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Abstract: Point cloud registration is a key step in the reconstruction of 3D data models. The traditional
ICP registration algorithm depends on the initial position of the point cloud. Otherwise, it may
get trapped into local optima. In addition, the registration method based on the feature learning
of PointNet cannot directly or effectively extract local features. To solve these two problems, this
paper proposes SAP-Net, inspired by CorsNet and PointNet++, as an optimized CorsNet. To be more
specific, SAP-Net firstly uses the set abstraction layer in PointNet++ as the feature extraction layer
and then combines the global features with the initial template point cloud. Finally, PointNet is used
as the transform prediction layer to obtain the six parameters required for point cloud registration
directly, namely the rotation matrix and the translation vector. Experiments on the ModelNet40
dataset and real data show that SAP-Net not only outperforms ICP and CorsNet on both seen and
unseen categories of the point cloud but also has stronger robustness.

Keywords: point cloud; registration; deep learning; feature extraction; robustness

1. Introduction

The 3D point cloud data have incomparable advantages over 2D images, which can
accurately record the 3D shape, geometric size, space coordinates, and other information of
the object surface. In point cloud data processing, registration is one of the most important
tasks, which directly affects the result of model reconstruction. Therefore, point cloud
registration also holds great potential in a number of engineering applications including
robotics [1], autopilot [2], SLAM [3], and railway transportation [4]. It plays an important
role in the handling of component failures in railroad systems, 3D splicing, and other
intermediate processes. At present, the iterative closest point (ICP) algorithm [5] is the
most extensively used and classic fine registration method with both strong accuracy and
versatility. However, ICP also has great limitations. For example, it takes a long time, and
it may get trapped into local optima. To optimize the performance of registration, various
algorithms based on ICP have been proposed, such as generalized-ICP [6], multi-channel
generalized-ICP [7], and sparse ICP [8]. However, these methods still have fundamental
drawbacks; they are still sensitive to the initial conditions of the point cloud and are more
time-consuming than the original ICP method; the go-ICP [9] method alleviates some
drawbacks (such as easily falling into local optimum) but the cost of the algorithm is
significantly higher. It can be found that the normal distribution transform (NDT) based
on probability distribution uses the matrix method to solve the point cloud matching [10].
A probability model based on multiple Gaussian mixture models (GMM) [11] is used for
registration among multiple point clouds. The coherent point drift (CPD) algorithm [12]
can effectively complete the registration (albeit with a long computing time). The above
probability-based methods usually need to process and transform point clouds, and are
difficult to apply to data with diverse shapes. In addition, random sample consensus
(RANSAC) based on eliminating mismatched points is also a common method for point
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cloud registration [13]. Although this improves the outliers in registration, it cannot show
better adaptability under complex interference. In view of the problems existing in various
traditional algorithms, learning-based registration methods have gradually become a hot
spot in recent years. Deep learning networks based on a large number of multi-class data
training have improved the accuracy and generalization of registration tasks, which is
incomparable to traditional methods.

PointNet [14] uses a multi-layer perceptron to extract features from the point cloud,
and then uses a deep learning network to build global features to achieve different tasks
such as classification, semantic segmentation, and partial segmentation. It takes the point
cloud data as the inputs for the first time to achieve point cloud recognition and end-to-end
point cloud processing. To obtain local features and process point clouds effectively, many
methods have been proposed including PointNet++ [15], PointCNN [16], and DGCNN [17].
In terms of point cloud registration, PointNetLK [18] uses the PointNet network to extract
features and then adjusts the Lucas and Kanade algorithm [19] to successfully achieve
the registration, and the network also supports unseen point cloud models to complete
the registration. DCP [20], RPM-Net [21,22], and CorsNet [23] can be used to achieve
higher accuracy for the registration results of seen and unseen categories. However, these
methods rely on inputs with unique local geometric features to predict reliable feature
point matching, so they are more sensitive to noise and other interference.

