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Abstract

Hypertension is caused by the interaction of environmental and genetic factors. The condition which is very common, with
about 18% of the adult Hong Kong Chinese population and over 50% of older individuals affected, is responsible for
considerable morbidity and mortality. To identify genes influencing hypertension and blood pressure, we conducted a
combined linkage and association study using over 500,000 single nucleotide polymorphisms (SNPs) genotyped in 328
individuals comprising 111 hypertensive probands and their siblings. Using a family-based association test, we found an
association with SNPs on chromosome 5q31.1 (rs6596140; P,961028) for hypertension. One candidate gene, PDC, was
replicated, with rs3817586 on 1q31.1 attaining P = 2.561024 and 2.961025 in the within-family tests for DBP and MAP,
respectively. We also identified regions of significant linkage for systolic and diastolic blood pressure on chromosomes 2q22
and 5p13, respectively. Further family-based association analysis of the linkage peak on chromosome 5 yielded a significant
association (rs1605685, P,761025) for DBP. This is the first combined linkage and association study of hypertension and its
related quantitative traits with Chinese ancestry. The associations reported here account for the action of common variants
whereas the discovery of linkage regions may point to novel targets for rare variant screening.
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Introduction

Hypertension, which affects nearly 27% of the population

worldwide [1], is a major cause of cardiovascular morbidity and

mortality [2]. The condition is highly heritable and polygenic, caused

by the combination of small changes in the expression of many genes,

and interaction of these genes with multiple environmental factors

[3]. The identification of allelic variation affecting blood pressure in

the general population would advance our understanding of blood

pressure regulation and may contribute to the development of

approaches for prevention and treatment of hypertension in the

future.

The high heritability (30–60%) of blood pressure has prompted

extensive efforts to dissect its genetic basis [4]. In the 90 s and the

early part of the present decade, genome-wide linkage analysis had

been one of the main strategies for identifying hypertension

susceptibility genes. It involves the genotyping of hundreds or

thousands of markers in families with one or more hypertensives.

Using this method, linkage studies have found significant or

suggestive loci influencing blood pressure as a quantitative trait

or hypertension as a qualitative trait [5,6,7,8,9]. These results

indicate that no single genomic region has a uniformly large effect

on predisposition to hypertension. Over 100 hypertension-related

quantitative trail loci (QTLs) have been demonstrated across the

genome; however, the indicated linkage peaks have been too

broad and unstable, likely due to insufficient sample size and the

highly polygenic nature of the condition, and as a result there have

been few replications between populations [10].

Genome-wide association studies (GWAS), using hundreds of

thousands of single nucleotide polymorphism (SNP) markers, are

the current method of choice for dissecting the genetic basis

of complex disease and can provide a potentially more powerful

method of identifying the causal variants that underlie suscepti-

bility to common disease, including hypertension, as compared

to linkage analysis. From 2007 to 2009, there have been several

large-scale GWAS of hypertension. One of them [11] was carried

out by the Wellcome Trust Case Control Consortium (WTCCC)

and no significant variants were yielded in the initial and re-

plication stage of data analysis. A meta-analysis reported the

combined findings of two consortia: the Cohorts for Heart and

Aging Research in Genome Epidemiology (CHARGE) Consor-

tium and the Global BPgen Consortium, with very large study

samples of European ancestry [12,13]. Four loci for systolic blood

pressure (SBP), six for diastolic blood pressure (DBP) and one for

hypertension attained genome-wide significance. Studies from

the Global BPgen consortium, followed up by direct genotyping

and in silico comparison (CHARGE consortium), identified

association with SBP or DBP in eight regions. GWAS on young-
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onset hypertension [14] were carried out in the Han Chinese

population of Taiwan and located 4 SNPs with strong association

signals. Another GWAS [15] was conducted in the Old Order

Amish (a closed founder population of European origin) and

identified a novel susceptibility gene, STK39.

The present study used sibships recruited in Hong Kong, where

one member of the sibship is hypertensive and at least one

additional member is normotensive, with as many members of the

sibship included in the study as available. We employed the

Illumina HumanHap610-Quad Array for genotyping all pheno-

typed sibship members. This unique use of a family-based design

allows testing for both linkage and association for loci influencing

hypertension and its related quantitative traits. Here, we present

the extensive analyses performed using this high-density SNP data

and identify independent and novel genome-wide significant

results by both linkage and association analyses.

