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Purpose: To demonstrate that constant coefficient of variation (CV), but noncon-
stant absolute variance in MRI relaxometry (T1, T2, R1, R2) data leads to erroneous 
conclusions based on standard linear models such as ordinary least squares (OLS). 
We propose a gamma generalized linear model identity link (GGLM-ID) framework 
that factors the inherent CV into parameter estimates. We first examined the effects 
on calculations of contrast agent relaxivity before broadening to other applications 
such as analysis of variance (ANOVA) and liver iron content (LIC).
Methods: Eight models including OLS and GGLM-ID were initially fit to data ob-
tained on sulfated dextran iron oxide (SDIO) nanoparticles. Both a resampling simu-
lation on the data as well as two separate Monte Carlo simulations (with and without 
concentration error) were performed to determine mean square error (MSE) and type 
I error rate. We then evaluated the performance of OLS/GGLM-ID on R1 repeatabil-
ity and LIC data sets.
Results: OLS had an MSE of 4–5× that of GGLM-ID as well as a type I error rate of 
20–30%, whereas GGLM-ID was near the nominal 5% level in the relaxivity study. 
Only OLS found statistically significant effects of MRI facility on relaxivity in an 
R1 repeatability study, but no significant differences were found in a resampling, 
whereas GGLM was more consistent. GGLM-ID was also superior to OLS for mod-
eling LIC.
Conclusions: OLS leads to erroneous conclusions when analyzing MRI relaxometry 
data. GGLM-ID factors in the inherent CV of an MRI experiment, leading to more 
reproducible conclusions.
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1  |   INTRODUCTION

MRI relaxometry is used increasingly as a method to quantify 
differences in MRI images.1-3 Relaxometry involves mapping 
of relaxation times T1, T2, T∗

2
 (or alternatively, the relaxation 

rates R1, R2, R∗
2
 corresponding to their inverses) spatially 

across voxels in an MRI image. Compared to traditional MRI 
imaging based on T1- or T2-weighted signal intensity, MRI 
relaxometry is more robust for quantitative comparison as it 
is less sensitive to nuisance parameters such as coil position-
ing or scanner variabilities.1,2 Among other applications, re-
laxometry has been used to detect brain abnormalities1,4 and 
myocardial fibrosis5 or evaluate metabolic imaging,3 liver 
iron content (LIC),6-9 and contrast agent (CA) properties.10-14

As MRI relaxometry becomes more widespread, there 
is an increasing need to develop an appropriate statistical 
framework to accurately quantify differences in relaxometric 
biomarkers, and correlate these differences to physiological 
phenomenon. Currently, most comparisons are performed 
using t-tests, analysis of variance (ANOVA), or ordinary least 
squares (OLS) regression15-17 that all fall under the category 
of standard linear models.15,18 In fact, both Student’s t-test 
and ANOVA are special cases of OLS regression with cat-
egorical variables.18,19 Beyond the linearity of the relation-
ship, OLS has three key assumptions18,19:

1.	 The response variables (relaxation rate or time) must 
be independent and identically distributed.

2.	 The model residuals must follow a normal distribution.
3.	 The model residuals must all have a constant absolute 

variance (homoscedasticity).

Assumption 1 is automatically satisfied for relaxometry 
data from different scans and subjects. Otherwise, correlation 
can be accounted for through linear mixed models. Estimates 
from OLS are also somewhat robust to violations of assump-
tion 2, especially for large sample sizes. However, assumption 
3 is often violated in the context of MRI relaxometry data, 
where the absolute error in the relaxation time (T1, T2, or T∗

2
) 

or rate (R1, R2, R∗
2
) often tends to increase with the measured 

value itself (heteroscedasticity).6,16 Much of the literature on 
reproducibility in MRI relaxometry is focused on measuring 
the coefficient of variation (CV),6,20-22 which implies a con-
stant relative error rather than absolute error. Various factors 
can influence the CV of Ti/Ri, ranging from the signal intensity 
fitting error, the exact pulse sequence used, the flip angle, con-
centration errors, as well as natural biological variability.2,23

Violations of assumption 3 ultimately end up leading to 
less precise estimates for coefficients in a linear model and 
more importantly, biased standard errors (SEs).18 These bi-
ased SEs will result in invalid P-values for comparisons, 
leading to potentially erroneous conclusions.24 Sometimes 
the assumptions of standard linear models are bypassed using 

nonparametric tests such as Wilcoxon rank-sum-test3 or the 
Kruskal-Wallis test.25 However, these two tests are limited 
in that they can only be applied to compare two popula-
tions or multiple levels within a single factor, respectively. 
Additionally, nonparametric methods are less powerful at 
detecting differences than parametric counterparts provided 
the data can be described adequately by a normal or other 
parametric distribution.26,27

Ideally, the best parametric method would assume con-
stant CV rather than constant absolute error. One way to do 
so is the log transform, which is known to stabilize absolute 
errors that have a constant CV. This amounts to assuming that 
relaxometry data are lognormally distributed,22 rather than 
normally distributed. In fact, the log transform has been used 
occasionally for both linear mixed models4,5 and LIC calibra-
tion curves.8,9,28 Recently, the gamma distribution has also 
been used to account for the constant CV in neuroimaging 
relaxometry data.29 In the context of regression, the gamma 
distribution can be used through a generalized linear model 
(GLM) rather than OLS.19,30,31 Although results will often be 
similar to a log-transform,19,31,32 the gamma GLM (GGLM) 
framework is more flexible as it preserves the physical ad-
ditivity of relaxation rates15 and simple interpretation of the 
results on the original untransformed scale.

