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Abstract: In this paper, we proposed a Regular Tetrahedral Array (RTA) to cope with various
types of sensors expected in Ultra-Wideband (UWB) localization requiring all-directional detection
capability and high accuracy, such as indoor Internet-of-Things (IoT) devices at diverse locations,
UAVs performing aerial navigation, collision avoidance and takeoff/landing guidance. The RTA is
deployed with four synchronized Ultra-Wideband (UWB) transceivers on its vertexes and configured
with arbitrary aperture. An all-directional DOA estimation algorithm using combined TDoA and
wrapped PDoA was conducted. The 3D array RTA was decomposed into four planar subarrays solved
as phased Uniform Circular Array (UCA) respectively. A new cost function based on geometric
identical and variable neighborhood search strategy using TDoA information was proposed for
ambiguity resolution. The results of simulation and numerical experiments demonstrated excellent
performance of the proposed RTA and corresponding algorithm.

Keywords: ultra-wideband; regular tetrahedral array; DOA estimation; wrapped PDoA

1. Introduction

All-directional detection for a single Ultra-wideband (UWB) source in an isotropic way
become increasingly important. It is required in many UWB applications such as single
anchor UWB localization system [1], UAVs collision avoidance [2–4], takeoff/ landing
guidance [5,6], Internet-of-Things (IoT) devices, and vehicular-to-everything (V2X) commu-
nication [7]. Current antenna arrays applied in UWB localization, such as Uniform Circular
Array (UCA), Uniform Linear Array (ULA) [8,9], have restrictions on their detection angle
range in both azimuth and elevation.

Tiemann et al. [8] tested a UWB location system based on three synchronized UWB
transceivers mounted on the helmet for supporting first responders through 3D location of
fellows and victims in a low visibility environment. This antenna array consists of 2 ULAs
perpendicular to each other, for measuring the Angle of Arrival (AoA) in the x-axis and
y-axis respectively, using PDoA [10] of antennas. Similarly, Zhao et al. [9], tested a low-
power, scalable and cm-accurate UWB location system, based on eight synchronized UWB
transceivers mounted on a single PCB, four antennas in horizontal and other four antennas
in vertical. The common imperfections of these two works are angle range limitation and
fixed antenna spacing less than half-wavelength. The tight antenna spacing is designed
for special frequencies that limit the flexibility of the antenna array. Furthermore, working
at the centimeter band, mutual coupling between antennas disturbs received signals and
degrades the DoA finding performance severely [11].
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UCA is extensively utilized in the context of 2D direction finding due to its attractive
advantages, including omnidirectional azimuth coverage, almost unchanged directional
pattern, and about 90◦ elevation angle coverage [12–14]. The drawback of UCA is the
sign ambiguity of elevation. To expand the range of signal detection overall azimuth and
elevation angles, an array in spherical shape can be used for uniform and stable beamform-
ing in all directions. By adding one more transceiver to the UCA, a Regular Tetrahedral
Array (RTA) can be an available candidate. The Cramer-Rao Bound for direction finding of
a tetrahedral array of isotropic sensors was studied in [15]. Using TDoA, Acres et al. [4]
conducted a method of determining relative bearing and elevation for RTA. Based on
euclidean distance and tetrahedron, Phalak et al. [16] presented a decentralized relative
localization for Multi-Robot systems. However, neither TDoA nor distance measurement
provides much lower localization accuracy than PDoA.

Expanding antenna spacing to larger than half-wavelength can not only reduce an-
tenna coupling but also augment array aperture and improve AoA estimation accuracy [17].
However, the actual PDoA of signals cannot be obtained directly due to the phase wrap-
ping problem [18,19], which can be solved by auxiliary measurements [20,21]. Ge et al. [1]
develop a 3D single-anchor localization system based on UWB signals using an arbitrary
geometry array. They also conducted an unwrapping PDoA method based on Fisher
information matrix demanding a lot of computing power, even GPU in parallel computing.
Xin et al. [18] reported an ambiguity resolution algorithm for passive 2-D source localiza-
tion with a UCA. Their unwrapping PDoA is based on the estimation of the detected
curve parameters using randomized Hough transform. The randomized Hough trans-
form is usually used for curve detection in image processing, which also need extensive
computing resource.