Methods

Ethics Statement
This study was approved by the Institutional Review Board of the

University of Hong Kong/Hospital Authority Hong Kong West

Cluster, reference UW06-177 T/1202. Consent was obtained from

all participants involved in this study with a Participant Information

Statement and Consent Form, which was approved by the ethics

committee.

Study samples
The hypertensive subjects were identified in the hypertension

and general outpatient clinics of the Prince of Wales Hospital in

Hong Kong and referred to the Clinical Pharmacology Studies

Unit (CPSU). Hypertensive probands were ascertained, along with

as many of their siblings who agreed to participate. Treatment for

hypertension was withdrawn to enable the determination of off-

treatment blood pressure (BP). Following withdrawal of antihy-

pertensive medication, subjects were monitored weekly to check if

their BP did not exceed the upper exclusion limit and to confirm

that they were not at risk from severe hypertension. After the four

to eight week washout period [16], the sitting SBP and DBP were

measured in triplicate after a 10 to 15 minute resting period. Mean

arterial pressure (MAP) was calculated from those measures

(MAP = [(26 DBP)+SBP]/3). Siblings with SBP .140 mm Hg

and/or DBP .90 mmHg were considered hypertensive, with

those remaining classified as normotensive. The sample included

328 individuals (143 males, 185 females) comprising 111 sibships

ranging in size from 2–8 sibs. The clinical characteristics of study

samples are shown in Table 1. The study was approved by the

Joint Chinese University of Hong Kong and New Territories East

Cluster Clinical Research Ethics Committee, Hong Kong. Signed

informed consent was obtained from the subjects.

Genotyping
Genotyping was performed by deCODE Genetics, Inc, using

the Illumina HumanHap 610-Quad BeadChip technology, which

enables whole-genome genotyping of 620,901 single nucleotide

polymorphisms (SNPs). Image intensities were extracted using

Illumina’s BeadScan software. Data for the BeadChip were self-

normalised using information contained within the array. Allele

calling was carried out using Illumina’s Genotyping Module

version 3.3.7 in BeadStudio version 3.1.3.0.

Data cleaning
Criteria for exclusion of individuals. The first stage of

data-cleaning examined the genetic relationships by checking the

genome-wide identity by descent (IBD) sharing for all pairs of

individuals in the sample after pruning markers in LD (r2.0.25).

Based on the pair-wise IBD estimation, 4 individuals distributed

in 4 families were recognized to be half-siblings to the probands

and recoded as such, and 6 individuals were excluded because

of sample contamination or unknown familial relationships.

Then, inbreeding coefficients were calculated, which found five

individuals with either strong positive or negative inbreeding

coefficient estimates, indicating that these individuals have more or

fewer homozygous genotypes than one would expect by chance,

reflecting potential sample contamination. Gender status was

also checked using the X chromosome data, which detected 10

problematic samples for whom the reported sex did not match the

estimated sex and were removed since these discrepancies could

not be reconciled with our records. After cleaning, 315 individuals

within 111 families remained.

Criteria for exclusion of SNPs. SNP genotyping quality

was evaluated by examining the genotyping call rate (GCR), the

minor allele frequency (MAF), and testing for Hardy-Weinberg

Equilibrium (HWE). 8400 SNPs with missing rate .5%, 92169

SNPs with MAF,0.01, and 1686 markers which violated HWE

(p,0.0001) were excluded from analysis. 503,984 SNPs passed

quality control (QC) and were used for analysis. The total GCR in

remaining individuals was 99.94%, with all chips having a call rate

.98%.

Statistical Analysis
In all linkage and association analyses, age, sex, and BMI

were used as covariates for DBP, SBP and MAP values. The

standardized values of the residuals obtained were all approxi-

mately normally distributed.

Family-based association analysis. Univariate family-

based association tests were conducted for quantitative traits of

DBP, SBP and MAP, and the disease trait of hypertension.

Quantitative trait association was performed using the QFAM

procedure in PLINK [17], which provides both a total test of

association and a within-family test, which is free from bias due

to population stratification. The tests employ a simple linear

regression of phenotype on genotype and use a permutation

procedure to correct for family structure.

