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BACKGROUND: KLF5 plays a crucial role in stem cells of colorectum in cooperation with Lgr5 gene. In this study, we aimed to
explicate a regulatory mechanism of the KLF5 gene product from a view of three-dimensional genome structure in colorectal
cancer (CRC).
METHODS: In vitro engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP)-seq method was used
to identify the regions that bind to the KLF5 promoter.
RESULTS:We revealed that the KLF5 promoter region interacted with the KLF5 enhancer region as well as the transcription start site
(TSS) region of the Colon Cancer Associated Transcript 1 (CCAT1) gene. Notably, the heterodeletion mutants of KLF5 enhancer
impaired the cancer stem-like properties of CRC cells. The KLF5 protein participated in the core-regulatory circuitry together with
co-factors (BRD4, MED1, and RAD21), which constructs the three-dimensional genome structures consisting of KLF5 promoter,
enhancer and CCAT1 TSS region. In vitro analysis indicated that KLF5 regulated CCAT1 expression and we found that CCAT1
expression was highly correlated with KLF5 expression in CRC clinical samples.
CONCLUSIONS: Our data propose the mechanistic insight that the KLF5 protein constructs the core-regulatory circuitry with co-
factors in the three-dimensional genome structure and coordinately regulates KLF5 and CCAT1 expression in CRC.
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BACKGROUND
A zinc finger transcription factor Krüppel-like factor 5 (KLF5)
plays an important role in the stemness of embryonic stem (ES)
cells [1, 2] and developmental processes of respiratory
epithelium, bladder epithelium, mammary gland and ocular
surface [3–5]. In the intestinal epithelium, KLF5 is suggested to
play a role in the maintenance of intestinal stem cells and their
niche [6, 7].
KLF5 has been reported as a lineage-survival oncogene whose

expression is upregulated in specific cancer types, such as
squamous carcinoma (e.g., head and neck cancer, oesophageal
cancer) and gastrointestinal cancer (e.g., colorectal cancer,
gastric cancer, pancreatic cancer) [8]. Cancer stem cells (CSCs)
are defined as a subpopulation of cancer cells with a self-renewal
capacity and multilineage potency and considered a source of
tumour recurrence and metastasis [9]. KLF5 is associated with
CSC-like properties because KLF5 knockdown suppressed
sphere-formation activity in colorectal cancer (CRC) cell lines

[10]. We also reported that miR-4711-5p, which directly targets
the 3’-untranslated regions (3’-UTRs) of KLF5, suppressed CSC
properties in CRC cell lines [11]. Moreover, KLF5 deletion
prevented the tumourigenesis of Lgr5+ intestinal stem cells
induced by the mutated β-catenin gene [12].
Although the underlying mechanism of how the KLF5 gene

product is expressed in CRC has not been clarified, one of the
mechanisms might be due to the three-dimensional genome
structure of the KLF5 gene. Cell-type-specific gene expression
is occasionally regulated by 3D genome structure, as repre-
sented by promoter–enhancer looping. It is reported that
promoter–enhancer looping takes place when cells undergo
differentiation in developmental processes, leading to essential
gene expression [13, 14]. In instances, the gene-activation
element called the locus control region (LCR) interacts with the
γ-globin gene in fetuses, and its interaction is switched to
the β-globin gene in adults [15]. We also previously demon-
strated that the CSC-related gene ALDH1A1 was regulated by
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BRD4-dependent promoter–enhancer looping in ovarian cancer
[16]. It is well known that the BRD4 as well as mediator complex
and cohesin complex play a crucial role in the construction of 3D
genome interaction [17]. MED1 and RAD21 are one of the
components of the mediator complex and cohesin complex,
respectively [18, 19].
Enhancers regulate gene expression by interacting with a

promoter and are marked by histone modifications, such as
acetylation at lysine 27 of histone H3 (H3K27ac) and mono-
methylation at lysine 4 of histone H3 (H3K4me1). In an effort to
identify the KLF5 enhancer region in CRC cells, we used
in vitro engineered DNA-binding molecule-mediated chromatin
immunoprecipitation (enChIP) combined with next-generation
sequencing (NGS) (in vitro enChIP-seq) [20, 21]. In addition to
the enhancer region, we found that the KLF5 promoter region
interacted with a long noncoding RNA, the Colon Cancer
Associated Transcript 1 (CCAT1). CCAT1 is a long noncoding
RNA that was initially found to be upregulated in CRC [22], and
studies have reported that high CCAT1 expression is associated
with poor prognosis in CRC patients [23]. Subsequently, over-
expression of CCAT1 was reported in various cancer types, such
as gastric cancer and oesophageal cancer [24–26]. CCAT1
functions as a sponge for miRNAs [27], thereby contributing to
malignant features of CRC by promoting cell proliferation,
invasion and drug resistance [28, 29]. Finally, we show that the
KLF5 protein constructs the core-regulatory circuitry with co-
factors in the three-dimensional genome structure involving
KLF5 gene and CCAT1.