The simplest example of the linear model in MRI re-
laxometry occurs in experiments to determine relaxivity 
(mM−1 s−1), a measure of the strength of a CA. A higher 
relaxivity implies that the CA is more effective at increas-
ing the relaxation rate of protons surrounding its metal-ion 
sphere.33-35 Using the Solomon–Bloemborgen theory of 
relaxation, it can be shown that relaxation rate is a linear 
function of CA concentration33-35:

To determine relaxivity ri and associated SE, investigators 
typically perform an OLS regression of Ri versus [CA] and 
take the slope.13 ϵ corresponds to the residual error term in the 
fit.15,18,19 Relaxivity studies are prime examples of heterosce-
dasticity where the error bars tend to increase in size with the 
relaxation rate.10-13 Currently, statistically suspect comparisons 
of relaxivities under different experimental conditions (e.g., 
field strength) or between CAs are regularly performed and dis-
played in bar charts or tables.10-13 To date, there is no standard 
protocol for how to best design and analyze a relaxivity exper-
iment.36 Similar problems have been addressed previously in 
UV-Vis spectroscopy37 and liquid chromatography-mass spec-
trometry (LC-MS)38 through weighted least squares (WLS), 
which has also been applied on occasion to relaxivity.12,39 
Although WLS is a potential solution, the GGLM approach 

(1)Ri = Ri,0+ri [CA]+ϵ (i = 1,2)

(2)Ri =T−1
i
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proposed in this work is more flexible as it assigns weights em-
pirically by an iterative reweighted least squares algorithm.31 
Therefore, it is more easily extended to MRI relaxometry ex-
periments involving more complex situations other than relax-
ivity, such as developing quantitative imaging biomarkers,22 
where exact weights may be unknown. In this work, relaxivity 
measurements will be used as a starting basis for demonstrat-
ing the superiority of weighting, log-transform, and in partic-
ular, the GGLM framework over the current standard of OLS. 
Afterward we will move toward more general applications of 
GGLM in MRI relaxometry, such as ANOVA and the measure-
ment of LIC.

2  |   METHODS

2.1  |  NMR relaxometry measurements

Sulfated dextran iron oxide (SDIO) nanoparticles were pre-
pared as described in previous protocols published by our 
group40,41 (Supporting Information Figure S1). Iron content 
was determined via inductively coupled plasma mass spec-
trometry. Ten solutions of SDIO in filtered deionized water 
(milliQ Advantage A10) with the following [Fe] concentra-
tions were prepared: 0–0.08 mM spaced by 0.02 mM, and 
0.1–0.5 mM spaced by 0.1 mM. T2 measurements were ac-
quired with the Carr-Purcell-Meiboom-Gill pulse sequence 
on a Bruker Minispec mq60 (1.41 T) at 37°C. Gain was set 
to 57 dB and the number of scans was set to four for each in-
dividual measurement. The entire procedure of preparing the 
ten solutions and obtaining T2 measurements was repeated 
four times, for a total of 40 data points.

2.2  |  Relaxivity model fitting

All statistical analysis was performed in R version 3.6.0.42 
Along with OLS, a variety of models were fit to the data. 
The linear models included WLS, GGLM-ID, GGLM-INV, 
and Thiel-Sen (TS) fit directly to Equation 1. The weights 
for WLS were defined to be w=1∕R2

2
, corresponding to the 

appropriate weight for a constant CV in R2. GGLM-ID and 
GGLM-INV refer to gamma GLMs with the identity and 
inverse links, respectively. The identity link corresponds 
to applying the gamma distribution to R2 = 1/T2 values di-
rectly, whereas the inverse link applies the gamma distri-
bution to T2 values followed by inversion to obtain R2.

19,30 
TS is a nonparametric linear fitting method using the mblm 
package  (version 0.12.1, for R)43 involving the median of 
all possible slopes from pairs of points44 at different con-
centrations and has been recommended once for relaxivity 
measurements.45 The nonlinear fits included nonlinear least 
squares (NLS), nonlinear weighted least squares (NWLS), 

and log-transformed nonlinear least squares (LNLS). Both 
NLS and NWLS were fit to Equation 3 corresponding to in-
verse of Equation 1, whereas LNLS was fit to Equation 4 cor-
responding to the log transform of Equation 1. The weights 
for NWLS were set to w=1∕T2

2
. Note that NLS just as OLS 

does not account for heteroscedasticity and has been included 
only for comparison purposes, and not as a proposed model.

The variance function was estimated via a Bayesian 
log-log linear regression of SD T2 versus mean T2

46 at each 
concentration. A Bayesian framework was used to obtain a 
distribution for the slope in the variance function regression 
with a normal prior of mean 1 and SD 0.3. This accounts for 
the prior knowledge that the slope will be near 1 because of an 
approximately constant CV. Furthermore, using a Bayesian 
framework allows us to obtain a distribution for the slope in 
the variance function that is not strictly possible in a purely 
frequentist approach.