CorsNet architecture can be seen as two parts, namely, the global feature extraction
and the correspondence estimation. CorsNet uses PointNet to extract features and then
combines point features with global features according to the principle of the PointNet
network to obtain more effective registration information. Then, CorsNet uses singular
value decomposition (SVD) to estimate the final rigid transformation. It can be under-
stood from PointNet++ that the point features extracted by PointNet cannot represent
local features. Therefore, when concatenating global features with them, the information
obtained by CorsNet is inaccurate since local shape features are not taken into account.
The set abstraction layer of PointNet++ can sample local points layer by layer and transfer
features, effectively taking into account the local features of the point cloud. Therefore, if
the principle of PointNet++ is used to select features for CorsNet, the features are more
accurate and the information obtained is more effective.

In this paper, we propose an end-to-end point cloud registration network, based
on deep learning, called SAP-Net. Inspired by CorsNet and PointNet++, SAP-Net is
classified into a feature extraction layer (set abstraction (SA)) and a transform prediction
layer. Unlike CorsNet, SAP-Net uses PointNet to directly output the six parameters of the
point cloud registration in the transform prediction layer to obtain the rigid transformation
of the registration. Therefore, SAP-Net can be seen as an optimized CorsNet. We trained
our network and CorsNet on the ModelNet40 dataset [24], and the experimental results
show that SAP-Net not only outperforms the traditional ICP algorithm but also is better
overall than CorsNet. More importantly, SAP-Net has stronger learning ability and better
robustness.

The main contributions of this paper are summarized as follows:

1. As the optimization and upgrade of CorsNet, we used the SA layer in PointNet++
as the feature extraction layer, which has been applied in a point cloud registration
network directly, and we directly obtained the most effective registration information
by connecting the global feature and the initial template point cloud, including the
information fusion of Euclidean space and feature space which CorsNet lacks.

2. Unlike the fully connected and SVD methods, we used the PointNet structure as the
transform prediction layer to obtain the rigid transformation directly, which reduced
the complexity of the network and effectively utilized the local shape features and
global features of two point clouds;

3. We compared the proposed method with other methods and evaluated them. Experi-
ments on the general dataset and real data show that this method can be adopted to
obtain more effective information, and has stronger learning ability and robustness.
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The remainder of this paper is as follows. Section 2 describes the main problems
of point cloud registration. Section 3 introduces the point cloud registration of the local
feature extraction network based on PointNet++ and transformation output network based
on PointNet, as well as the loss function of network training. Section 4 provides the
experimental evaluation results. Finally, Section 5 represents the conclusions of this paper.

2. Problem Statement

In this section, we will discuss how to obtain the rigid transformation in point cloud
registration. We use PS and PT to denote the source point cloud and template point cloud,
respectively, where PS : X = {x1, x2, · · · , xn} ⊂ R3 and PT : Y = {y1, y2, · · · , yn} ⊂ R3.
When dealing with the point cloud registration problem, we need to find the rigid transfor-
mation M ∈ SE(3), which includes the alignment between PS and PT . The transform M is
represented as follows:

M =

[
R T
0 1

]
(1)

where R ∈ SO(3) denotes the rotation matrix and T ∈ R3 denotes the translation vector.
The registration problem can be defined as

Y = RX + T (2)

The rotation matrix with angle α around the x-axis can be defined as

Rx =

 1 0 0
0 cos α − sin α
0 sin α cos α

 (3)

Similarly, the rotation matrix with angle β around the y-axis and the rotation matrix
with angle γ around the z-axis can be defined as

Ry =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 (4)

Rz =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (5)

So, the rotation matrix R can be represented as follows:

R = Rx · Ry · Rz (6)

And the translation vector T can be defined as

T =

 tx
ty
tz

 (7)

Finally, it can be found that we only need to solve the six parameters, which is[
α, β, γ, tx, ty, tz

]T, and then we can get the rigid transformation of the point cloud registration.

3. Method
3.1. Network Architecture

In this section, we will give a brief description of the proposed network structure in
Figure 1. The model mainly consists of two parts, namely feature extraction layer and
transform prediction layer. In short, we use the SA layer as the feature extraction layer and



Sensors 2021, 21, 7177 4 of 13

take PointNet as the transform prediction layer to directly output the six parameters of the
point cloud registration, which represent the rigid transformation.
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Figure 1. SAP-Net architecture. It consists of two parts: a feature extraction layer and transform prediction layer. SAP-Net
uses the SA layer in PointNet++ as the feature extraction layer and then connects the global features and the initial template
point cloud. Finally, it uses the PointNet structure as the transform prediction layer to obtain the rigid transformation.