METHODS
Cell lines and cell culture
Human CRC cell lines HT29 and SW48 were purchased from the American
Type Culture Collection. Cells were cultured at 37 °C in 5% CO2. The
mycoplasma test was performed prior to experiments. The KLF5 inhibitor
ML264 [30] was purchased from Sigma Aldrich (St. Louis, MO, USA).

Clinical tissue samples
Clinical tissue samples for RNA extraction were collected from CRC patients
(n= 131) who underwent surgery at the Osaka University hospital from
2003 to 2005. For the immunohistochemistry and in situ hybridisation,
tissue samples were collected from CRC patients (n= 27) who underwent
surgery from April 2019 to June 2019. Informed consent signatures were
obtained from all patients. This study was approved by the Ethics
Committee of Osaka University Hospital (No. 15144).

Real-time quantitative PCR (qRT-PCR)
The total RNA was extracted from cell lines and tissue samples by using the
RNeasy Kit (QIAGEN, Hilden, Germany). qRT-PCR was performed as
previously reported [11]. The sequences of the primers are listed in
Supplementary Table S1.

siRNA transfection
siRNAs for BRD4 and negative control were purchased from GeneDesign
(Osaka, Japan). siRNAs for MED1, RAD21 and KLF5 were purchased from
Thermo Fisher Scientific (Waltham, MA, USA). siRNAs for CCAT1 were
purchased from GeneDesign and Thermo Fisher Scientific. siRNA (50 nM)
was transfected into CRC cell lines 24 h after seeding with Lipofectamine
RNAiMAX reagent (Thermo Fisher Scientific). For the triple-knockdown
experiment, siRNAs (30 nM) for BRD4, MED1 and RAD21 were mixed and
transfected into CRC cell lines. As a control, 90 nM of negative control (NC)
siRNA was transfected into CRC cell lines. The sequences of the siRNAs are
listed in Supplementary Table S1.

Cell-proliferation assay
Cells were seeded in 96-well plates at a density of 4000 cells per well, and
5-FU or oxaliplatin was added 24 h after seeding. Three days later, cell
viability was evaluated by using Cell Counting Kit-8 solution (Dojindo
Laboratories, Kumamoto, Japan).

Sphere-formation assay
Sphere-formation assay was performed as previously described [11]. At
3 weeks after seeding, the number of spheres (≥50 µm) in all wells was
counted.

Flow cytometry analysis
Cells were washed with PBS containing 2% FBS and incubated with
primary antibody (Ab), anti-CD133/1 (AC133)-APC (Miltenyi Biotec, Bergisch
Gladbach, Germany) or anti-CD44v9 (Cosmo Bio, Tokyo, Japan) at 4 °C for
20min. For CD44v9, PE mouse anti-rat IgG2a (Becton, Dickinson and
Company, Franklin Lakes, NJ, USA) was used as a secondary Ab. The data
were analysed by using the SA3800 spectral cell analyser (Sony, Tokyo,
Japan).

Immunohistochemical staining
Immunohistochemical staining was performed as described previously
[31]. Rabbit polyclonal Ab for KLF5 (Sigma Aldrich) was used as a primary
Ab. All specimens were evaluated individually by four researchers.

RNA scope®

Paraffin-embedded tumour tissue samples were sectioned into 4-µm
sections and CCAT1 signals were detected using the Hs-CCAT1 target
probe (Advanced Cell Diagnostics, Newark, CA, USA) and subsequently
stained with RNA scope® [32] (Advanced Cell Diagnostics).

ChIP-qPCR
ChIP experiment was performed as previously reported [33]. Cells were
fixed and sheared by using Covaris M200 (Covaris, Woburn, MA, USA). The
fragmented chromatin was incubated with the following primary Abs; KLF5
(Abcam, Cambridge, UK), MEIS1 (Abcam), RHOXF1 (GeneTex, Irvine, CA,
USA), ZNF354C (Abcam), BRD4 (Bethyl Laboratories, Montgomery, TX, USA),
MED1 (Bethyl Laboratories), RAD21 (Abcam). The Ab against normal rabbit
IgG (Cell Signaling Technology, Danvers, MA, USA) was used as a negative
control. The purified DNA was subjected to qPCR. qPCR was performed as
described in the qRT-PCR section. The sequences of the primers are listed
in Supplementary Table S1.

