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Machine Learning-Based Prediction of COVID-19 Severity 
and Progression to Critical Illness Using CT Imaging and 
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Objective: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) 
severity and the future deterioration to critical illness using CT and clinical variables.
Materials and Methods: Clinical data were collected from 981 patients from a multi-institutional international cohort with 
real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. 
The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline 
consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on 
radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance 
index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with 
consensus CT severity scores obtained by visual interpretation by radiologists.
Results: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical 
variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared 
with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model 
achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared 
with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), 
and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the 
model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, 
and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively.
Conclusion: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to 
critical illness with fairly high accuracy.
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INTRODUCTION

Coronavirus Disease 2019 (COVID-19) is caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV2), a 
virus that can precipitate pneumonia, acute respiratory 
distress syndrome, and subsequent death [1]. In addition to 
pulmonary complications, which often require intubation, 
mechanical ventilation, and intensive care unit (ICU) level 
of care to treat, COVID-19 may also be associated with 
a host of other symptoms, including cardiovascular [2], 
neurological [3], hepatic, renal, olfactory, gustatory, ocular, 
cutaneous, and hematological manifestations [4]. Since 
the disease can cause multi-organ sequelae and death, 
COVID-19 patients who have a poor prognosis and are 
likely to deteriorate to critical status need to be identified 
promptly. In addition, it is difficult for medical systems to 
accommodate the high prevalence of critically ill patients 
with COVID-19. This disease has been detrimental to 
medical resource availability [5].

Early intervention has been shown to reduce mortality 
in COVID-19 patients [6]. When providers are aware of a 
patient’s potential deterioration, they can promptly obtain 
an ICU bed, acquire a mechanical ventilator, and consider 
initiating experimental COVID-19 treatments [7]. Clinical 
data, including symptoms of fever, cough, and dyspnea, 
as well as laboratory findings, such as lymphopenia, 
elevated inflammatory markers, and atypical coagulation 
factor tests, have all been useful for the diagnosis and 
prognostic predictions of COVID-19 [8-10]. However, several 
of these signs and symptoms are non-specific for COVID-19 
pneumonia [8]. 

Medical imaging, specifically chest CT, is a more specific 
modality for the diagnosis of COVID-19 [11], and it 
also has the potential to aid in predicting the severity 
of COVID-19 [10,12]. Patients with COVID-19 can show 
characteristic signs on chest CT, such as multi-focal ground-
glass opacities (GGO) and consolidation with bilateral 
and multi-lobar involvement typically localized to the 
lower lung [13,14]. These findings also seem to be time-
dependent [14], which can further aid disease assessment 
and prognosis. Artificial intelligence (AI) can recognize 
features and patterns that are not easily discernible to the 
human eye, and it has been used to improve the diagnostic 
and prognostic accuracy of chest CT for COVID-19 [15-
21]. In this study, a machine learning (ML) pipeline was 
developed to predict COVID-19 disease severity and the 
risk of progression to critical illness within specific time 

intervals using chest CT and clinical data.

MATERIALS AND METHODS

Patient Cohorts
A total of 981 patients with COVID-19 confirmed by 

RT-PCR and chest CT imaging suggestive of pneumonia 
were retrospectively identified based on data from nine 
hospitals in the Hunan Province in China, the Hospital 
of the University of Pennsylvania in Philadelphia in 
Philadelphia in PA, the Rhode Island Hospital in Providence 
in RI, and open-source data from a previously published 
paper [16]. The CT scans of the identified patients were 
directly downloaded from the hospital Picture Archiving 
and Communications System and reviewed by a radiologist. 
Publicly available chest CT images and clinical metadata of 
COVID-19 patients were directly downloaded from the China 
National Center for Bioinformation website. A diagram 
illustrating patient inclusion and exclusion criteria is shown 
in Figure 1.

This data for the cohort were randomly divided into 
training, validation, and testing sets with a 7:1:2 split ratio 
to build the severity and progression prediction models.

Clinical Information
The patient data on demographics and co-morbidities 

were retrospectively collected. The patients’ conditions 
were determined to be critical or severe if they reached 
any of the following endpoints: ICU admission, mechanical 
ventilation, or death. If not, their conditions were non-
critical or non-severe. For critical or severe patients, 
the duration for their progression to critical events was 
calculated from the time of CT to the earliest time of 
developing one of the aforementioned critical events. A plot 
of the time distribution from CT and critical outcomes is 
shown in Supplementary Figure 1.