In this paper, we proposed a regular tetrahedral array (RTA), which deployed four
synchronized Ultra-Wideband (UWB) transceivers on its vertexes and configured aperture
larger than half-wavelength. Each UWB transceiver can identify the first path and provide
an estimate of TDoA and PDoA at the same time. The RTA can be solved by decomposing
this 3D array into four planar subarrays treated as phased UCA independently. Benefiting
from the spatial complementarity of these four subarrays, a RTA not only get the capability
of detecting signal source in all direction but also get redundancy when antenna failure or
shield [22]. To cope with wrapped PDoA caused by larger antenna spacing, we proposed
an ambiguity resolution algorithm based on geometric identical, which consists of two
parts: one is a new cost function based on identical source direction vectors (SDV) that
estimated by four subarrays and another is ambiguity integer search strategy. To improve
the robustness of the algorithm, we designed a voting mechanism for filtering noised
information to get accurate SDV results. The proposed ambiguity resolution algorithm
improve estimation accuracy and reduce computing resource consumption. Meanwhile,
the ambiguity resolution algorithm allows more flexibility for the selection of an array
radius and has further applications for unambiguous direction finding in a very wide
frequency band.

The remainder of this paper is organized as follows: Section 2 is a coarse SDV esti-
mation only using TDoA information. This coarse estimate is utilized to solve the sign
ambiguity of elevation when using phased UCA. Section 3 conducted SDV using wrapped
PDoA and TDoA. In this section, we decomposed the RTA into four UCA subarrays. Utiliz-
ing the identical of SDV estimated by each subarray, the ambiguity resolution algorithm
was conducted. The performance of the proposed algorithm was evaluated in Section 4. A
conclusion was made at the end of this paper in Section 5.

2. Coarse Estimate for RTA Using TDOA

Taken antenna A as a reference, note TDoA measurements τ = (τBA, τCA, τDA)
T , and

PDoA measurements φ = (φBA, φCA, φDA)
T .

Figure 1 illustrates the geometrical shape of a RTA. r is the radial distance from the
center of the triangular base to the antenna B, C, and D. h is the vertical height of the
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antenna A above the center of the triangular base. The coordinate system Oxyz is located
at the centroid of the triangle ∆BCD, which is right-handed with z positive upwards and x
positive toward antenna B. In a RTA h =

√
2r.

Figure 1. The geometrical shape of a regular tetrahedral array (RTA).

Assuming there is a single signal source in the far field, S is the wavefront plane
of the signal. When wavefront plane S passes through antenna A, S can be described as
v1x + v2y + v3(z − h) = 0, the unit normal vector of the plane S is

n = vTDoA =

[
v1√

v1
2+v2

2+v3
2
, v2√

v1
2+v2

2+v3
2
, v3√

v1
2+v2

2+v3
2

]T
, meanwhile, vTDoA is a source

direction vector (SDV). In this paper, we present the direction of arrival using unit vector
SDV for easier calculation and no gimbal lock.

The distance between antenna B, C, D, and plane S are:

dBA = τBAc =
2
√

2
3 rv1 − 4

3 rv3√
v1

2 + v22 + v32
, (1)

dCA = τCAc =
−
√

2
3 rv1 −

√
6

3 rv2 − 4
3 rv3√

v1
2 + v22 + v32

, (2)

dDA = τDAc =
−
√

2
3 rv1 +

√
6

3 rv2 − 4
3 rv3√

v1
2 + v22 + v32

, (3)

where, c is the propagation speed of the electromagnetic wave in the air. Rearrange
Equations (1)–(3), we get equation:

AvTDoA = b, (4)

where,

A =

 2
√

2r/3 0 −4r/3
−
√

2r/3 −
√

6r/3 −4r/3
−
√

2r/3
√

6r/3 −4r/3

, b =

 τBAc
τCAc
τDAc

.

A is invertible matrix, the solution of SDV can be obtained as follows:

vTDoA = A−1b (5)

Since TDoA measurements are always polluted by clock drift, unbalanced antenna
delay, and ADC sampling error, therefore, vTDoA suffer from noise and errors. We use it
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as a coarse estimate to solve the sign ambiguity of elevation when using phased UCA in
Section 3 and standby results in the event of PDoA estimation failure.