For within-family tests, measures of three quantitative traits

were each adjusted for age, sex, and BMI. For the total association

test, in addition to the above three covariates, in an attempt to

correct for population stratification, the first principal component

extracted from an EIGENSTRAT [18] analysis was used as an

additional covariate. For analysis of the hypertension binary

disease trait, the DFAM procedure using the Cochran-Mantel-

Haenszel test was employed, which implements a within-family

test.

Linkage analysis. Linkage was evaluated using MERLIN-

REGRESS (version 1.1.2), a regression-based method suitable

for selected samples [19]. The method requires specification of

population estimates of the trait means and variances. We obtained

such estimates from a population-based cohort of Chinese subjects,

participating in the Hong Kong Cardiovascular Risk Factor Study

[20], shown in Table 1. The linkage analysis also requires speci-

fication of trait heritability, and 0.6 was used for all blood pressure

traits, as suggested by previous studies [21,22,23].

The presence of linkage disequilibrium (LD) among markers

violates an underlying assumption of linkage in multipoint linkage

approaches. Appropriate handling of marker LD can avoid such

false positive evidence [24]. MERLIN has a built-in option of

modeling LD (-rsq) by organizing markers into clusters using pre-

specified r2 equal to 0.25 [25].

A Linkage and Association Study for Hypertension
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We also employed QTDT [26] to conduct a combined test of

linkage and association, which can help determine whether a

putative QTL locus detected via association is the actual disease-

causing locus or whether it is merely in disequilibrium with the

trait locus [27,28].

Results

Association analysis
The whole-genome association scan for hypertension (disease

status) and corresponding quantile-quantile (QQ) plot of observed p-

values against those expected under the null hypothesis are

presented in Figure S1. For the dichotomous variable of hyper-

tension, four independent signals were found with P#1025, with

one SNP (rs6596140) attaining P,1027 (Table S1). The location of

this SNP (5q31.1), marked by a strong recombination hotspot, is far

away from any annotated genes, and the nearest gene is follistatin-

like 4 (FSTL4) (.70 kb away) (Figure 1). FSTL4, a member of the

follistatin gene family of TGF-beta superfamily inhibitors, is widely

expressed in neurons, cardiac muscle cells, smooth muscle cells and

intestinal epithelium [29]. If the associated SNP is truly associated, it

may play a role in regulating this gene, or tagging another SNP

having such a role. Associations with SNPs outside of genes is a

common phenomenon in genome-wide association studies [30].

Results of the association analysis for the quantitative traits are

summarized in Figure S2 and Figure S3. For the within-family test

analysis, we observed 10 independent signals with P#1025 for

DBP, 1 for SBP and 9 for MAP. For the total association test, we

observed 6 independent signals with P#1025 for DBP, 1 for SBP

and 3 for MAP. Results of the most significant SNPs are presented

for the three quantitative traits in Table S2. The QQ plots of

observed p-values against those expected under the null hypothesis

suggest an excess of associations with DBP and MAP in within-

family tests, as compared to a null distribution of no associations,

but no distinct deviations for other tests (Figure S4). Population

stratification was not a problem in our data, as indicated by a

genomic inflation factor l= 1, based on the median chi-square, for

all sets of tests, as expected with use of within-family tests of

association or when correcting for stratification as done for the

total test of association.

Nine of the SNPs listed in Table S3 are found using all three

continuous traits. Because the three traits are correlated (r,0.85–

0.90), this is not too surprising. The observation that each SNP

shows stronger association with one trait or another could reflect

sampling variation or true differences in the underlying biological

basis of the blood pressure traits.

For the nine SNPs that were significant in continuous trait analysis,

two markers (rs6596140 and rs6596142, r2 = 0.84) were associated

with hypertension status, with P,961028 and ,661026, respec-

tively. Five other markers (rs4463623, rs4434808, rs1387343,

rs12930697, rs1550823) had moderate P values around .002 to

.0004. The other two markers (rs9325113, rs2075514) showed no

association.