The patient data, including age, sex, symptoms (presence 
or absence of fever), white blood cell count, lymphocyte 
count, comorbidity status (cardiovascular disease, 
hypertension, chronic obstructive pulmonary disease, 
diabetes, chronic liver disease, chronic kidney disease, 
cancer, and human immunodeficiency virus), and history 
of exposure to the COVID-19 epicenter and/or another 
patient with COVID-19, were collected. These were used 
as the 15 clinical variables for model training. The use of 
mechanical ventilation, ICU care, and progression to death 
was also recorded. For all patients, admission and discharge 
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times were also recorded. The missing values were imputed 
in groups using K-nearest neighbors (KNN) and iterative 
imputation methods [22,23]. A comparison of clinical data 
across institutions is shown in Supplementary Table 1.

Machine Learning Pipeline
First, the lung tissues and abnormalities caused by 

COVID-19 were automatically segmented on CT images using 
a deep-learning model based on a deep convolutional neural 
network. Second, radiomics features were extracted from CT, 
and an ML pipeline utilizing both image-based and clinical 
variables were used to predict a patient’s COVID-19 severity 
and progression to critical illness at the time of the CT 
scan. An illustration of our workflow is provided in Figure 2.

Visual CT Severity Scoring
Chest CT scans were assessed using a scoring system 

adopted for convalescent patients after severe acute 
respiratory syndrome, as introduced by Chang et al. [24]. 
The severity scores range from 0 to 5 for each lung lobe 
depending on the extent of GGO (0 = no involvement, 1 
= < 5%, 2 = 5–25%, 3 = 26–49%, 4 = 50–75%, 5 ≥ 75% 
involvement). The values for each lobe were summed to 
determine a final score ranging from 0 to 25. The scores 
were summed for each patient to represent a visual CT 
consensus severity score. All CT scans included in the study 

were divided into two parts. Each half was assessed by two 
independent radiologists in consensus. They have practiced 
5–10 years of thoracic radiology and have had direct 
clinical experience with COVID-19 chest CT scans. We chose 
this scoring system since it has been used in numerous 
studies on COVID-19. For example, a recent study used this 
method for the first pulmonary CT scans that were obtained 
at a mean of 2 ± 2 days after the onset of symptoms [25]. 
Another study utilized this scoring system to analyze a 
group of CT scans obtained within a mean of 2.2 ± 1.8 days 
and another group obtained within a mean of 6.6 ± 4.0 
days [26]. Furthermore, the scoring system by Chang et al. 
[24] was successfully adapted for another chest CT severity 
score for assessing the severity of COVID-19 [12]. 

Severity Prediction
Radiomics features were extracted from the patients’ CT 

scans. For each image space, 79 non-texture (morphology 
and intensity-based) and 94 texture features were extracted 
according to the guidelines by the Image Biomarker 
Standardization Initiative [27]. Each of the 94 texture 
features was computed 16 times using the following 
combinations of extraction parameters, a process known as 
“texture optimization” [28,29]: 1) isotropic voxels of size 
2 mm and 4 mm, 2) fixed bin number (FBN) discretization 
algorithm with and without equalization, and 3) the number 

Zhang et al. [16]
n = 370

Patients with COVID-19 definitely diagnosed by RT-PCR

Chinese cohort from 8 hospitals
n = 4612

Excluding patients with:
  - No CT chest scans (n = 4055)
  -  No abnormal findings on CT 

scans (n = 118)

Excluding patients with:
  - No CT chest scans (n = 700)
  -  No abnormal findings on CT 

scans (n = 12)

Excluding patients with:
  - No CT chest scans (n = 2093)
  -  No abnormal findings on CT 

scans (n = 30)

RIH
n = 740

COVID-19 chest CT scans: n = 981
China: n = 809; RIH: n = 28; HUP: n = 144

Training set 
Patients: n = 687

Validation set 
Patients: n = 97

Test set 
Patients: n = 197

HUP
n = 2267

Fig. 1. Illustration of patient inclusion and exclusion. Adapted from Zhang et al. Cell 2020;181:1423-1433.e11 [16]. HUP = Hospital of the 
University of Pennsylvania, RIH = Rhode Island Hospital, RT-PCR = reverse transcriptase-polymerase chain reaction
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of gray levels of 8, 16, 32, and 64 for FBN. A total of (79 + 
16 x 94), or 1583, radiomics features were extracted in this 
study.