3. Combined TDoA and Wrapped PDoA for RTA

UWB transceiver can measure carrier phase more precisely than time-of-flight, the
typical error value is less than 3◦, which corresponds to 0.06 cm at fc = 3.9936 GHz. PDoA
measurements error is about 1600 times smaller than TDoA measurements error [1]. For
higher accuracy, we need to solve RTA using PDoA.

3.1. Wrapped PDoA for RTA
3.1.1. Spatial Subarray Decompose of RTA

A RTA consists of four regular triangular subarrays, which can be treated as phased
UCAs for solving 2D-AoA problems independently. Figure 2 depicts the decomposition of
a tetrahedral and the spatial relationship between UCA subarrays and RTA.

Figure 2. Tetrahedral decomposition and spatial relationship.

In Figure 2, O∆BCD, O∆ABD, O∆ADC, O∆ACB are centroid of triangle ∆BCD, ∆ABD, ∆ADC,
∆ACB respectively, or ∆1, ∆2, ∆3, ∆4 for short. OC = [O; x, y, z] is the coordinate system
in global and located at the original point O. O∆ C = [O∆; e1, e2, e3] is the right-handed
coordinate system located at the centroid of a triangle, e3 is perpendicular to the triangle
surface and e1 is towards the antenna numbered as 1 in the subarray. The transform matrix
from O∆ C to OC is O

O∆
R = [e1, e2, e3]. In each triangle, we can estimate an SDV. Theoret-

ically, four estimated SDVs are all identical vPDoA,∆1 = vPDoA,∆2 = vPDoA,∆3 = vPDoA,∆4,
although these four subarrays are in different spatial positions. Moreover, these four sub-
arrays share the same PDoA measurements and TDoA measurements, which give us a
chance to unwrap PDoA ambiguity numerically.

3.1.2. Solve Phased UCA Utilizing Fourier Analysis

DoA estimation of a phased UCA is well developed in both theory and technique.
To avoid eigenvalue calculation, the algorithm here we used to solve the DOA estimation
problem in the UCA subarray is based on the Fourier analysis of the phase around the
circular aperture [13,14,23].

Consider a UCA with N identical elements illuminated by a single far-field source.
Consider a circular aperture located at (r, π/2, ϕ), in the spherical coordinate system of
(r, θ, ϕ), as shown in Figure 3. φ̃(ϕ) is the continuous curve of actual phase difference
φ(i, 1). The period of φ̃(ϕ) is 2π. The purple elliptic ES,φ is the projection of the aperture
circle O∆ on the plane S. φ̃(ϕ)λ/2π is the distance between a point of aperture circle O∆
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and its projection point in elliptic ES,φ. The intersection line of elliptic ES,φ and plane S is in
blue. The normal vector of ES,φ is nS = vPDoA,∆.

Figure 3. The visualization of actual phase difference φ(i, 1).

The phase of the electromagnetic field of an incident wave from (θ, ϕ) can be written as

Φ(ϕi) =
2π

λ
r sin θ cos(ϕ− ϕi) + Φ0 (6)

where the azimuth angle ϕ ∈ [0, 2π) is measured counter-clockwise from the e1-axis and
the elevation angle θ ∈ [0, π) is measured down from the e3-axis and is the wavelength
λ. Antennas were located counter-clockwise around the circular, and numbered 1 to M.
Antenna azimuth position are ϕi =

π(i−1)
M , i = 1, 2, . . . , M, where i is antenna number in the

subarray, M is the total antenna number in the subarray, particularly, in a regular triangle
subarray M = 3. Φ0 is a constant and represents the initial phase of the incident wave,
which can be removed by the phase difference.

