the model, while reducing the feature-to-sample ratio, to eliminate inherent noise
and overcome the bias caused by the data dimension. Lastly, even though we did not
perform feature selection on new testing data for data modeling, the prediction accuracy
of the new testing data was still maintained at 85.42%. This indicates that although the
number of modeling samples was not large, the established model should have controlled
the problem of overfitting, and it is suitable for new data sets. Furthermore, because
only men were included for modelling, including gender as a feature in the future will
enable generalized observations of different gender groups. In machine learning, data
satisfying a normal distribution are beneficial for model building. This is because many
mathematical models for machine learning are explicitly calculated from the assumption
that the distribution is bivariate or multivariate normal. In the present study, after further
analysis, the quantifying outlyingness of the data in the multivariate domain with the
Mahalanobis distance estimation and chi-squared test was satisfactory. Only 2 out of
160 multivariate outliers (and a possible violation of multivariate normality) were found,
suggesting that our data fit a multivariate normal distribution.

5. Conclusions

The e-training system developed in this study can classify periods of table tennis
strokes with high accuracy and can provide accurate scores to quantify player performance
in each period. The results of the study suggest that our automatic assessment system can
provide useful information for developing a table tennis training support system.
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