2.3  |  Restricted bootstrap resampling

To simulate batch to batch variability, one point at each con-
centration was randomly chosen and each of the models were 
fit to the data to obtain a relaxivity and associated SE. The 
process was repeated 100,000 times to obtain a histogram 
of possible relaxivities. These individual relaxivities and SE 
were compared to the full relaxivity obtained from fitting all 
40 points to determine the type I error rate via a t-test. The 
SE estimate for each individual fit was also compared to the 
SD of the relaxivity histogram. Furthermore, the mean square 
error (MSE)47 for each model was computed using the bias of 
the mean bootstrap relaxivity with respect to the full relaxiv-
ity and the SD of the relaxivity histogram:

2.4  |  Relaxivity Monte Carlo simulation

Two Monte Carlo simulations each with 100,000 runs were 
performed using the above concentrations assuming a true 
relaxivity of 100 mM−1 s−1. A Gaussian error with a 2.5% CV 
was added to T2 in the first simulation while the second simu-
lation additionally included a Gaussian error with 10% CV in 
concentration. To account for deviations from perfect linear 

(3)T2 =
(
R2,0+r2 [CA]

)−1
+ϵ

(4)log R2 = log (R2,0+r2 [CA] )+ ϵ

(5)Bias(r̂2)=E(r̂2) − rfull
2

(6)MSE(r̂2)=Bias2(r̂2)+SD2(r̂2)
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proportionality in the error in T2, the error was set to be con-
stant CV of Tp

2
, with P set to originate from the posterior nor-

mal distribution with slope value and associated uncertainty 
from the variance function determined earlier. As in the resa-
mpling, the MSE and type I error rates were computed.

2.5  |  Data analysis: R1 repeatability 
study ANOVA

To demonstrate an application of the GGLM-ID framework, 
we analyzed published relaxometry data at 7T from Waterton et 
al20 on the repeatability/reproducibility of R1 measurements in 
NiCl2 phantoms across multiple MRI facilities. The concentra-
tions of Ni2+ tested in the study were 0.50, 1.04, 2.02, 4.08, and 
8.05 mM in agarose. The R1 measurements were performed at 
five different facilities (A, C, E, F, G1) and three ROIs (O, X, Z) 
with saturation recovery using a rapid acquisition with relaxa-
tion enhancement (RARE) sequence. For this analysis, only the 
isocenter ROI “O” was considered (to ensure independence) 
and ANOVA was be performed using OLS, GGLM-ID, and 
LNLS frameworks with facility and concentration interaction 
terms considered. The −1, 0, 1 indicator variable coding with 
−1 denoting facility G1 was used, shown in Equations 7 and 
8. Akaike Information Criterion (AIC) was used to compare 
the models in addition to an ANOVA F-test with respect to the 
null model containing only concentration and solvent (agarose) 
relaxation rate. Bonferroni’s post-hoc test was used to evalu-
ate statistically significant differences in relaxivity between the 
individual facilities using the emmeans package.48

2.6  |  R2-LIC Monte Carlo simulations

One medical application of the GGLM-ID framework is 
the estimation of LIC via MRI relaxometry.6,7 The origi-
nal study done by St. Pierre et al used a spin-echo sequence 

and found a complex nonlinear relationship between R2 and 
LIC7,9:

The study noted significant heteroscedasticity with CV for 
R2 given as 8%. The CV for LIC was piecewise-dependent: 19% 
for LIC < 4 mg/g and 9% for LIC > 9 mg/g.7,8 Equation 10 and 
the above CVs were used to perform two simulations (10,000 
runs) with lognormal error in LIC and with lognormal error in 
both R2 and LIC. LIC values in between 4 and 9 mg/g were set 
to have a random CV uniformly distributed between 9% and 
19%. The models considered are shown in Table 1. The true R2 
ranged from 10–275 s−1, translating to a true LIC of 0.05–39.55 
mg/g. For all models, the regression was defined with LIC on 
the y-axis and R2 on the x-axis. The reasoning for this is that 
the LIC is more variable than the R2 values from MRI, and the 
goal is to predict LIC and not R2. For simplicity, we will only be 
examining polynomial models as the nonlinear fitting method 
was not reported in the original paper by St. Pierre et al.7 The 
models were evaluated by examining the model with the mini-
mum median RMS percent prediction error (MRMSPPE):

The median helped to ensure that any outliers in the 
10,000 runs did not affect the results. To further quantify 
the uncertainty in the MRMSPPE, we reported 95% per-
centile intervals. Equation 10 with the squared terms was 
used rather than absolute values, because these have better 
properties and more closely match the maximum likelihood 
estimate corresponding to a heteroscedastic Gaussian distri-
bution for LIC. Finally, the OLS and GGLM-ID quadratic 
fits were plotted to an approximation of the R2-LIC data ob-
tained using PlotDigitizer.49 To help quantify and visualize 
variability in the calibration curve, we also added the same 
lognormal error structure mentioned earlier for both R2 and 

(7)R1 =R1,0+r1

[
Ni

2+
]
+
(
ΔR1,0,AI

A
+⋯+ΔR1,0,FI

F

)
+
(
Δr1,AI

A
+⋯+Δr1,FI

F

) [
Ni

2+
]

(8)Ii =

⎧⎪⎨⎪⎩

1: Facility = i

0: Facility ≠ i, G1

−1: Facility = G1

(9)R2 =6.88 + 26.06LIC0.701− 0.438LIC1.402

(10)LIC=
�

29.75 −
√

900.7−2.283R2

�1.424

(11)

MRMSPPE=100%×

√√√√med

(
1

n

n∑
i=1

(
LICtrue − LICpred

LICtrue

)2
)

T A B L E  1   Models considered for the parametric R2-LIC simulation based on the equation derived by St. Pierre et al7 (Equations 10 and 11)

Model name Functional form Method # of Parameters

Quadratic LIC = β0 + β1R2 + β2R
2
2

OLS 3

GGLM-ID

Double log linear log LIC = β0 + β1 log R2 OLS 2

GGLM-LOG

The exact nonlinear fitting method performed by St. Pierre et al.7 was is not given, but we used the equation to simulate the data for MRMSPPE calculation.
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LIC directly to the approximated points. Following this, we 
generated 95% prediction intervals to depict variability in the 
calibration under different realizations of the same data set.