Take antenna 1 as a reference, the actual phase difference between antenna i and 1 can
be described as the following equation:

φ(i, 1) = Φ(ϕi)−Φ(ϕ1)

= 4πr
λ sin θ sin

(
π(i−1)

M

)
sin
(

ϕ− π(i−1)
M

) (7)

When r > λ/2 the phase range may exceed 2π, which leads to an ambiguity in deter-
mining the direction of the incident wave plane S. Therefore, the actual phase difference
φ(i, 1) consists of two parts, namely, measured phase difference φ0(i, 1) and ambiguity
par 2πNi,1,

φ(i, 1) = φ0(i, 1) + 2πNi,1, (8)

where φ0(i, 1) ∈ (−π, π]. Ni,1 ∈ Z is ambiguity integers that we need solve. The first order
Fourier series coefficient of φ(i, 1) is

Ψ1 =
2π

M

M

∑
i=1

φ(i, 1) exp
(

j
2π(i− 1)

M

)
, (9)

According to dependence relationship, the elevation θ and azimuth ϕ are as follows:

θ = sin−1
(

λ

2π2r
|Ψ1|

)
, (10)

ϕ = arg(Ψ1), (11)

where, |Ψ1| denotes modulus of a complex number Ψ1. arg(Ψ1) is the angle of the complex
number Ψ1.
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Then we get the SDV in coordinate O∆ C:

O∆ vPDoA = [cos ϕ sin θ, sin ϕ sin θ, sign∆ cos θ]T , (12)

where sign∆ = sign
(
vTDoA

Te3
)

is the sign of elevation estimated in a triangle subarray,
which is dependent on the angle between coarse estimation vTDoA and e3.

Using coordinate transform equation:

OvPDoA = O
O∆

RO∆ vPDoA, (13)

Now we get a direction vector in a coordinate OC estimated by a triangle subarray,
without loss of generality, one can calculate SDV in any subarray easily.

3.2. Ambiguity Resolution Algorithm

It is well known that high AOA estimation accuracy can be obtained for large apertures.
However, when r > λ/2, the phase range may exceed 2π, which leads to an ambiguity
in determining the direction of the incident wave. We continue to adopt the particular
geometric properties of the RTA for ambiguity resolution.

3.2.1. Geometric Identical Cost Function

We proposed a brand new cost function for ambiguity resolution based on the geo-
metric identical of subarrays’ SDVs. As Figure 2 shows, SDVs estimated by four differ-
ent subarrays are identical. Without loss of generality, any two adjacent subarrays, say,
∆2 and ∆3, they have common antennas A and D, and common reference antenna A.
OvPDoA,∆2 and OvPDoA,∆3 are SDVs estimated in subarrays ∆2 and ∆3, respectively, using
Equations (7)–(13). The cost function is written as:

M23 = 1−
(

OvPDoA,∆2

)TOvPDoA,∆3, (14)

where the footnote of M23 23 means subarray ∆2 versus subarray ∆3. M23 is a scalar
value, M23 ∈ [0, 2] describing error between OvPDoA,∆2 and OvPDoA,∆3. Distinguishing
from current cost function based on Fourier inverse transform [14] or mapping tetrahedral
volume [18], which estimating ambiguity integers firstly and then calculating DoA subse-
quently, unavoidable large rounding errors, our cost function is based on examining SDVs
directly. From Equation (9), we know M23 is a scalar filed with 6 independent variables.
Given PDoA measurements φ0(B, A), φ0(C, A), φ0(D, A) as a priori knowledge. M23 can
be reduced as discrete three dimensions, that is M23(NBA, NCA, NDA).

The ambiguity resolution problem transforms into an optimization problem on discrete
feasible set N = {NBA, NCA, NDA}. The constraint of the aforementioned optimization
problem can be extracted from Equations (9) and (10). The first order Fourier series
coefficient Ψ1 is a complex function of N = {NBA, NCA, NDA}, depending on geometric
constraints 0 ≤ sin θ < 1, θ ∈ [0, π) we get,

|Ψ1(NBA, NCA)| <
2π2r

λ
, (15)

|Ψ1(NDA, NCA)| <
2π2r

λ
, (16)

Given subarray radius r = 0.12 m and carrier frequency fc = 3.9936 GHz, the corre-
sponding feasible set is illustrated in Figure 4. The red point is target ambiguity integers
and other points are feasible set with color indicating cost value. The points that disobeyed
Equations (15) and (16) are hidden.
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Figure 4. The Feasible Set of the proposed cost function in 3D. The red point is target ambiguity
integers and other points (circle with color in image) are feasible set with color indicating cost value.

