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Introduction
The protein–DNA binding interactions are essential activities 
in gene transcription. In recent years, it has been recognized 
that gene transcription plays a more significant role than pre-
viously thought in the context of protein level control.1 Thus, 
there is increasing interest in deciphering the protein–DNA 
binding interactions, which can be determined by the bacte-
rial one-hybrid system in the past.

With the advent of next-generation sequencing and other 
modern biotechnology, the protein–DNA binding interaction 
studies have been accelerated from single DNA-binding pro-
tein study to the proteome-wide level; for instance, Weirauch 
et al have applied protein-binding microarray to comprehen-
sively determine the eukaryotic transcription factor DNA-
binding specificity in sequence level.2 Wong et al have applied 
multiple expectation maximization for Motif Elicitation3 to 
generate the coupling DNA motifs on chromatin interactions 
in human being.4 Jolma et al have also applied systematic evo-
lution of ligands by exponential enrichment and chromatin 
immunoprecipitation sequencing to characterize the DNA-
binding specificities of human transcription factors, resulting 
in 239 distinct binding profiles.5 The sequence and chromatin 
determinants surrounding protein–DNA binding interactions 
have also been studied in the context of transcription factors 
across different cell lines comprehensively.6 Tremendous data 

have been accumulated with the potential for deciphering 
protein–DNA binding interactions further.

Therefore, it is important to harness and leverage the 
existing big data to shed proteome-wide lights on the pro-
tein–DNA-binding studies; for instance, Wong et al have 
proposed a computational framework to learn and predict the 
 specificity-determining residue–nucleotide interactions across 
different DNA-binding families.7 Pelossof et al have also pro-
posed an approach for learning the recognition models across 
different DNA-binding families.8 Wong et al have proposed 
an evolutionary computational approach for learning the com-
binatorial protein–DNA-binding sequence patterns.9

Objective
In this study, we propose to adopt SNPdryad10 for the predic-
tion of DNA-binding residues. In other words, given a protein 
sequence, we would like to predict and locate which residues 
are DNA binding, as verified by its protein–DNA complex 
structural information from Protein Data Bank (PDB).

Methodology
To predict the DNA-binding residues for a specific DNA-
binding domain family, we are interested in the positional 
distribution of the harmful nonsynonymous single-nucleotide 
polymorphisms (nsSNPs) across the DNA-binding domain 
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family because nsSNPs are known to be able to directly alter 
the encoded protein functions. Therefore, we have performed 
multiple sequence alignment on the protein-coding sequences 
for each domain and count the number of harmful nsSNPs on 
these sequences.

The algorithm and the prediction results can be accessed 
from the website.a A snapshot of the website is shown in 
 Figure 1. In particular, we would like to note that the precise 
number of dele terious amino acid substitutions on the human 
proteome is yet to be determined. Thus, the website is designed 
to remind the users about it when they query the SNPdryad 
website as shown in Figure A1.

In particular, we would like to note that SNPdryad is 
trained on the existing literature annotations (Harvard 
 HumDiv dataset) that may be limited in size if we consider 
all the possible amino acid substitutions on a human pro-
teome, although this is also the approach the existing methods 
(eg, Harvard PolyPhen2) have taken.

results
Fully deleterious substitutions. In total, we scanned 

92,012 human proteins (including protein isoforms) and 
36,935,804 amino acid positions; a total of 10,120,155 sub-
stitutions (about 1.4%) were predicted to be fully deleterious 
(with the SNPdryad prediction score of 1).

dNA-binding family choices. In this study, we have 
selected three DNA-binding protein families for in-depth 
studies. (1) The ETS domain has been selected (Pfam ID: 
PF00178) since it is important in different tissue developments 
and cancer progression for metazoans.11 (2) The homeodomain 

a  http://snps.ccbr.utoronto.ca:8080/SNPdryad/

family is selected because it was demonstrated to be related to 
multiple cancers: breast cancer,12 prostate cancer,13 and non-
muscle invasive bladder cancers.14 (3) The basic Helix-Loop-
Helix (bHLH) domain family is selected because its proteins 

figure 1. snapshot of the snPdryad website in June 2014. the users can download the entire predictions of the human proteomes hg19 and hg18.