3.2. Feature Extraction Layer

We used the SA layer in PointNet++ as the feature extraction layer to extract the
features of two point clouds respectively. Compared with the PointNet used in CorsNet, a
SA layer can learn hierarchical features, learn the local features of the point, and transfer
them layer by layer. As a result, the final global features are more accurate.

In general, the goal of each SA feature extraction layer is to continuously extract local
features and expand the local range using the basic principles of down-sampling and
PointNet’s high-dimensional feature mapping to obtain a global set of features. Specifically,
a SA layer takes the point cloud with n points, and each point pi = {xi, fi|i = 1, 2, . . . , n}
covers its XYZ coordinates xi and its feature fi. The layer firstly samples n′ regions from the
input points. These regions are generated based on the sampling points p′j of a point cloud
determined by the farthest point sampling, and n′ spherical neighborhoods are generated
with these sampling points as the center of mass, where the spatial distance between the
neighborhood points in the spherical neighborhood and the center of mass represents the
local information. Then a down-sampled point cloud with n′ points is output, and each
point p′j =

{
x′j, f ′j

∣∣∣j = 1, 2, . . . , n′
}

covers its XYZ coordinates x′j and its feature f ′j . These
local features will be further extracted and pooled by iterative aggregation. Therefore, each
SA layer extracts its local feature with the following symmetric function in each sampled
region (defined by a neighborhood specified by radius r):

f ′j = Max
{i | ‖xi−x′j‖≤r}

{
h
(

fi, xi − x′j
)}

(8)

where h denotes the multi-layer perceptron (MLP), Max denotes the max pooling.
The third layer SA module no longer performs sampling and local area generation,

but aggregates high-dimensional features to obtain the global feature information of the
target. Compared with the PointNet-type feature aggregation network similar to CorsNet,
our feature extractor can learn higher-level features containing metric spatial distance
information that are getting larger and larger at the local scale through the expansion of
each layer’s neighborhood. This enhances the ability to extract the shape and structure
information of the point cloud, and provides global features containing rich local features
for point cloud registration. In addition, the radius range is increased layer by layer by
setting the spherical neighborhood and the number of sampling points of each SA layer,



Sensors 2021, 21, 7177 5 of 13

so that the neighborhood features are continuously expanded. We explained the specific
settings of the SA layer in the experimental section.

3.3. Transform Prediction Layer

After obtaining the global feature of the source point cloud and template point cloud,
Corsnet combines the 64-dimensional feature representing local information of the source
point cloud with the 1024-dimensional feature of two point clouds as the basis for the
computing transformation. However, this direct concatenation of different deep features
of PointNet does not adequately represent the local features of the point cloud and also
contains only high-dimensional information in the feature space. In this paper, SAP-Net
fed the global feature back to PT by concatenating the 1024-dimensional feature of two
point clouds with the template point cloud. The extracted global feature is connected to the
coordinates of each point of the point cloud to be aligned, which contains the local feature
information and Euclidean spatial information of the point cloud. It is a full consideration
of the local shape and relative position of the two point clouds. The amount of data in
three-dimensional coordinates is also more economical than the 64-dimensional feature
selected by CorsNet. Therefore, this type of feedback can directly find the differential
information between two point clouds, which is more useful for the registration.

Furthermore, the final output of CorsNet is a n × 3 matrix, and then SVD is used
to calculate the rotation matrix and the translation matrix. However, SVD requires more
accurate prediction of matching point pairs. The global features aggregated by the Point-
Net principle cannot represent the unique geometric structure of each layer, which makes
learning matching point pairs very difficult. Instead, in this paper, SAP-Net used the
PointNet as the transform prediction layer, namely, MLP and max pooling. This is because
the global features extracted by SAP-Net are the aggregation of local features, and they
learn the geometric knowledge of the entire point cloud. It is more suitable to use the pa-
rameter learning ability of the deep learning network to directly predict the transformation
matrix required for registration. Finally, SAP-Net outputs a 1 × 6 vector, which is the six
parameters

[
α, β, γ, tx, ty, tz

]T .