In order to further study the geometric characteristic of cost function intuitively,
the cost value is depicted in a meshed surface projected on NCA, NDA plane in Figure 5.
According to geometric symmetry in the RTA, the geometric characteristic of cost value
projected on NBA, NDA plane is similar to it on NCA, NDA plane. Therefore, only one map
is depicted here.

Figure 5. Visualization of cost value projected on NCA, NDA plane. (a) Meshed surface of cost value
M, (b) Meshed surface of log10(M). The red point is cost value of target ambiguity integers.

As shown in Figure 5a, the cost function is non-convex because it is discrete and
multiple local extreme points [24]. Therefore, ambiguity resolution problem cannot be
solved by the gradient descent method. To make the cost value of the target point and other
local extreme points more obvious, Figure 5a was redrew by log10(M) in Figure 5b. The
cost value at target points is in approximate 10−7 orders. While, the cost value of other
local extreme points are in 10−2 orders. An error tolerance threshold ε > 0 can distinguish
the target point from other local extreme points.

3.2.2. Ambiguity Integer Search Strategy

Because the cost function is non-convex and cannot search ambiguity integers by
the gradient descent method, a good initial value and search strategy are key factors for
search success and rapid goal. Assuming the noise of TDoA and PDoA measurements
are AWGN with zero means. nτ ∼ N (0, στ) and nφ ∼ N

(
0, σφ

)
, and the noises of each

receiver are independent. TDoA information is ideal auxiliary measurements to solve the
phase wrapping problem because rounding operation is an estimate of ambiguity integers.
According to the probability distribution nτ ∼ N (0, στ), the probability of catching the goal
is higher when the search area is closer to the initial value, Therefore, for the discrete search
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area, a small and tight neighborhood of initial value is more favorable than a full-range
search area for a rapid goal.

Initial Value

Essentially, the bond between time difference and phase difference is the distance
between antenna i and the wavefront plane S, that is

τi,1c = − λ

2π
φ(i, 1), (17)

where τi,1 is the time difference between antenna i and 1. φ(i, 1) is the actual phase difference
between antenna i and 1. Substitute Equation (8) in Equation (17), and rearrange, we get

Ni,1 = −τi,1c
λ
− φ0(i, 1)

2π
, (18)

Due to φ0(i, 1) ∈ (−π, π], an estimate of ambiguity integer initial values are as follows:

N̂i,1 = ceil(−τi,1c
λ
− 1

2
), (19)

where, ceil(x) denotes the least integer greater than or equal to x. A set of reason-
able initial values of ambiguity integers can be guessed from the TDoA measurements.
N̂BA = ceil(−dBA/λ− 1/2), N̂CA = ceil(−dCA/λ− 1/2), N̂DA = ceil(−dDA/λ− 1/2),
N̂DB = ceil(−(dDA − dBA)/λ− 1/2), N̂CB = ceil(−(dCA − dBA)/λ− 1/2).

Variable Neighborhood Search

Figure 6 illustrates the variable neighborhood search strategy in an arbitrary subarray.
According to geometric symmetry in the RTA, only one map is illustrated here. The curve
φ̃(ϕ) in red is the actual phase difference curve. Black points at 2π

3 and 4π
3 are phase

differences consist of ambiguity integer initial values estimated by TDoA measurements.
The curve φ̃TDoA(ϕ) in the black is the phase difference curve estimated by TDoA. Green
points are 1-neighborhood search points, which are 1 step or 2π away from initial values.
The curve φ̃Search(ϕ) in green is 1-neighborhood upper and lower search boundary. The
green arrows indicate the expanding direction of search points, the expanding step is 2π.

Figure 6. Variable neighborhood search.