The ML models were built using only radiomics features, 
only clinical variables, a combination of radiomics features 
and clinical variables, or a combination of visual CT severity 
scores and clinical variables. Feature selection and classifier 
optimization methods were used to build the models. To 
reduce the dimensionality of the datasets, the features 
were selected for training using five different feature 
selection methods. Ten ML classifiers were trained on the 
selected features for every combination of selection and 
classification. The detailed feature selection methods and 
classifiers used are shown in Supplementary Table 2. The 
classifiers were trained by decreasing the number of features 
from 100 to 15 selected features. Their performances were 
optimized on the validation set. In addition to the manually 
optimized ML pipelines, Tree-based Pipeline Optimization 
Tool (TPOT) [30], an automatic ML algorithm, was used. 

TPOT automatically outputs the most optimized pipeline 
after being trained and validated.

Progression Prediction
Two time-to-event models were built on 1583 radiomics 

features and 15 clinical variables to predict progression 
represented by risk scores. Specifically, these progression 
prediction models were based on survival forests [31] 
that were optimized to assign risk scores to patients with 
different progression outcomes according to their input 
features (radiomics features or clinical variables). The 
missing values of some clinical variables were imputed by 
a widely used imputation method [32]. Survival forests 
use a collection of decision trees for predictions and 
the ranking of radiomics features or clinical variables by 
their importance for time-to-event risk prediction [32]. 
Both survival forests were trained and validated on the 
same training, validation, and test sets in a 7:1:2 split of 
patient data that were used for the radiomics models. The 

Fig. 2. Illustration of our analysis pipeline. 
A. Radiomics feature representation. For each patient, 1583 radiomics features were extracted from automatically segmented lung regions. 
B. Radiomics based severity prediction. Binary classifiers were applied to classify the patients into severe or non-severe classes based on the 
radiomics features. C. Radiomics based progression prediction. A random survival forest model was optimized based on the 1583 radiomics 
features to assign risk scores to different subjects. D. Clinically based progression prediction. Fifteen clinical variables extracted from 
demographic recordings were input to another survival forest model to assign risk scores to different subjects. Finally, for each patient, the deep 
learning-based and clinical-based predictions were added with two balanced weights to obtain the combined progression risk score.

A

C D

B
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missing values for the radiomics features were imputed 
using the group mean values for every parameter. The 
detailed parameters of our applied survival forest models 
are summarized in Supplementary Table 3. We selected to 
test our model using 3, 5, and 7 day-time points because 
the number of critical patients increased in approximate 
proportions for these intervals. The prediction based on 
the clinical variables combined with CT radiomics is the 
sum of the risk scores obtained from the clinical data-
based prediction and CT radiomic feature-based prediction 
by a ratio of 0.52 vs. 0.48, while the prediction based on 
the clinical variables combined with the visual CT severity 
scores is the sum of the risk scores obtained from the 
clinical variables-based prediction and the visual CT severity 
score-based prediction by a ratio of 0.52 vs. 0.48.

Statistical Analysis
For the severity prediction, the following performance 

metrics were calculated: accuracy, sensitivity, specificity, 
and positive and negative predictive values with a 
probability of 0.50 for the operating point between the 
binary classifications of severe and non-severe and area 
under the receiver operating characteristic curve (ROC-AUC). 
The adjusted Wald method was used to calculate the 95% 
confidence intervals (CIs) [33]. The binom_test function 
in scipy.stats was used to statistically compare the ROC-
AUC values. The C-index for the right-censored data [34] 
was applied to evaluate the performance of the time-to-
event models for progression prediction to determine if 
they efficiently assigned high-risk scores to patients with 
poor critical outcomes and vice versa. We added the CI by 
bootstrapping the test set several times (10 or more) and 
used our optimized model to obtain a series of C-index 
values. Subsequently, we used these values to calculate 
the 95% CI. Brier scores were computed to confirm the 
model calibration. Time-dependent ROC-AUC was calculated 
from the obtained risk scores and progression information 
via the Kaplan-Meier method [35] to further evaluate the 
progression prediction performance. The ‘timeROC’ R package 
(https://www.r-project.org/) was used to statistically 
compare the time-dependent ROC-AUC values, and the 
‘compareC’ package in R was used to statistically compare 
the C-index values [36,37]. The statistical tests were 2 
sided. P < 0.05 was considered statistically significant.