3  |   RESULTS

The results of the SDIO relaxivity experiment are shown 
in Figure 1. As evidenced by the substantially lower AIC, 
Figure 1 suggests that the GGLM-ID framework provided a 
better fit to the data than OLS. Although adjusted R2 does 
not exist for GLMs and is not the ideal metric to assess fit 
despite widespread use, a pseudo-adjusted R2 was calculated 

for the purposes of data reporting using the residual and null 
deviance and degrees of freedom.19 Furthermore, the spread 
in R2 increased with R2 itself. To determine the depend-
ence, we performed a log-log Bayesian linear regression of 
log(SD(T2)) versus log(T2) (Supporting Information Figure 
S2). The Bayesian linear regression for the variance function 
revealed that the slope has a 95% probability of being between 
0.94 and 1.41. This indicates that SD(T2) may not be exactly 
proportional to T2 but to a power in T2 between 0.94 and 1.41.

Because many relaxivity studies do only one trial, one 
point was resampled at each concentration and fit to all 
models to assess model performance with MSE and type I 
error rates. Results are shown in Table 2 and a histogram of 
the resampled relaxivities is shown in Figure 2. Histograms 
for the estimated SE and variance are shown in Supporting 
Information Figure S3.

As shown in Table 2, OLS had the third worst MSE and sec-
ond worst type I error rate of 28.23%. The SE from the OLS fit 
underestimated the true SD. The OLS histogram (Figure 2) was 
asymmetric, suggesting that relaxivity from OLS was poorly be-
haved and not amenable to the usual comparisons that are widely 
performed. Fits that account for the heteroscedasticity because 
of constant CV all performed better, with WLS, NWLS, LNLS, 
GGLM-INV, and GGLM-ID being nearly equivalent. However, 
WLS was slightly biased in the resampling. TS did not appear 
to be viable despite being a nonparametric method without as-
sumptions. Overall, the resampling simulations suggest that 
NWLS, LNLS, and both GGLMs perform much better than 
OLS as assessed by MSE and type I error (bolded).

To further investigate the optimal model, we per-
formed Monte Carlo simulations with σT2

= 0.025T
p

2
 and 

σ[Fe] = 0.10 [Fe]. Results are shown in Table 3. The first 
simulation (Table 3, condition a) was done accounting for 
only 2.5% error in T2 whereas the second simulation (Table 
3, condition b) additionally accounted for a 10% error in 
concentration. The inclusion of concentration error allowed 
us to determine which fitting method is best in a practical 
sense.

F I G U R E  1   SDIO R2 relaxivity fits using OLS and GGLM-ID. 
The lower AIC suggests that GGLM-ID provides a better fit. Adjusted 
R2 for the OLS fit was 0.995, whereas the pseudo-adjusted R2 for the 
GGLM-ID fit was 0.996. All eight models were fit to the full data but 
only OLS and GGLM-ID are shown in the figure

T A B L E  2   Resampling results (100,000 iterations) 

Method
Full r2 
(mM−1 s−1)

Resample r2 (± Bias)  
(mM−1 s−1)

Mean predicted SE
(mM−1 s−1)

Resample 
SD

P (SEpred
<SD)

(%)
Type I error 
rate (%)

MSE  
(mM−2 s−2)

OLS 93.655 93.664 (+0.009) 1.809 2.922 94.25 28.16 8.54

NLS 90.447 90.260 (−0.188) 1.696 4.890 100 49.35 23.95

WLS 91.750 91.556 (−0.194) 1.776 1.856 58.55 5.47 3.48

NWLS 92.172 92.284 (+0.112) 1.768 1.819 55.44 5.34 3.32

LNLS 91.950 91.922 (−0.028) 1.771 1.834 56.66 5.39 3.37

GGLM-INV 91.881 91.800 (−0.081) 1.776 1.841 56.87 5.39 3.39

GGLM-ID 92.021 92.043 (+0.022) 1.766 1.829 56.56 5.38 3.34

TS 92.076 92.830 (+0.754) 2.111 2.869 84.36 18.96 8.80

NWLS, LNLS, and GGLM-ID perform best as assessed by minimum MSE. NWLS, GGLM-INV, and GGLM-ID have the lowest type I error rates closest to the ideal 
5%. OLS has very high type I error rate as the predicted SE nearly always underestimates the true SD in the column P(SEpred < SD).
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The Monte Carlo Simulation results in Table 3 con-
firmed that OLS is a suboptimal method to determine relax-
ivity and perform comparisons. The MSE for OLS relative 
to the bolded methods was roughly three times higher with-
out concentration errors and four times higher with 10% 
concentration errors. Therefore, the estimate from OLS had 
poor precision/reproducibility. For making statistical com-
parisons between CAs, the type I error rate for OLS was 
roughly 22% and increased to 26% when concentration er-
rors were considered. This indicates that the probability of 
wrongly concluding two relaxivities are statistically differ-
ent is 20–30% with OLS at a nominal significance level of 
5%.

Many of the proposed fits to account for heteroscedas-
ticity were similar when no concentration error was consid-
ered. The type I errors were close to the nominal 5% level 
of significance. However, interestingly, concentration errors 
appeared to worsen the performance of WLS the most rela-
tive to NWLS, LNLS, and both GGLMs. This is in line with 
the resampling results from earlier. Furthermore, the Monte 
Carlo simulation with concentration error appeared to indi-
cate that the identity link for GGLM performs better than the 
inverse link for practical biochemical situations.

To showcase an application of the GGLM-ID framework 
to more complex linear models in MRI relaxometry, we per-
formed ANOVA with OLS, GGLM-ID, and LNLS to the 

R1 repeatability and reproducibility study data at 7 T from 
Waterton et al.20 A plot of R1 versus concentration in each 
facility can be found in Supporting Information Figure S4 
and clearly shows variance increasing with R1. The −1, 0, 1 
coding was used for each facility dummy variable, with facil-
ity G1 assigned −1. Results are shown in Table 4.