We also looked for association signals at a subset of our SNPs

where there was previous evidence of involvement in hypertension,

from both genome-wide association studies [11,12,13,14,15,31,

32,33] and candidate gene studies [34,35,36], allowing for a much

less stringent multiple testing correction. For SNPs which were not

assayed by the Illumina 610-Quad, tag SNPs (r2.0.8) were

selected instead. In total, this involved examining 101 SNPs. One

SNP in PDC on 1q31.1 was significantly associated after

Bonferroni correction for multiple testing of 101 SNPs, with

rs3817586 (tagging rs11812050, r2 = 0.95) attaining P = 2.561024

and 2.961025 in the within-family tests for DBP and MAP,

respectively. Nonetheless, when examining the QQ plot of these

tests (Figure S5), there were only small deviations from what is

expected under the null hypothesis, suggesting a lack of power.

Phosducin (Pdc), which was identified in retina and brain as a 33-

kDa protein and binds to the bc subunits of heterotrimeric GTP-

binding proteins [37,38], is a potential candidate gene for retinitis

pigmentosa [39]. Beetz et al. [35] investigated the role of the G

protein regulator Pdc in hypertension and found that Pdc was

significantly associated with both wake and stress-response blood

pressure phenotypes. It is demonstrated that PDC is an important

modulator of sympathetic activity and blood pressure and may

thus represent a promising target for treatment of stress-dependent

hypertension. The family-based association results of all three

quantitative traits (DBP, SBP and MAP) for the replicated 101

SNPs from previous studies are presented in Table S4.

Linkage analysis
Linkage plots from the multipoint analyses using MERLIN-

REGRESS are shown in Figure S6 for DBP, SBP and MAP.

Linkage analysis using DBP located the highest LOD score on

chromosome 5 (LOD = 4.02, p,1025) around 38 cM (1-LOD

support interval 34 to 39 cM). The nearest gene is GDNF,, glial cell

derived neurotrophic factor isoform, which encodes a highly

conserved neurotrophic factor and has been found to be associated

Table 1. Characteristics of the study and population samples.

Study samples Population samples

No. of subjects 315 2895

No. of families 111 -

Mean age (years) 6 standard deviation 40.367.9 45.8612.9

Sex (proportion male) 0.439 0.488

patients healthy siblings

Hypertension (dichotomous trait) 134 181 -

Mean body mass index(BMI), kg/m2 26.963.8 24.063.4 28.463.5

Mean systolic blood pressure (SBP), mm Hg 151.2613.2 117.6611.2 119.3619.8

Mean diastolic blood pressure (DBP), mm Hg 93.869.4 70.0610.5 74.7610.8

Mean mean arterial pressure (MAP), mm Hg 113.4611.3 88.9611.0 89.6613.0

doi:10.1371/journal.pone.0031489.t001
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with the development of schizophrenia [40,41]. A peak was also

seen on chromosome 5 (LOD = 3.85, p,10-5) at around 35 cM,

near AGXT2 which encodes the mitochondrial alanine-glyoxylate

aminotransferase. Baker et al. [42] cloned human AGXT2 and

their findings suggest that human hepatocyte mitochondria possess

AGXT2 activity. For the SBP phenotype, the highest peak was

found on chromosome 2 (LOD = 3.01, p,10-4) at around 144 cM

(130–145 cM), encompassing ARHGAP15, or RHO GTPase-

activating protein 15. RHO GTPases regulate diverse biologic

processes, and their activity is regulated by RHO GTPase-

activating proteins (GAPs), such as ARHGAP15 [43]. Seoh et al.

[43] found that the GAP domain of ARHGAP15 showed specificity

toward RAC1 in vitro, suggesting that ARHGAP15 is a regulator

of RAC1. Suggestive linkage was found for MAP on chromosome

2 (LOD = 2.34, P,.0005) at around 157 cM and chromosome

5 (LOD = 2.31, P,.0006) at around 146 cM. The peak on

chromosome 2 encompasses one interesting gene, GPD2, which

encodes protein to localize to the inner mitochondrial membrane,

and also contributes to the genetic liability of type 2 diabetes

[44]. An interesting gene within the peak on chromosome 5 is

PPP2R2B, which encodes a brain-specific regulatory subunit B of

protein phosphatase 2. Although the precise role of the subunit

encoded by PPP2R2B remains to be determined, protein

phosphatase 2A (PP2A) has been implicated in a number of

cellular functions [45], including cell growth and division, muscle

contraction, and gene transcription.