figure 2. Crystal structure of mouse elf3 C-terminal Dna-binding 
domain in complex with type II tGf-beta receptor promoter Dna (PDB 
ID: 3 JtG).16 It is drawn using Protein Workshop.21 the harmful nssnP 
hotspots in figure 3 are mapped back to the sequence positions of the 
structure, namely, r331 and r334.
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figure 3. multiple sequence alignment for the ets-domain (Pfam ID: Pf00178) sequences in human and the amino acid sequence extracted from the 
ets-domain structure (PDB ID: 3 JtG Chain a), colored in the Clustalx color scheme. 
Notes: the histogram shows the number of harmful nssnPs for each alignment position. the peaks with z-scores .3 are colored in red, while the others 
are colored in blue.

are found to sense and respond to environmental stimulus in 
different cancer-related pathways.15

winged Helix turn Helix family. The ETS domain 
has been selected (Pfam ID: PF00178) since it is a large 
transcription factor family, which is important in different 
 tissue developments and cancer progression for metazoans.11 
The ETS domain belongs to the winged Helix Turn Helix 
domain  family. It is a DNA-binding domain that has three 
alpha helices and four beta strands (eg, PF03444). Especially, 

the domain is characterized by the alternative intervention 
between the helices and strands.

In particular, we extracted the amino acid sequences 
annotated as the ETS domains in human proteome. The 
 positions of the harmful nsSNPs were mapped onto each 
sequence. To provide biological insights, we also downloaded 
the crystal structure of mouse Elf3 C-terminal DNA- binding 
domain in complex with type II TGF-beta receptor pro-
moter DNA (PDB ID: 3 JTG).16 The amino acid chain in 
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that structure was aligned with the ETS domain sequences 
using MUSCLE with the default parameter setting.17 The 
resultant multiple sequence alignment and the mapped 

 number of harmful  nsSNPs are depicted in Figure 3. Interest-
ingly, it can be observed that the position distribution of the 
harmful  nsSNPs is not uniform across the domain. To dis-
tinguish harmful nsSNP hot spots (tall peaks) from the rest, 
the mean and standard deviation of the number of harmful 
nsSNPs are calculated. A position is called a harmful nsSNP 
hot spot when the number of harmful nsSNPs exceeds the 
mean plus three standard deviations (ie, z-scores .3). Based 
on such a setting, two alignment positions are found as the 
hotspots. They are highlighted in red. It can be observed that 
those  harmful nsSNP hot spots are located at the conserved 
positions. If we map the positions back to the structural data 
as shown in  Figure 2, interestingly, they correspond to the 
region where the protein-DNA binding occurs, explaining the 
enrichment of harmful nsSNPs predicted by SNPdryad.

Homeodomain family. The homeodomain family is a 
DNA-binding domain that has three alpha helices connected 
by short loop structures (eg, PF00046). The defining feature is 
that one of the alpha helix is found nearly perpendicular to the 
plane formed by the other two alpha helices. The HOX genes 
(which belong to the homeodomain family) have been demon-
strated to be related to different human cancers18; for instance, 
the induction of HOXA5 can cause around 300 genes to be 

figure 4. three-dimensional structure of aristaless homeodomain in 
complex with Dna (PDB ID: 3 LnQ).22 It is drawn using Protein Workshop.21 
Note: the harmful nssnP hotspots in figure 5 are mapped back to the 
sequence positions of the structure, namely, r89, r136, and r137.
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figure 5. multiple sequence alignment for the homeodomain domain (Pfam ID: Pf00048) sequences in human and the amino acid sequence extracted 
from the homeodomain structure (PDB ID: 3 LnQ Chain a), colored in the Clustalx color scheme.  
Notes: the histogram shows the number of harmful nssnPs for each alignment position. the peaks with z-scores .3 are colored in red, while the 
others are colored in blue.
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unregulated in breast cancer cell lines12; the overexpression of 
HOXC8 was found to be related to the loss of differentiation 
in prostate cancer cells13; HOXA9 was demonstrated to be 
an independent indicator of prognosis in nonmuscle invasive 
bladder cancers.14