For the NiCl2 phantom in the study, we found (for the 
isocenter alone) the mean relaxivity across all facilities to 
be 0.840 mM−1 s−1 using OLS, and 0.849 mM−1 s−1 using 
GGLM-ID/LNLS. ANOVA and minimum AIC both sug-
gested that for GGLM-ID/LNLS, the model could be sim-
plified to the standard relaxivity model without facility as 
a factor. Although this is not definitive proof that the MRI 
facility has no effect on relaxivity (not rejecting the null 
hypothesis does not prove the null hypothesis), the data 
analysis with GGLM-ID/LNLS did not support the con-
clusion that relaxivity differed across facilities. OLS, how-
ever, did suggest that relaxivity between facilities differed 
by more than chance alone. Bonferroni’s post-hoc test re-
vealed statistically significant differences in relaxivity (at 
familywise α = 0.05) calculated by OLS ANOVA between 
facility A and each of facility C/F/G1 as well as facility E 
and F (Supporting Information Table S1). However, con-
sidering the increased type I error rate of OLS because of 
the violation of homoscedasticity, this conclusion is sus-
pect and not necessarily replicable. To investigate this, we 

F I G U R E  2   Histograms of the relaxivity resampling distributions from each method. OLS relaxivity is bimodal and asymmetric. WLS, 
NWLS, LNLS, GGLM-INV, and GGLM-ID relaxivities are all normally distributed. TS does not appear to be viable in practice
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performed bootstrap (10,000 runs)-based ANOVA (with 
OLS/GGLM-ID) with resampling to generate a null dis-
tribution50 (Supporting Information Table S2). No statisti-
cally significant differences between facilities were found 
in the bootstrap for either model, further suggesting that the 
OLS conclusions are not replicable.

Many of the coefficient values and effect sizes (Table 4 
and Supporting Information Table S1) themselves were quite 
different from those calculated through the more accurate 
GGLM-ID/LNLS methods. Facility A and facility F, for ex-
ample, have a relaxivity difference of 0.058 mM−1 s−1 (7%) 
with OLS but only a 0.029 mM−1 s−1 (3.4%) difference with 
GGLM-ID. Furthermore, the A–F relaxivity difference is 
marked as statistically significant (P = 0.0002) with OLS but 
not GGLM-ID (P = 0.135). Although the coefficients from 
OLS are theoretically unbiased in the long run, they are less 
efficient,44 and a far greater sample size would be necessary 
to obtain representative effect sizes. The OLS coefficients are 
less precise than the GGLM-ID counterparts and may fail to 
be reproducible if the study were to be repeated.

Interestingly, a benefit of the GGLM-ID/LNLS frame-
works is the ability to estimate the global CV for relaxation 
rate across all factors in the experiment directly through the 
summary output of the model in R. For GGLM-ID, CV =

√
ϕ 

where ϕ is the estimated dispersion parameter of the gamma 
distribution.19 For LNLS, CV =RSE where RSE is the resid-
ual SE of the LNLS fit. In the case of OLS, the RSE would be 
an estimate of the absolute error only if the assumptions were 
satisfied. Because LNLS uses a log-transform, the RSE esti-
mates the absolute error in log(R1), which back transforms to 
CV of R1 on the original scale.19,22 The estimated CV for this 
data set was 1.74% using GGLM-ID and 1.76% using LNLS, 
which roughly agree with each other as well as the isocenter- 
only CV of 1.56% reported by Waterton et al.20

So far, this work has focused on relatively simple scenar-
ios in MRI relaxometry such as relaxivity and inter-facility 
variation within phantoms. To demonstrate a potential clin-
ical application of GGLM-ID, we performed simulations 
based on the LIC calibration curve and CV values derived by 
St. Pierre et al.7 Results are shown in Table 5.

According to Table 5, GGLM-ID quadratic fit performed 
the best of the models examined. The 95% confidence in-
tervals (CIs) were much narrower, and the MRMSPPE was 
lower in both situations of no error in R2 and 8% error in R2. 
Although the MRMSPPE values appear high in Table 5, one 
should note the determination of LIC by biopsy itself is only 
accurate to 9–19%.7,8 A simple OLS quadratic fit did not per-
form well and explains why a quadratic model has not been 
used. Through GGLM-ID, however, a quadratic relationship 
between LIC and R2 is more reasonable. For the purposes 
of visualization, the quadratic OLS/GGLM-ID models were 
plotted to an approximation of the original data obtained via 
PlotDigitizer49 in Figure 3.T
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4  |   DISCUSSION

The OLS approach to the analysis of MRI relaxometry data 
suffers from high variability and biased SEs that can invali-
date statistical inference. Although the coefficients are still 
unbiased, the higher MSE value with OLS implies that, on 
average, the OLS estimates will be further away from the true 
value. At a concentration error of 10%, the MSE for GGLM-ID 
(~13) is 4–5× lower than that of OLS (~50). This is a substan-
tial improvement and is in fact equivalent to the accuracy one 
would obtain with a 4–5× increase in sample size using OLS. 
Therefore, GGLM-ID is more economical, because fewer 
runs are required to obtain representative results.