We proposed a variable neighborhood search strategy, which starts the search from
ambiguity integer initial values estimated from TDoA measurements. We denoted the initial
value sets as N̂s =

{
N̂BA, N̂CA, N̂DA

}
. N̂DB, N̂CB can be described by linear combination of

N̂s, that reduce time complexity from O
(

N5) to O
(

N3).
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The variable neighborhood search strategy as follows:
Firstly, try the initial value N̂s, If not catch the goal, move on 1- neighborhood traversal

search, which expanding search area to:

Ns = N̂s ± 1
=
{[

N̂BA − 1, N̂BA + 1
]
,
[
N̂CA − 1, N̂CA + 1

]
,
[
N̂DA − 1, N̂DA + 1

]} (20)

If does not catch the goal either, move on 2-neighborhood traversal search, which
expanding search area to:

Ns = N̂s ± 2
=
{[

N̂BA − 2, N̂BA + 2
]
,
[
N̂CA − 2, N̂CA + 2

]
,
[
N̂DA − 2, N̂DA + 2

]} (21)

If does not catch the goal either, move on and on, until catch the goal or reach the
Nmax. In the worst case that search in Nmax, the computational complexity of our proposed
algorithm is O

(
4(M− 1)(2Nmax + 1)M

)
, M = 3

3.2.3. Spatial Subarray Vote Mechanism

From four subarrays in a RTA, four SDV estimations are accumulated in a matrix
VPDoA =

[
vPDoA,∆1 vPDoA,∆2 vPDoA,∆3 vPDoA,∆4

]
. A cost function in matrix form

can be written as
M = I4×4 − (VPDoA)

TVPDoA, (22)

Specifically,

M =


0 M12 M13 M14

M12 0 M23 M24
M13 M23 0 M34
M14 M24 M34 0

 (23)

The component Mij is the cost function of each adjacent subarrays. We designed a
mechanism for deciding whether the result SDVs are acceptable. This mechanism is called
spatial subarray voting. Take an array as a ballot box Vvote = [V12, V13, V14, V23, V24, V34].
Vote counting using an error tolerance ε > 0.

Vij =

{
1, Mij ≤ ε

0, others
,

(i 6= j i = 1, 2, 3 j = 2, 3, 4)
(24)

Typically, ε is machine precision of a computer or a relaxation precision considering.
When all possible Ns are searched over, we will know the total votes and get out a DoA

estimation. On the other hand, if there are no votes at all, a bigger radius neighborhood
search area is expanded for next around search, until getting enough votes or approaching
the maximum search boundary.

The final decision depends on the total count of votes, D = ∑ Vij. Theoretically, all
four SDVs should be identical, in other words D = 6. Affecting by lower accuracy of TDoA
measurements, when elevation sign inverse or target missing in some subarrays occurrence,
we need relax final decision condition to D ≥ 3. If there are enough votes, the result is
estimated by corresponding subarrays.

vPDoA = 1
2D ∑

i,j
Vij
(
vPDoA,∆i + vPDoA,∆j

)
,

(i 6= j i = 1, 2, 3 j = 2, 3, 4)
(25)

While in the situation of no vote at all, the final result should be the SDV estimated by
TDoA, namely vTDoA.
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4. Simulation Results

To demonstrate the effectiveness and performance of the proposed algorithm, simula-
tion and numerical experiments were conducted.

Assuming the noise of TDoA and PDoA measurements are AWGN with zero means,
nτ ∼ N (0, στ) and nφ ∼ N

(
0, σφ

)
, and the noises of each receiver are independent. στ is

TDoA measurement error, σφ is PDoA measurement error. For examining the accuracy
of proposed method, a series experiments were conducted. A set of rand SDVs covering
all spherical surface were used as reference. And a set of RTA with different ratio r/λ
estimated DoA of the reference SDV in different SNR conditions.

When SDV = (0.7001, 0.7001, 0.1400)T , Figure 7 shows the accuracy comparison of
coarse estimation using TDoA and proposed method.

Figure 7. (a) RMS Errors of Azimuth angle ϕ and (b) RMS Errors of Elevation angle θ by TDoA only,
proposed method and cramer-rao lower bound(CRLB) in different ratio r/λ.

In different SNR conditions, the error tolerance ε was set to 10−6 when SNR = 40 dB
and set to 10−4 when SNR = 20 dB. The RMS error of angles using both TDoA and the
proposed wrapped PDoA reduce when SNR increases.