As an illustrative example, we have selected the struc-
ture of Aristaless homeodomain (PDB ID: 3 LNQ ) as 
shown in Figure 4. Similar to the previous section, we have 
exhaustively extracted all homeodomain sequences in human 
being and performed the multiple sequence alignment. Once 
aligned, we count how many harmful nsSNPs can be found 
at each alignment position as shown in Figure 5. To distin-
guish harmful nsSNP hot spots (tall peaks) from the rest, 
the mean and standard deviation of the number of harmful 
nsSNPs are calculated. A position is called a harmful nsSNP 
hot spot when the number of harmful nsSNPs exceeds the 
mean plus three standard deviations (ie, z-scores . 3). Based 
on such a setting, three hotspots are identified. If we map 
the three hotspots back to the structure in Figure 4, we can 

figure 6. Crystal structure of myoD bHLH domain bound to Dna 
(PDB ID: 1mDY).23 It is drawn using Protein Workshop.21 
Note: the harmful nssnP hotspot in figure 7 is mapped back to the 
sequence position of the structure, namely, r121.
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figure 7. multiple sequence alignment for the bHLH domain (Pfam ID: Pf00010) sequences in human and the amino acid sequence extracted from the 
bHLH structure (PDB ID: 1mDY Chain a), colored in the Clustalx color scheme. 
Notes: the histogram shows the number of harmful nssnPs for each alignment position. the peak with z-scores .3 is colored in red, while the others 
are colored in blue.
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observe that the core DNA-binding residues are predicted 
as hotspots.

bHLH family. The bHLH domain family is a DNA-
binding domain that consists of two alpha helices connected 
by a loop structure (eg, PF00010). In most cases, they bind 
to DNA as a dimer (ie, two domains). In addition, they are 
shown to be related to different cancers; for instance, the 
transcription factors c-Myc and HIF-1 can interact with each 
other and promote metabolic advantages to tumor cells19 and 
adjust adaptive responses to hypoxic environments.20 bHLH-
PAS proteins are also believed as multitasking family of tran-
scription factors that can sense and respond to environmental 
stimulus in the cancer-related pathways.15

Therefore, it is very important to identify the core DNA-
binding residues for the bHLH family. In particular, we have 
selected the crystal structure of MyoD bHLH domain as an 
example visualized in Figure 6. Similar to the previous sec-
tions, we have collected and aligned all the bHLH sequences 
from the human proteome, resulting in the multiple sequence 
alignment profile as shown in Figure 7. It can be observed that 
only one alignment position remains after setting the z-scores 
cutoff to 3. If we map that position back to the structure, we 
can observe that it is indeed a core DNA-binding residue posi-
tion as shown in Figure 6.

discussion
Gene regulation is a very important step in genetics. In par-
ticular, gene transcription is responsible for nearly 70% con-
tribution to protein levels.1 Therefore, it is very important 
to decipher the gene transcription mechanism in which the 
 protein–DNA-binding mechanism plays a significant role.

To this end, we have proposed a novel approach to 
 predict the core DNA-binding residues on the cancer-related 
proteins. We propose that SNPdryad can be integrated and 
transformed to predict and locate core DNA-binding residues 
for cancer-related protein studies. The results suggest that the 
approach is feasible and can be explored further.

In the future, we seek to have comprehensive bench-
marking on the prediction performance than the existing case 
studies, although the additional computational burden has 
to be provisioned carefully. Another interesting direction is 
to see if other prediction algorithms such as PolyPhen2 and 
MutationTaster can be applied in a similar fashion. It would 
be helpful if the existing methods can complement to each 
other, contributing to accurate ensemble prediction of DNA-
binding residues on cancer-related proteins. The peak thresh-
old setting is another interesting direction to be explored for 
the proposed method in the future.
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Appendix

figure A1. Demo query on the snPdryad website in June 2014. In the demo query, we queried snPdryad whether the amino acid substitution from 
m to e at the 18th position of the input protein (ensP00000000233) is deterious or not.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