The simulations in Table 2 with 10% concentration error 
demonstrate that at a relaxivity of 100 mM−1 s−1, this error 

propagates to a large variability of 7% in relaxivity using OLS 
but only a 3.5% variability using GGLM-ID. This is very 
promising, because it indicates greater reproducibility for 
relaxivity studies. Although 10% concentration error is rel-
atively high, it ultimately shows that the GGLM-ID method 
is quite robust to concentration errors. Concentration errors 
are anticipated for biological samples or proprietary con-
trast agents where the metal content is typically determined 
via atomic absorption spectroscopy or inductively coupled 
plasma mass spectrometry.

Interestingly, the simulations suggested that WLS, 
which is an often-recommended method to address hetero-
scedasticity, is not ideal. The MSE remained low, but the 
estimate was slightly biased in the presence of concentra-
tion errors. In the case of GLMs, weighting is done through 

T A B L E  4   Linear model results for Waterton et al20 data

Coefficient OLS GGLM-ID LNLS

Intercept R1,0

(
s−1

)
0.401 ± 0.0159*** 0.381 ± 0.004*** 0.381 ± 0.005***

Mean r1

(
mM−1s−1

)
0.840 ± 0.004*** 0.849 ± 0.004*** 0.849 ± 0.004***

ΔR1,0,A

(
s−1

)
0.056 ± 0.032 0.012 ± 0.010 0.012 ± 0.010

ΔR1,0, C

(
s−1

)
−0.019 ± 0.032 −0.010 ± 0.010 −0.010 ± 0.010

ΔR1,0, E

(
s−1

)
−0.0033 ± 0.032 0.0014 ± 0.010 0.0015 ± 0.010

ΔR1,0, F

(
s−1

)
−0.032 ± 0.032 −0.010 ± 0.010 −0.010 ± 0.010

Δr1,A

(
mM−1s−1

)
−0.031 ± 0.008*** −0.012 ± 0.007 −0.013 ± 0.007

Δr1,C

(
mM−1s−1

)
0.009 ± 0.008 0.006 ± 0.007 0.006 ± 0.007

Δr1, E

(
mM−1s−1

)
−0.011 ± 0.008 −0.013 ± 0.007 −0.012 ± 0.007

Δr1, F

(
mM−1s−1

)
0.027 ± 0.008** 0.017 ± 0.007* 0.017 ± 0.008*

ANOVA P-value 4.2 × 10−4*** 0.15 0.15

AICFull −107.33 −170.09 −251.41a

AICNull −90.22 −172.23 −253.42a

OLS suggests effect of facilities is statistically significant in the model, whereas GGLM/LNLS suggests it is not. AIC values for GGLM indicate better fit relative to 
OLS. Results of the 10 Bonferroni corrected pairwise comparisons between relaxivities measured at each facility can be found in Supporting Information Table S1
aAIC values for LNLS can only be compared to each other because of a different response variable of log(R1).
*P < 0.05. 
**P < 0.01. 
***P < 0.001. 

T A B L E  5   Median MRMSPPE for Table 1 models of LIC versus R2

Model (# of parameters) Method MRMSPPEa (%) 95% CIa (%) MRMSPPEb (%) 95% CIb (%)

Quadratic (3) OLS 24.91 (4.75, 61.57) 165.29 (94.34, 240.23)

GGLM-ID 3.50 (3.13, 4.45) 16.15 (14.74, 18.21)

Double log linear (2) OLS 10.57 (10.10, 11.35) 18.26 (16.68, 20.24)

GGLM-LOG 11.39 (10.62, 12.47) 19.40 (17.52, 21.73)

Simulation parameters were generated from a lognormal distribution: LICobs ∼ 
(
log(LICtrue), CV

2
LIC

)
 and R2 ∼  (log(R2,true), (0.08)2 ). CVLIC was set to 0.19 

for LIC < 4 mg/g and 0.09 for LIC > 9 mg/g. For 4 ≤ LIC ≤ 9, CV was simulated from CV ~ Unif (0.09, 0.19). The ground truth was set using Equation 10 with 
R2,true ∈ [10,275] s

−1 spaced by 0.5 s−1. The high MRMSPPE for OLS explains why a quadratic model that looks visually appealing may not have been chosen for 
R2-LIC calibration. However, GGLM-ID makes a quadratic model more reasonable, and further improvements are possible in the future through an errors-in-variables 
GGLM-ID model
aError in LIC but no errors in R2. 
bIncluding errors in both LIC and R2. 
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an iterative technique that is more flexible and does not 
require the user to specify weights beforehand. This flexi-
bility is likely what enabled GGLM-ID to be robust against 
concentration errors up to 10%. Furthermore, the simula-
tions suggest the GGLM-ID works even when the CV is not 
perfectly constant in T2 but instead in Tp

2
 with P ~ N (1.18, 

0.122). This suggests that GGLM-ID works under a variety 
of error structures.

As mentioned earlier, the log-transform is an alterna-
tive to address heteroscedasticity that has an approximately 
constant CV. Our simulations confirm this but suggest 
that GGLM-ID may be slightly superior, likely attributed, 
again, to the iterative weighting algorithm, which tolerates 
greater deviations from constant CV.51 Some work also 
suggests that GGLM has more power than a log-transform 
to detect differences.31 Clinically, it should be noted that 
substantial differences are possible if outliers are present.32 
Our simulations, which used a heteroscedastic normal 
distribution, show that the exact distribution of the relax-
ation time/rate need not follow a perfect gamma distribu-
tion. Furthermore, inverting normal T2 manually creates 
non-normal R2, and therefore GGLM-ID also appears to 
be robust to normality deviations. If the variance structure 
deviates substantially from constant CV, an option worth 

exploring is that of semiparametric gamma generalized es-
timating equations (GEE), which was used very recently 
to investigate the relationship between C-reactive protein 
and LIC by MRI.52 GEE is even more robust to variance 
structure misspecification.31,53