3.4. Loss Function

Since only six parameters of the rotation matrix and the translation vector are needed
for the point cloud registration problem in this paper, the goal of our loss function is to make
the transformation of point cloud rotation and translation closer to the real transformation,
and choose a simple and effective error measure. To constrain and reduce the difference
between the predicted value and the truth value, the loss function is defined as

Loss = ‖RT Rg − I‖2
+ ‖t− tg‖2 (9)

where R denotes the rotation matrix, t denotes the translation vector, g denotes the ground
truth, and T denotes the matrix transpose.

4. Experiments

We experimented on the ModelNet40 dataset, which covered 12,311 3D CAD models
from 40 categories. ModelNet40 dataset is one of the most commonly used datasets as a
benchmark for testing point cloud registration methods, with sufficient sample and various
types, so we evaluate our experimental results according to this dataset. We used 9843
models as the training set and 2468 models as the test set, where the ratio was close to 4:1.
Like PointNet, 1024 points were uniformly sampled from the surface of each model as an
initial point cloud, the points were centered and only XYZ coordinates were used as input.

For convenience, we denote + as the combination of the feature extraction layer and
the transform prediction layer, PN as the PointNet, FC as the full connection layer, and
SVD as the singular value decomposition.
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We compared SA+PN (as SAP-Net) with ICP, PN+FC, SA+FC, PN+SVD (as CorsNet),
and PN+PN. On the one hand, in the feature extraction layer, the dimensions of each
layer in PN are [64, 64, 128, 256, 1024]. Table 1 shows the setup of SA. SA3 is a global set
abstraction layer that converts a set to a single vector. On the other hand, in the transform
prediction layer, the dimensions of FC (and PN) are [1024, 512, 256, 128, 6].

Table 1. Setup of SA (n′: number of output points; r: the radius defining a neighborhood).

n′ r Dimensions

SA1 512 0.2 64, 64, 128
SA2 256 0.4 128, 128, 256

SA3 / / 256, 512, 1024

Adam [25] was used to optimize the network parameters, with an initial learning rate
of 0.001. The learning rate was reduced by 10 times at 75, 120, 160, and 200, respectively, for
a total of 250 epochs. The experiments with SAP-Net and other approaches were conducted
on a computer with Inter i5-10300H CPU, NVIDIA GeForce RTX 2060 GUP, and used the
pytorch 1.2 development environment with PyCharm. We measured mean squared error
(MSE), root mean squared error (RMSE), and mean absolute error (MAE) between the
ground truth values and predicted values. Ideally, the smaller the error metrics are, the
more accurate the rigid alignment is.

4.1. Train and Test on ModelNet40

First, we randomly classified all of the point clouds in ModelNet40 into the training
set and test set, and different point clouds were used for training and testing. We randomly
used a rigid transformation along each axis to generate the template point cloud. The
rotation angle was randomly generated in [0, 45] and the initial translation distances were
randomly selected in [−0.5, 0.5]. According to this rule, the initial rotation and translation
were also performed randomly in the test set.

Table 2 shows the performance of all models. The performance of various methods
can be shown through the comparison of various indicators of different methods based on
different network layers, and the low error value represents better registration performance.

Table 2. Test on full dataset. Various implementation combinations are presented by abbreviations (feature extraction +
rigid body transformation).

ICP PN + FC SA + FC PN + SVD PN + PN SA + PN (SAP-Net)

MSE (R) 903.497070 47.865341 168.943558 252.624695 37.973038 20.001087
RMSE (R) 30.058228 6.918478 12.997829 15.894172 6.162227 4.472258
MAE (R) 17.923250 5.600912 11.266281 12.779058 4.373697 3.088548
MSE (t) 0.061544 0.019928 0.010722 0.069416 0.002480 0.001695

RMSE (t) 0.248080 0.141168 0.103546 0.263470 0.049800 0.041168
MAE (t) 0.201832 0.122349 0.080985 0.214743 0.039462 0.034388

It can be seen from Table 2 that the ICP registration method which depends on a better
initial position is not suitable. SAP-Net outperforms other methods under all the metrics,
which is better than the original CorsNet. Figure 2 shows results of SAP-Net on the part of
samples in ModelNet40.
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Figure 2. Registration results (red: source point cloud, green: template point cloud). The initial positions of the two point
clouds are shown at the top and the results of the alignment are shown at the bottom. It can be seen that the proposed
network can also achieve good registration results for methods that may fall into the local optimal solution due to the highly
symmetric point cloud.