Further information on our patient cohort, segmentation 
techniques, and code availability can be found in the 
Supplementary Materials section and Supplementary Figure 2.

RESULTS

Patient Characteristics
Of the 981 patients with RT-PCR-confirmed COVID-19 and 

chest CT, 274 developed critical illness. The median age of 
patients who progressed to critical illness was higher than 
those who did not (58 vs. 46 years, p < 0.001). The median 
duration from admission to critical illness was 0.4 days. 
The median durations from symptom onset to presentation, 
symptom onset to hospitalization, and symptom onset to CT 
were 4, 4, and 9 days, respectively. However, these medians 
are for Chinese cases from Hunan Province only (range: 0 to 
30 days). The clinical characteristics of COVID-19 patients 
across the training, validation, and test sets and those with 
critical and noncritical illnesses are shown in Tables 1 and 2, 
respectively.

Severity Prediction Models
The chi-squared feature selection method facilitated the 

highest ROC-AUC score of our severity prediction model 
when used in tandem with KNN and Boosting classifiers on 
the test set. Training on the top 25 features facilitated the 
highest ROC-AUC for the test set.

The hand-optimized ML model combining the top 25 
radiomics features and clinical variables achieved a higher 
ROC-AUC than that based on the visual CT severity scores 
and clinical variables (0.76 vs. 0.70, p = 0.023). The 
performance metrics of the top-performing models are 
detailed in Table 3. Heatmaps depicting the performance 
of the pipeline trained on different datasets are shown in 
Supplementary Figures 3–5. The results from the automatic 
ML via TPOT are shown in Supplementary Table 4. The top 
25 combined radiomics and clinical variables are shown in 
Supplementary Table 5.

Progression Prediction Models
The combination of CT radiomics-based and clinical-

based predictions achieved the highest C-index of 0.868 
(95% CI: 0.830–0.907), when compared with 0.767 (95% 
CI: 0.706–0.828) for CT radiomics features alone (p < 
0.001), 0.847 (95% CI: 0.803–0.892) for clinical variables 
alone (p = 0.110), and 0.860 (95% CI: 0.820–0.900) 
for the combination of visual CT severity scores and 
clinical variables (p = 0.549). This demonstrated success 
in assigning risk scores consistent with the progression 
outcomes of patients. The performance metrics for each 
model are shown in Table 4. As shown in Figure 3, the 
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Table 1. Comparison of Patient Characteristics Across the Training, Validation, and Test Sets
Training Set (n = 687) Validation Set (n = 97) Test Set (n = 197) P

Age, year 0.393
Median ± interquartile range 49 ± 24 (range of 0–92) 48 ± 27 (range of 0–85) 49 ± 28 (range of 0–87)

< 20 24 (3) 4 (4) 10 (5)
20–39 169 (25) 29 (30) 57 (29)
40–59 298 (43) 34 (35) 70 (36)
≥ 60 196 (29) 30 (31) 60 (30)

Sex 0.954
Male 351 (51) 49 (51) 103 (52)
Female 332 (48) 47 (48) 93 (47)

Presence of fever 0.942
Fever 297 (43) 38 (39) 87 (42)
No fever 118 (17) 15 (15) 35 (15)

White blood cell count 0.397
Elevated 45 (7) 9 (9) 12 (6)
Normal 370 (54) 45 (46) 108 (55)

Lymphocyte count 0.613
Normal 182 (26) 30 (31) 55 (28)
Decreased 254 (37) 32 (33) 74 (38)

Comorbidities
Cardiovascular disease 50 (7) 11 (11) 15 (8) 0.316
Hypertension 94 (14) 14 (14) 32 (16) 0.817
COPD 20 (3) 3 (3) 7 (4) 0.946
Diabetes 48 (7) 10 (10) 24 (12) 0.076
Chronic liver disease 18 (3) 2 (2) 4 (2) 0.822
Chronic kidney disease 16 (2) 2 (2) 7 (4) 0.689
Malignant tumor 13 (2) 2 (2) 2 (1) 0.628
HIV 0 (0) 0 (0) 0 (0) 1.000