Furthermore, an inherent advantage over log-transform 
LNLS is that the GGLM-ID does not distort linearity at the 
cost of stabilizing the variance (Supporting Information 
Figure S5). Gamma GLMs can readily be extended to exist-
ing linear models for statistical parametric mapping whereas 
a log-transform would change coefficient interpretation, with-
out a nonlinear fit.15 This is advantageous when there are 
continuous predictors.15 When variables are categorical, one 
additional subtle benefit of using GGLM-ID over a log trans-
form is interpretation. Log-transforms compare % change in 
Ri, whereas GGLM-ID compares absolute differences. This is 
important in MRI relaxometry, where the important metric for 
assessing phenomenon such as CA uptake or cerebral blood 
volume16 is ΔR1 and not Δ( log R1). ΔR1 is a direct surrogate 
biomarker for CA concentration, whereas Δ( log R1) can be 
small at higher concentrations even if ΔC is large and vice 
versa. Relaxation rates are additive on the original scale,15 and 
therefore the GGLM approach fits better with physical theory.

The ANOVA example using data from Waterton et al20 
shows that the choice of OLS versus GGLM-ID has the poten-
tial to influence the conclusion of an MRI relaxometry study. 
It should be noted that the Waterton et al20 study used a very 
simple design and the concentration errors for their NiCl2 
phantom were very low. Although the statistically significant 
differences in relaxivity detected by OLS ANOVA with post-
hoc Bonferroni test may not necessarily all be practically sig-
nificant, they serve to highlight the potential for erroneous 
conclusions. This is evidenced by the bootstrap resampling 
(Supporting Information Table S2) that was not able to repli-
cate the OLS conclusions. Considering that the conclusions 
are affected even in a simple scenario, a greater impact can 
be expected in experiments that contain concentration errors, 
biological variation, or mixed effects. The conclusions de-
rived from ANOVA using OLS are suspect because of high 
type I error rates, which could make studies more difficult to 
replicate.24 When evaluating imaging biomarkers for suitabil-
ity, OLS cannot adequately separate true effects from both 
physiological or instrument noise. Furthermore, the study by 
Waterton et al20 used the same RARE pulse sequence in all 
the facilities. As mentioned earlier, MRI parameters such as 
pulse sequence, flip angle, etc. also influence the measured 
relaxation time/rate and its CV.2,20,23 Intuitively, comparing 
measurements with different acquisition methods will fur-
ther increase the overall CV. Although not investigated in 
this study nor by Waterton et al,20 we speculate that using 
the GGLM-ID framework for ANOVA has the potential to 
lead to greater reproducibility of inferences based on MRI re-
laxometry images even across different acquisition methods. 

F I G U R E  3   OLS and GGLM-ID quadratic fits to an 
approximation of R2-LIC data from St. Pierre et al7 PlotDigitizer were 
used to obtain approximations to the points. The lower AIC suggests 
that the GGLM-ID model fits better, which agrees with the MRMSPPE 
simulation in Table 5. Ninety-five percent prediction intervals depict 
fluctuations of the calibration curve under different realizations of the 
approximated data. These simulations used the same lognormal errors 
of LICobs ∼

(
log(LICtrue), CV

2
LIC

)
 and R2 ∼ (log(R2,true), (0.08)2 ). 

The OLS calibration curve tends to underestimate at high R2/LIC and 
has larger variability



      |  1601KAPRE et al.

Future studies on large data sets obtained in vivo will need to 
be conducted to assess this.

The example of LIC-R2 calibration serves to highlight 
yet another example where considering a GGLM-ID frame-
work can potentially improve prediction. The exact non-
linear fitting method used by St. Pierre et al7 is unknown, 
but GGLM-ID is much better than a simple OLS quadratic 
fit. Simulations in Table 4 indicate that GGLM-ID per-
forms well as assessed by MRMSPPE even in the pres-
ence of errors on both axes. This can also be visualized 
in Figure 3, where the variability of the OLS calibration 
curve is greater than that of GGLM-ID under different re-
alizations of the same data. For further improvements, the 
best approach would be to extend the GGLM framework 
to a heteroscedastic errors-in-variables method.22,54,55 The 
validation of LIC measurements by MRI relaxometry is an 
ongoing field of study.9

The GGLM approach can also be integrated with pre-
vious guidelines for developing imaging biomarkers by the 
quantitative imaging biomarker alliance (QIBA).22,56 QIBA 
recommends a noninferiority/superiority/equivalence test-
ing framework (over standard hypothesis testing) to assess 
clinical significance.56 Unlike OLS, GGLM can be used to 
construct accurate 95% CIs for such tests, while avoiding the 
potential problems in interpreting log-transforms that QIBA 
warns about.22 GGLM can also be used to more precisely 
derive the constant and proportional bias of a new biomarker 
measurement technique relative to the accepted standard in 
QIBA’s linear model.22,56 For example, the presence of Rician 
noise is known to bias obtained T1/T2 values if the usual 
Levenberg–Marquardt fitting for signal intensity is used.57 
GGLM could be used to precisely assess this bias with re-
spect to methods that directly incorporate the Rician noise in 
T1/T2 estimation. Although not discussed extensively in the 
current work, the GGLM framework can also be extended to 
gamma generalized linear mixed models (GGLMM) that are 
useful for analysis of longitudinal or spatially correlated data 
that often arises in imaging. These models can be readily 
integrated with QIBA’s proposed testing framework to accu-
rately quantify changes in Ri over time and ensure that these 
changes are repeatable and reproducible.