In addition, to test the generalization of SAP-Net on point clouds with different shape
features and sparsity degrees, we selected the sample with simple structure (Bottle) and
the sample with more shapes (Plant) to test performance, carried out different degrees
of random sampling and the same initial transformation on point cloud samples, and
evaluated the mean absolute error of rotation. Table 3 and Figure 3 show the test results.

Table 3. Tests at different sampling degrees.

Sampling Points 256 512 1024 2048

MAE (Plant) 3.2606 1.8963 1.1074 1.2551
MAE (Bottle) 2.7916 1.9094 1.0298 0.8435
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Figure 3. Registration results from sparse to dense sampling.

It can be seen from the results that, except for the accuracy of samples with less points
and more missing information, SAP-Net can still maintain good accuracy for point clouds
with large shape differences, and has good adaptability to density changes.

4.2. Experiment on Different Categories

To test and verify the learning ability of the model, we trained and tested the proposed
model on different categories. Under the same conditions, we used the first 20 categories for
training and the rest categories for testing. As shown in Table 4, SAP-Net still outperforms
all the models on all metrics, which means SAP-Net has a stronger ability of generalization
and can learn more useful registration information, which is better than CorsNet.
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Table 4. Test on different categories.

ICP PN + FC SA + FC PN + SVD PN + PN SA + PN (SAP-Net)

MSE (R) 903.732239 195.343384 181.686539 270.140747 48.905247 22.027050
RMSE (R) 30.062140 13.97653 13.479115 16.435959 6.993228 4.693298
MAE (R) 17.292072 11.461332 11.271105 13.292407 5.008487 3.274244
MSE (t) 0.073674 0.011866 0.004643 0.066987 0.003479 0.002312

RMSE (t) 0.271429 0.108930 0.068141 0.258818 0.058981 0.048084
MAE (t) 0.220805 0.085516 0.053935 0.207364 0.047160 0.040955

It can be seen that under the verification condition of clean point cloud data, the three
sets of experimental results of PN + FC are even better than PN + SVD of CorsNet but are
still far inferior to PN + PN, which is the CorsNet variant. It can be proved that PN, as the
transform prediction layer, is more applicable to the network structure of CorsNet. For the
feature extraction layer, we used PN and SA for comparison. From the three sets of error
experiments, it can be seen that SA + FC is only slightly better than PN + FC. However,
SA+PN is better than PN + PN in all metrics, which means that SA as a feature extraction
layer is more effective in combination with PN as a transform prediction layer, and so the
predicted registration parameters are more accurate.

4.3. Robustness Test

In addition, to verify the robustness of the model, we added Gaussian noise to the
point cloud for testing. During the training, we use the training method for the full dataset
according to the setting in Section 4.1. However, during the testing, we randomly jittered
the points in both point clouds by adding Gaussian noise with a mean value of 0 and
standard deviation (SD) of 0.01 to each point, clipped the noise to [−0.05, 0.05], and then
we added it to the input point cloud.

Table 5 shows the results of the robustness test. PN + FC model is sensitive to noise,
and the interference of noise is obvious to the feature extraction layer based on PointNet.
SAP-Net still keeps robust to noise and performs best among all the models.

Table 5. Test with Gaussian noise.