Outcomes*
Ventilator 64 (9) 9 (9) 20 (10) 0.991
Intensive care unit 76 (11) 11 (11) 25 (13) 0.924
Death 20 (3) 1 (1) 3 (2) 0.312
Unknown critical† 104 (15) 13 (13) 27 (14) 0.882
Discharged 235 (34) 30 (31) 70 (36) 0.833

Progression to critical event, days 0.149
Median 0.72 (range of 0–21) 0.59 (range of 0–30) 0.08 (range of 0–13)
Day 1 111 (16) 14 (14) 38 (19)
Day 2 16 (2) 6 (6) 3 (2)
Day 3 8 (1) 2 (2) 2 (1)
≥ Day 4 56 (8) 5 (5) 12 (6)

Progression to discharge, days 0.244
Median 12 (range of 0–46) 11 (range of 0.2–31) 11.6 (range of 0–38)
0–4 33 (5) 7 (7) 17 (9)
5–9 89 (13) 10 (10) 25 (13)
10–14 146 (21) 24 (25) 41 (21)
≥ 15 150 (22) 16 (16) 33 (17)

Epidemiologic contact 
Epicenter‡ 129 (19) 9 (9) 30 (15) 0.031
COVID-19 patient 87 (13) 13 (13) 31 (16) 0.762

Unless specified otherwise, data are number of patients with the percentage in parentheses. *Patients with multiple critical outcomes 
may be counted in multiple categories, †For patients from public data source (Adapted from Zhang et al. Cell 2020;181:1423-1433.e11 
[16]), the type of critical condition was not specified, ‡Epidemiologic contact with epicenter includes patients who have visited Wuhan, 
China and New York, NY, USA. COPD = chronic obstructive pulmonary disease, HIV = human immunodeficiency virus 
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combination of CT radiomics and clinical variables allowed 
the progression prediction model to achieve time-dependent 
ROC-AUCs of 0.897, 0.933, and 0.927 for predicting 
progression risks at 3, 5 and 7 days, respectively. The 

results obtained with the visual CT severity score are shown 
in Supplementary Figure 6. The model calibration results are 
shown in Supplementary Table 6.

Table 2. Clinical Characteristics of Critical and Non-Critical COVID-19 Patients
Critical (n = 274) Non-Critical (n = 707) P

Age, year < 0.001
Median ± interquartile range 57.5 ± 23.8 (range of 0 to 92) 46 ± 22.5 (range of 0 to 84)
< 20 18 (7) 20 (3)
20–39 29 (11) 226 (32)
40–59 100 (36) 302 (43)
≥ 60 127 (46) 159 (22)

Sex  0.273
Male 148 (54) 355 (50)
Female 124 (45) 348 (49)

Presence of fever < 0.001
Fever 103 (38) 319 (45)
No fever  20 (7) 148 (21)

White blood cell count < 0.001
Elevated 45 (16) 21 (3)
Normal 79 (29) 444 (63)

Lymphocyte count 0.001
Normal 78 (28) 189 (27)
Decreased 45 (16) 215 (30)

Comorbidities
Cardiovascular disease 42 (15) 34 (5) < 0.001
Hypertension 62 (23) 78 (11) < 0.001
COPD 15 (5) 15 (2) < 0.001
Diabetes 36 (13) 46 (7) < 0.001
Chronic liver disease 6 (2) 18 (3) 0.495
Chronic kidney disease 19 (7) 6 (1) < 0.001
Malignant tumor 9 (3) 8 (1) < 0.001
HIV 0 (0) 0 (0) 1.000

Outcomes*
Ventilator 93 (34) N/A
Intensive care unit 112 (41) N/A
Death 24 (9) N/A
Unknown critical† 144 (53) N/A

Progression to critical event, days
Median 0.3 (range of 0 to 30 ) N/A
Day 1 163 (59) N/A
Day 2 15 (5) N/A
Day 3 12 (4) N/A
> Day 3 73 (27) N/A

Epidemiologic Contact
Epicenter‡ 14 (5) 154 (22) < 0.001
COVID-19 patients  26 (9) 105 (15) 0.662

Unless specified otherwise, data are number of patients with the percentage in parentheses. *Patients with multiple critical outcomes 
may be counted in multiple categories, †For patients from public data source (Adapted from Zhang et al. Cell 2020;181:1423-1433.e11 
[16]), the type of critical condition was not specified, ‡Epidemiologic contact with epicenter includes patients who have visited Wuhan, 
China and New York, NY, USA. COPD = chronic obstructive pulmonary disease, HIV = human immunodeficiency virus 
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DISCUSSION