5  |   CONCLUSIONS

Although widely used because of simplicity, OLS is a poor 
method to determine relaxivity. It fails to consider the non-
constant variance of the relaxation time/rate and provides in-
accurate estimates of standard errors that invalidate statistical 
inference. In this work, we have shown that GGLM-ID pro-
vides one of the best estimates of relaxivity in terms of both 
precision and accuracy. Furthermore, among other proposed 
fits, GGLM factors in the inherent variability within an MRI 

experiment and therefore is more representative of the physi-
cal phenomenon. For in vivo studies, GGLM-ID can be used 
to make unbiased inferences about relaxometry biomarkers 
on the original scale of the data, unlike a log transform. The 
GGLM-ID method can be implemented easily in R with the 
glm() command, but to make the method more easily adopt-
able, we have included code for an interactive RStudio inter-
face that can be used for relaxivity, the simplest example of 
the linear model in MRI relaxometry. Overall, the GGLM-ID 
framework serves to unify the analysis of MRI relaxometry 
data from simple in vitro experiments in solution to complex 
biological and clinical MRI data on developing quantitative 
imaging biomarkers.22
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SUPPORTING INFORMATION
Additional supporting information may be found online in 
the Supporting Information section.

FIGURE S1 Synthesis of SDIO nanoparticles.40,41 Dextran 
iron oxide (DIO) and sulfated dextran iron oxide (SDIO) 
nanoparticles were prepared with slight adjustments to the 
published protocols by our group. In brief, reduced dextran 
(1 equiv.) and FeCl3 × 6H2O (27 equiv.) were dissolved in 
degassed deionized ultra-filtered (DIUF) water and stirred 

under argon for 30 min at 0–5°C. FeCl2 × 4H2O (18 equiv.) 
and NH4OH (432 equiv.) were added dropwise to the mix-
ture. After 3 h at 85°C, DIO was purified by dialysis (50 
KDa) against deionized water for 72 h. DIO was obtained 
as a brown powder after lyophilization. DIO (1 equiv.) was 
dissolved in dry formamide, to which 2-methyl-2-butene 
was added dropwise under argon. Sulfur trioxide pyridine 
complex (1 equiv.) was added in the mixture. Then, the mix-
ture was refluxed for 3.5 h at 30°C with stirring and argon 
bubbling. Saturated NaHCO3 aqueous solution was used to 
quench the reaction. The product was purified by dialysis 
(50 KDa) against deionized water for 72 h. SDIO was ob-
tained as a brown powder after lyophilization. Iron content 
was determined via inductively coupled plasma mass spec-
trometry (ICP-MS)
FIGURE S2 T2 variance function. The variance function was 
determined by a Bayesian linear regression58 via the MCMC 
algorithm of log(SD T2) versus log(mean T2). The default 
(uninformative) prior was used for the intercept and an N(1, 
0.332) prior was set for the slope. The posterior distribution 
for slope was found to be N(1.18, 0.122). This was used in the 
Monte Carlo simulations in Table 2 of the main paper that 
contained mean 0 normally distributed error of 
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FIGURE S3 (A) Resampling histogram of estimated vari-
ance of relaxivity for each fit. Variance follows a χ2 distribu-
tion and is therefore asymmetric for all fits. (B) Resampling 
histogram for estimated standard error (SE) of relaxivity for 
each fit
FIGURE S4 7T R1 data from Waterton et al.20 R1 data are 
shown with all facilities pooled together. The data are clearly 
heteroscedastic, which impacts statistical inference (because 
of inefficiency and effects on estimated SEs) even if the fits 
may visually look similar
FIGURE S5 Log transform (LNLS) SDIO relaxivity de-
termination. Whereas LNLS provides a precise determi-
nation of relaxivity, it distorts the linear relationship to 
stabilize the variance. Although adequate, this may com-
plicate analysis in more complex models, such as those 
with including mixed effects and both categorical/contin-
uous predictors
TABLE S1 Bonferroni post-hoc contrasts (computed using 
emmeans48) on relaxivities using OLS and GGLM-ID. The 
SE for each difference estimated was roughly 0.0106 mM−1s−1 
with OLS and roughly 0.0127 mM−1s−1 with GGLM-ID. 
OLS indicates statistically significant differences in relaxiv-
ity between A and C/F/G1 as well as E and F. The estimated 
effect sizes for OLS are also different. Conclusions from OLS 
are suspect because of heteroscedasticity. The % difference in 
parenthesis is calculated with respect to the mean relaxivity 
(0.840 mM−1s−1 for OLS and 0.849 mM−1s−1 for GGLM-ID). 
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95% CIs are also shown for % differences with respect to 
mean relaxivity. *P < 0.05, **P < 0.01, ***P < 0.001
TABLE S2 Bootstrap resampling50 P-values for R1 re-
peatability study. Each facility was assigned a random R1 
value (with replacement) among all observed R1 values at a 
given concentration. This ensures that in the bootstrap, no 
statistically significant differences between facilities will 
exist. This bootstrap OLS and GGLM-ID were fitted to the 
data and a null distribution of t-statistics (or Wald Z, for 
GGLM-ID) was generated for both models for all compar-
isons above. The null distribution of this bootstrap is more 
robust to heteroscedasticity in R1 (s

−1). The assumption is 
that the population relaxivity (r1 mM−1 s−1) standard errors 
among Facilities are roughly the same,50 which is valid here 

as the same CA is being tested. The observed t statistic in the 
original data was compared to this distribution to generate 
a bootstrap P-value. Bonferroni correction for 10 tests was 
applied in the end and no statistically significant differences 
are apparent for either model. Therefore, the OLS conclu-
sion is not replicable. 10K iterations were performed. *P < 
0.05, **P < 0.01, ***P < 0.001
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