ICP PN + FC SA + FC PN + SVD PN + PN SA + PN (SAP-Net)

MSE (R) 950.946045 169.587784 214.185822 268.276764 78.038536 20.994427
RMSE (R) 30.837414 13.022588 14.635089 16.379156 8.833942 4.581967
MAE (R) 24.432901 11.289206 11.850265 13.264036 6.858354 3.203474
MSE (t) 0.078597 0.020040 0.010414 0.065434 0.007910 0.001673

RMSE (t) 0.280351 0.141563 0.102047 0.255800 0.088937 0.040905
MAE (t) 0.220353 0.113622 0.080460 0.209393 0.073032 0.034165

To further verify the robustness of the proposed model in a complex environment,
we also compared the performance of various methods under different degrees of noise.
So, we used the clean dataset of modelnet40 used in the evaluation in Section 4.1, and
randomly added the Gaussian noise of standard deviation (SD) in [0.01, 0.1] with 0.01 as
the step size to the two point clouds of each sample to further test the model. Considering
the large error of the traditional ICP method, we only compared the learning-based method.
As the noise level continued to increase, we also got the mean absolute error (MAE) of
rotation and translation in each stage according to the output transformation results, as
shown in Figure 4.
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Figure 4. Registration results at different levels of Gaussian noise. (a) Mean absolute error (MAE) of rotation and (b) mean
absolute error (MAE) of translation.

Experimental results show that with the increase of noise level, SAP-Net still maintains
a stable error result, which is significantly better than other methods in noise impact. In
addition, the performance of the SA + FC model is also relatively stable, which is similar to
that of SAP-Net, indicating that the SA feature extraction module brings better robustness.

4.4. Test on Real Objects

To verify the applicability of our registration method to different objects, the point
cloud data of real objects were tested. This set of experimental data samples is an important
three-dimensional object in railway transportation. The real point cloud data are collected
by the industrial three-dimensional laser scanning system, and have been preprocessed
and can be directly used for algorithm experiments. We tested the train wheel tread and
bolt components by weights obtained from the trained model of SAP-Net. The real point
cloud data are shown in Figure 5.
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Figure 5. Experimental data of real point cloud in railway transportation. (a) Train wheel tread data 1, (b) train wheel tread
data 2, and (c) bolt components.

In the test process of registration, we still evaluated the general performance of our
model in real data through three kinds of error by the calculation of transform predicted
value and ground truth. The results of registration accuracy are shown in Tables 6 and 7,
where W1 and W2 represent the two point clouds of the train wheel tread.
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Table 6. Rotation accuracy of real objects in railway transportation.

MSE (R) RMSE (R) MAE (R)

W1 0.606702 0.778911 0.721933
W2 1.659326 1.288148 1.087313
Bolt 1.241919 1.114414 1.089038

Table 7. Translation accuracy of real objects in railway transportation.

MSE (t) RMSE (t) MAE (t)

W1 0.007216 0.084946 0.081434
W2 0.006939 0.083303 0.079179
Bolt 0.006825 0.082616 0.079559

It can be seen from the experimental data that the trained model based on the common
ModelNet40 dataset can still maintain good alignment ability in railway transportation.
The experimental results of this group are similar to or better than the results in Section 4.1,
showing the usability of the proposed method. Figure 6 shows the alignment results. In
addition, for these three point clouds, we compared the average test time (in milliseconds)
in this group of experiments, including traditional ICP, learning-based CorsNet, and our
SAP-Net, as shown in Table 8. Comprehensive experiments show that our method achieves
the expected requirements in the simplicity and stability of the registration network.

Table 8. Computational efficiency.

Method ICP CorsNet SAP-Net

Time (ms) 389 104 79
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Figure 6. Registration results of real data. (a,c,e) are the initial position of the two point clouds, (b,d,f) are the results of
registration, the yellow point set is the source point cloud and the blue point set is the template point cloud.

5. Conclusions

In this paper, based on the CorsNet network structure, we propose a 3D point cloud
registration network with a simple structure, called SAP-Net, which firstly uses a set
abstraction layer in the network of PointNet++ to extract features and then feed it back
to the template point cloud, and finally uses PointNet to predict the rigid transformation.
Based on experiments by comparing SAP-Net with ICP, CorsNet, and other variants on the
ModelNet40 dataset, we demonstrate and discuss the importance and effectiveness of each
part in SAP-Net to prove the accuracy and better robustness of SAP-Net. In some cases of
railway transportation, our method also shows good performance. We will try our best
to improve the algorithm and network in the point cloud data with more complex scenes,
which we regard as our future work.
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