In comparison of the linkage results with other studies in Chinese

populations, we found three regions with previous evidence of

linkage for hypertension (Figure S7). A linkage peak on chromosome

2q14-q23 for essential hypertension was previously detected in Han

Chinese, with a suggestive LOD of 2.24 at 160.52 cM [46]. Fang et

al. [47,48] found linkage to two genes, dopamine D2 receptor

(DRD2) and Angiotensinogen (AGT), with variants contributing an

increased risk of hypertension in Chinese subjects. Howerer, none of

these regions show strong linkage results in our study.

We also performed the simultaneous analysis of both linkage

and association for the three quantitative traits. In effect, this

allows partialing out the effects of association from the test of

linkage. Combined plots for the two chromosomes with strongest

linkage peaks (chromosomes 2 and 5) of the tests of within-family

association, tests of linkage (when not modeling association), and

the combined tests of linkage and association, are presented in

Figure 2. When linkage was tested without simultaneous modeling

of association, one significant LOD score of 4 for DBP on chro-

mosome 5 was found, along with a suggestive LOD score of 3 for

SBP on chromosome 2. By the inclusion of association, the extent

of linkage evidence was diminished substantially, with the linkage

peaks declining by over 1 LOD score. Nonetheless, since these

LOD scores did not decline to zero, it is doubtful that the

associated SNPs under these peaks were themselves causal and

instead they were likely tagging a causal variant. The strongest

peak containing the significant LOD = 4 for DBP on chromosome

5 covered a range of 4 Mb with 808 markers, as defined by the

1 = LOD support interval. Examination of the QQ plots for the

808 SNPs in this region, for both the within- and total-association

tests, suggests a clear deviation from that expected under the null

hypothesis (Figure S8). The most significant P value under the

linkage peak was for rs1605685 (p,761025) for DBP, which was

significant after Bonferroni correction for the 808 SNPs under the

peak, but no gene has been characterized around this SNP in the

literature.

Discussion

We tested 503,984 SNPs for association with hypertension status

and BP traits. Our study is the first report of a combined genome-

wide linkage and association scan for these traits in families with

Chinese ancestry. The two traits are correlated and heritable, and

SBP shows stronger increases with age, with DBP starting to

plateau and in some individuals fall at ages above 60–65 years

[49]. Some [50] have suggested the study of mean arterial

pressure, which increases with advancing age and is highly

correlated with SBP and DBP, also showed evidence of heri-

tability. In our GWAS, we chose to examine SBP, DBP and MAP

Figure 1. Regional plot of the strongest association for dichotomous hypertension. The plot highlights the statistical strength of the
strongest association (rs6596140, P,961028, blue diamond) and surrounding markers, along with the pair-wise correlations between the
surrounding markers and the putative associated variant, indicated by color. All SNPs in the region are plotted with their p-values (as –log10 values) as
a function of genomic position (using NCBI Build 36). Estimated recombination rates (taken from HapMap) are plotted to reflect the local LD structure
around the associated SNP and their correlated proxies (bright red indicating highly correlated, faint red indicating weakly correlated). The annotated
gene FSTL4 (taken from UCSC table browser) is more than 70 kb away from the associated SNP.
doi:10.1371/journal.pone.0031489.g001
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as separate traits, and also carried out an association analysis of

hypertension disease status.

We report significant genome-wide linkage as well as an

association of common genetic variants with hypertension. Our

linkage analysis revealed two novel regions of linkage for DBP,

5p13.1 and 5p13.2, formally achieving genome-wide significance,

and also one novel region for SBP, 2q22.3 (LOD = 3.01). Our

association analysis has identified a significant variant (rs6596140)

for hypertension and also detected effects of relatively common

alleles with modest P values for quantitative traits. The region of

association (Figure 1) is limited to a 3-kb region flanked by strong

recombination hotspots, which are surrounded by multiple non-

coding sequences but no known genes. FSTL4, which is a key

modulator in muscle development, was specified as nominally

associated with increased risk of stroke in a cardiovascular health

study [51]. It is possible that the nearby associated SNP we

detected plays a regulatory role for FSTL4.