To lower patient mortality and improve overall outcomes, 
COVID-19 should be detected early [6]. When medical 
facilities operate at maximum capacity, it becomes 
increasingly difficult for them to allocate high-demand 

resources such as mechanical ventilators or ICU beds to 
patients [38]. In this study, an ML model was developed to 
predict COVID-19 severity and progression to critical illness 
using chest CT and clinical variables with good accuracy. 
This technology shows potential for informing prognostic 
decision making for COVID-19 patients, which may improve 

Table 3. Performance Metrics of Our Manually Optimized ML Pipelines Predicting Severity on the Test Set Using Radiomics 
Features Alone, Clinical Variables Alone, Combined Radiomics and Clinical Variables, and Visual CT Severity Score and Clinical 
Variables

Dataset Pipeline AUC Accuracy PPV NPV Sensitivity Specificity P*

Radiomics
TSCR + KNN 0.74 0.79 0.68 0.84 0.62 0.85 0.147
Lower 95% CI 0.72 0.77 0.66 0.83 0.60 0.82 -
Upper 95% CI 0.75 0.81 0.70 0.86 0.65 0.87 -

Clinical
CHSQ + BY 0.70 0.68 0.61 0.78 0.73 0.67 0.023
Lower 95% CI 0.67 0.66 0.57 0.76 0.71 0.65 -
Upper 95% CI 0.72 0.71 0.63 0.80 0.75 0.70 -

Radiomics + clinical
CHSQ + KNN 0.76 0.80 0.69 0.87 0.62 0.87 -
Lower 95% CI 0.73 0.77 0.65 0.85 0.59 0.85 -
Upper 95% CI 0.79 0.82 0.72 0.89 0.65 0.89 -

Visual CT severity score + clinical
CHSQ + BST 0.70 0.77 0.60 0.79 0.56 0.85 0.023
Lower 95% CI 0.67 0.74 0.57 0.77 0.53 0.83 -
Upper 95% CI 0.73 0.79 0.62 0.82 0.59 0.87 -

*P value in comparison with the radiomics + clinical model AUC. AUC = area under the curve, BST = boosting, BY = bayesian, CHSQ = chi-
square score, CI = confidence interval, KNN = k-nearest neighbors, NPV = negative predictive value, PPV = positive predictive value, TSCR = 
t test score

Table 4. Performance Metrics of Our Radiomics-Based, Clinical-Based, Combined Radiomics and Clinical-Based, Visual CT Severity 
Score, and Combined Clinical and Visual CT Severity Score-Based Progression Prediction Models

Metric Clinical Radiomics Clinical + Radiomics Visual CT Severity Score Clinical + Visual CT Severity Score
iAUC 0.814 0.775 0.829 0.740 0.829
Standard error 0.023 0.028 0.023 0.030 0.017
Lower 95% CI 0.768 0.720 0.784 0.682 0.795
Upper 95% CI 0.859 0.829 0.873 0.799 0.863
C-index 0.847 0.767 0.868 0.742 0.860
Standard error 0.023 0.031 0.020 0.034 0.020
Lower 95% CI 0.803 0.706 0.830 0.676 0.820
Upper 95% CI 0.892 0.828 0.907 0.809 0.900
3-day ROC AUC 0.874 0.792 0.897 0.807 0.910
Standard error 0.029 0.040 0.025 0.041 0.023
Lower 95% CI 0.816 0.714 0.848 0.726 0.865
Upper 95% CI 0.931 0.870 0.947 0.888 0.955
5 day ROC AUC 0.918 0.812 0.933 0.783 0.932
Standard error 0.022 0.037 0.019 0.041 0.018
Lower 95% CI 0.875 0.739 0.896 0.702 0.896
Upper 95% CI 0.961 0.884 0.971 0.864 0.968
7-day ROC AUC 0.897 0.817 0.927 0.764 0.907
Standard error 0.025 0.036 0.020 0.041 0.025
Lower 95% CI 0.847 0.746 0.888 0.683 0.858
Upper 95% CI 0.946 0.888 0.966 0.845 0.956

AUC = area under the curve, CI = confidence interval, iAUC = incremental AUC, ROC = receiver operating characteristic
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patient outcomes and resource allocation. Furthermore, 
this study demonstrates the ability of chest CT data to 
marginally increase the utility of clinical information for 
developing severity predictions. It also shows that a model 
based on the combination of chest CT and clinical variables 
can facilitate a similar performance to that based on the 
combination of visual severity scores and clinical variables.