Given subarray radius r = 0.12 m and carrier frequency fc = 3.9936 GHz, the wave-
length is λ = 0.075120m. When SNR = 20 dB, RMS error of ϕ is about 3.165◦ using TDoA
and 0.0942◦ using proposed method, while, RMS error of θ is about 1.607◦ using TDoA and
0.1981◦ using proposed method. When SNR = 40 dB, RMS error of ϕ is about 0.3087◦ using
TDoA and 0.017◦ using proposed method, while, RMS error of θ is about 0.1888◦ using
TDoA and 0.0379◦ using proposed method. The accuracy of our proposed algorithm is
approaching closely to CRLB with different r/λ ratio.

When configured with different ratio r/λ, the corresponding angle RMS errors drop-
down according larger ratio r/λ.

For testing the performance of proposed search strategy, we measured search steps of
three different search strategies in the same condition. Given SDV = (0.7001, 0.7001, 0.1400)T,
subarray radius r = 0.12m and carrier frequency fc = 3.9936 GHz. The size of the corre-
sponding feasible set is (2Nmax + 1)3 = 729, where Nmax = ceil

(√
3r/λ + 1/2

)
= 4. The

results were drew in Figure 8. Comparing different search strategies, the proposed method,
which adopted TDoA initial values and variable neighborhood search, demonstrated
excellent performance.

Illustrated in Figure 8, the x-axis is στc/λ, which describes coarse estimation deviation
from the reference. The y-axis is search steps starting from the initial value to catching
the goal. The curve with red color is search steps adopting TDoA initial value and fixed
search area [−4, 4]3. The curve in purple is search steps adopting zeros initial value and
fixed search area [−4, 4]3. The curve in blue is search steps adopting TDoA initial value
and variable neighborhood search, which proposed in this paper. Zeros initial value and
the fixed search area is a conventional strategy that is used in current ambiguity resolution
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widely, which no need of any prior knowledge. No matter what the ratio value is, the
search steps is about 190 and almost keep the same. We use it as a baseline strategy for
evaluating others. When starting with TDoA initial value, only one-step is needed when
the ratio στc/λ is low, but search steps rising quickly and maintaining at 140–180 closing to
baseline strategy. It is obvious that the proposed method has advantages, that only one
step to catch the goal when στc/λ ≤ 0.15 and about 20 steps when 0.2 ≤ στc/λ < 1. When
στc/λ ≥ 1, search steps raise high about 120 and approach to baseline strategy.

Figure 8. Search Steps of different search strategies.

To find how the time difference SNR and the phase difference SNR affecting search
success or not together of different ratio r/λ, another series experiments were conducted, in
the same condition of RMS error examining. The error tolerance ε was set as 10−4 to adapt
to low SNR conditions. Figure 9 shows numerical experiments results of the boundary of
searching success for the different ratio r/λ.

Figure 9. The boundary of searching success of different ratio r/λ.

The region of the upper and right sides of that boundary is the searching success region,
which means if phase difference SNR and time difference SNR are both higher than require
conditions the proposed method would catch the goal successfully after certain search
steps. While, on the other hand, the lower and left corner of this map means unsuccessful
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search. From Figure 9, we know that the larger ratio r/λ, the more depending on TDoA
informations and require higher time difference SNR to catch the goal successfully.

5. Conclusions

In this paper, we proposed a regular tetrahedral array (RTA), which deployed four
synchronized Ultra-wideband (UWB) transceivers on its vertexes and configured with
arbitrary aperture. An all-directional DOA estimation algorithm using combined TDoA
and wrapped PDoA was conducted. A new cost function based on geometric identical
and variable neighborhood search strategy using TDoA information was proposed for
ambiguity resolution. Simulation and numerical experimentation results demonstrated
excellent performance of the proposed RTA and corresponding algorithm.

When SNR = 20 dB, Using proposed method, the azimuth angle RMS error is about
0.0942◦ and elevation angle RMS error is about 0.1981◦. The accuracy of proposed method
is at least 18 times higher than the method using only TDoA. Comparing different search
strategies, the proposed method adopting TDoA initial value and variable neighborhood
search strategy demonstrated excellent performance. When 0.2 ≤ στc/λ < 1, the search
steps are about 20. When στc/λ ≤ 0.15, the search goal catches at the very first step. At
last, the boundarys of searching success for the different ratio r/λ were found from the
results of numerical experiments.
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