There is limited overlap between the regions of strongest linkage

and association. However, further assessment of SNP association

under the linkage peak on chromosome 5 did yield a significant

variant, rs1605685, after correcting for multiple testing of the 808

SNPs under the peak.

Figure 2. Combined plots for the tests of within-family association and tests of linkage, both in the presence and absence of
association. The genome-wide linkage results are shown, with the red lines indicating linkage tests (LOD) in the absence of association, and the
blue lines indicating linkage tests (LOD) in the presence of association. The grey dots indicate the within-family association results (-logP) in the
absence of linkage. All results are shown for DBP, SBP and MAP on chromosomes 2 and 5.
doi:10.1371/journal.pone.0031489.g002
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Both linkage and association analysis provide useful, but different

forms of information in identifying genetic contributions to complex

traits. Linkage analyses are used with family data to find broad

genomic regions that contain putative disease loci, while association

analyses can identify much smaller regions, either a causal variant or

one which is in linkage disequilibrium with such a disease-causing

locus. While association can generally detect smaller effects than

linkage, association is limited to detecting variants that are either

directly assayed or are in strong LD with typed SNP. These are

more likely to be common variants, which generally have small

effects. In contrast, linkage in families can detect rare variants

specific to a subset of families and these rare variants are likely to

have larger effects. An advantage of family data in association

analyses is to provide a perfect control for population stratification.

Our combined linkage and association design brings the best of both

worlds to the problem at hand. If significant linkage is detected in

the presence of significant association, it suggests that the putative

locus is not the functional gene, but rather is a locus in

disequilibrium with a trait locus. In contrast, if the linkage signal

disappears at a point of significant association, this is suggestive that

the associated SNP is, in fact, causal. In addition, all our subjects are

Hong Kong Han Chinese, a relatively homogeneous group with

regard to genetic background and environmental risk factors.

Nevertheless, our findings are limited by relatively small sample size.

Furthermore, as prior studies have reported ethnic differences in

frequencies of alleles and effects of genes involved in blood pressure

traits [52,53], the novel loci we found may not be generalized to

other population groups and await further replication.

Supporting Information

Figure S1 Whole genome association scan and QQ plots
for dichotomous hypertension.
(TIF)

Figure S2 Plots of whole genome association scan
results for three quantitative traits using within-family
tests. SNPs from each chromosome are represented by a different

color and ordered by physical location.

(TIF)

Figure S3 Plots of whole genome association scan
results for three quantitative traits using the total
association test. SNPs from each chromosome are represented

by a different color and ordered by physical location.

(TIF)

Figure S4 QQ plots of P-values observed vs expected
under the null hypothesis, for the three quantitative

traits (DBP, SBP and MAP), obtained from tests of
within-family and total association.
(TIF)

Figure S5 QQ plots for previous reported SNPs by eight
genome-wide scan studies as well as candidate gene
studies in our association analysis of within-family and
total tests for DBP, SBP and MAP.
(TIF)

Figure S6 Results of the genome-wide linkage analysis
are illustrated for DBP, SBP and MAP, respectively. The

multipoint LOD scores are shown on the y-axis plotted against the

chromosomal position on the x-axis.

(TIF)

Figure S7 Three regions (AGT, 2q14-q23 and DRD2)
with evidence of linkage are shown in the results of
linkage analysis as illustrated for DBP, SBP and MAP,
respectively. The multipoint LOD scores are shown on the y-

axis plotted against the chromosomal position on the x-axis.

(TIF)

Figure S8 QQ plots of the Merlin-Regress peak findings
in within-family association analysis for DBP.
(TIF)

Table S1 Strongest associations obtained for dichoto-
mous hypertensive/normotensive disease status, sorted
by P value.
(PDF)

Table S2 Strongest associations obtained from both
within and total tests for DBP, SBP and MAP, sorted by P
value.
(PDF)

Table S3 Relationship of SNPs at 9 significant loci to
three blood pressure traits.
(PDF)

Table S4 Family-based association results for all three
quantitative traits (DBP, SBP and MAP) for the 101 SNPs
previously reported.
(XLSX)
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