Early detection of COVID-19 enables early medical 
intervention, which has proven to be a major determinant 
for improving clinical outcomes and reducing mortality 
[6,39,40]. CT-based visual severity scoring by radiologists 
is time-consuming and costly, whereas our ML pipeline can 
be fully automated for segmentation and feature extraction 
and used to predict the severity and progression risk. The 
fact that the combined chest CT and clinical approach 
achieved similar performance to a combined visual severity 
score and clinical information approach indicates that ML 
may be used in a similar manner to expert radiologists 
in assigning disease progression risk scores to COVID-19 
patients. This has the potential to decrease manual labor, 
save invaluable time, and reduce cost. 

In comparison with this study, recently published studies 
on deep learning or radiomics-based models for assessing 
the prognosis of COVID-19 utilized smaller cohorts and 
failed to build specific time-to-critical event prediction 
models [41-44]. Wang et al. [44] used a deep learning 
model based on chest CT data to distinguish COVID-19 
pneumonia from non-COVID-19 pneumonia and stratify 
COVID-19 patients based on the risk of developing severe 
disease. Although this study had a large cohort for training 

the models to distinguish between COVID-19 and non-
COVID-19 pneumonia, only 471 patients had follow-up for 
prognostic analysis, and the time-to-event analysis was 
based on the duration from admission to the development 
of a critical event, instead of the time of CT [44]. Similarly, 
another study by Liu et al. [45] used AI algorithms to 
detect the features of COVID-19 pneumonia on chest CT and 
predict prognosis. However, unlike the present study, which 
only used one image at the beginning of a patient’s disease 
course to develop severity predictions, the study by Liu et 
al. [45] had to use imaging from admission and follow-
up imaging on day 4 of a patient’s hospital stay—when 
only imaging from admission was used, the accuracy of 
prognosis prediction was greatly decreased. This is not ideal 
because rapid prognostication leads to better outcomes, 
and several patients who present with severe disease may 
start deteriorating within the first four days of care before 
follow-up imaging can be acquired. If the precise time-
to-critical-event progression window is known for a given 
patient, proper equipment can be obtained for their care, 
and the risk-benefit analysis can be more accurate.

This study has several limitations. First, this was 
a retrospective study with patient selection bias. 
Data heterogeneity may have also affected the model 
performance. Further, the current study defined critical 
outcomes as mechanical ventilation, admission to the 
ICU, and death, whereas other studies may have different 
definitions that may account for the different overall 
mortality rates for their cohorts. Considering the critical 
outcomes of mechanical ventilation, ICU admission, and 

Fig. 3. Time-dependent ROC curves and AUCs for days 3, 5, and 7 for three progression models.
A-C. The results for the three models are shown: one trained on radiomics features, one trained on clinical variables, and one trained on the 
combination of radiomics features and clinical variables. The x-axis represents the false-positive rate and the y-axis represents the true-positive 
rate. AUC = area under the curve, ROC = receiver operating characteristic
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death as separate events, instead of a composite category, 
may have been beneficial but it requires a larger sample 
with sufficient statistical power. It is also worth noting 
that this study did not include patients without chest CT 
abnormalities since they did not develop severe disease. 
The different treatment histories of the patients may have 
caused bias since only outcomes were used. Laboratory 
results, including various compounds, such as lactate 
dehydrogenase, D-dimer, and direct bilirubin, which 
are associated with adverse outcomes in patients with 
COVID-19, were not available for a significant portion of 
our patient cohort [46,47]. Additionally, the current study 
did not include an external validation set. However, we 
ensured that the training and independent test groups were 
completely separate, and there was no leak of information.

In conclusion, an ML model based on radiomics features 
obtained from chest CT and clinical variables predicted 
COVID-19 severity and progression to critical events with 
good accuracy. The model based on the combination of 
chest CT data and clinical variables also showed higher 
performance than the model based on only clinical 
variables, and similar performance to the model based on 
the combination of the visual CT severity scores and clinical 
variables. Further research and development are needed 
to determine the practical role ML can play in COVID-19 
severity predictions in the clinical setting. 

Supplement

The Data Supplement is available with this article at 
https://doi.org/10.3348/kjr.2020.1104.
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