Deletion of the genomic region by CRISPR/Cas9
The Cas9 expression plasmid, hCas9 (a gift from Dr. George Church,
Addgene, #41815; http://n2t.net/addgene:41815; RRID:Addgene_41815)
[34] gRNA Cloning Vector BbsI ver. 2 plasmid (Addgene, #85586; http://
n2t.net/addgene:85586; RRID:Addgene_85586) [35] and pEGFP-N3 (Clon-
tech Laboratories, Mountain View, CA, USA) were used for the experiment.
The synthesised nucleotides were annealed and cloned into the gRNA
Cloning Vector BbsI ver.2 plasmid.
HT29 cells were transfected with the hCas9 plasmid and two gRNA

expression plasmids that target both ends of the KLF5 enhancer or CCAT1
TSS region, and pEGFP-N3 with Lipofectamine 3000 (Thermo Fisher
Scientific). The next day, GFP-positive cells were sorted and seeded
individually in 96-well plates.

In vitro enChIP-seq and bioinformatics analysis
In vitro enChIP-seq was performed as previously reported [21].
Guide RNAs for the KLF5 promoter (gRNA-A, B) were designed by
using the CRISPRdirect Web tool (https://crispr.dbcls.jp/). As a negative
control, gRNA, which is designed in the promoter region of the chicken
Pax5 gene, was used [21]. The crRNAs and tracrRNAs were synthesised
by FASMAC (Kanagawa, Japan). The purified DNA was subjected to
qPCR or NGS. The in vitro enChIP-seq library was prepared by using the
TruSeq ChIP Library Preparation Kit (Illumina, San Diego, CA, USA). The
libraries were sequenced as 36-bp single-end reads on the HiSeq3000
(Illumina). Images of NGS peaks were generated using Integrative
Genomics Viewer (IGV) (http://software.broadinstitute.org/software/igv/
). The sequences of the gRNAs and primers are listed in Supplementary
Table S1.

Statistical analysis
Data are shown as the mean ± SD. The data were compared by Student’s t
test, chi-square test, or Fisher’s exact test. The Kaplan–Meier method and
log-rank test were used to calculate significant differences in patient
survival. A value of P < 0.05 was considered statistically significant. All
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statistical analyses were performed using Microsoft Excel or JMP statistical
software (SAS Institute Inc., Cary, NC, USA).

RESULTS
Identification of the enhancer region for the KLF5 gene
To identify the enhancer region that binds to the KLF5 promoter,
we employed an in vitro enChIP-seq method [20] (Supplemen-
tary Fig. S1A). The binding DNA sequence was analysed by NGS
using two guide RNAs (gRNA-A, gRNA-B) designed 400–600 bp
upstream of the transcription start site in the KLF5 promoter
region (Supplementary Fig. S1B).
Compared with the negative control gRNA against the chicken

Pax5 gene [21], several DNA sequences had a significant increase
in binding to the gRNA-marked KLF5 promoter regions. As
candidates for the KLF5 enhancer, we first searched the genomic
regions on chromosome 13 where KLF5 promoter is located
(Fig. 1a and Supplementary Fig. S2A). Among them, we focused
on Chr 13; 74,003,796 − 74,004,073 (P score rank #3rd, Fig. 1a)
located a~370 kb downstream of the KLF5 promoter rather than
the other two regions with superior P scores (rank #1st and #2nd)
because the peaks of well-established enhancer markers such as
histone H3 lysine 27 acetylation (H3K27ac) and BRD4 were
robustly observed at this region compared with #1st and #2nd
regions by the ChIP-seq database analysis (http://chip-atlas.org/,
Supplementary Fig. S2B). The region displayed a significantly
higher peak with gRNA-A or gRNA-B than the negative
control gRNA, and it well matched the peak of the enhancer
marker H3K27ac or DNase I hypersensitive site sequencing
(DNase-seq), which is a marker for the open chromatin region
[36] (Fig. 1b). To investigate whether this region would function
as an enhancer, we generated five heterodeletion mutants of
potential enhancer regions (Fig. 1c, d). All mutants showed
decreased KLF5 expression, and the average (51.7%) was
significantly lower than that of parental cells (Fig. 1e, P < 0.01),
indicating that the identified region functions as an enhancer of
KLF5 gene.

KLF5 promoter–enhancer looping is organised by KLF5
protein and co-factors
We hypothesised that the KLF5 protein might bind to the KLF5
promoter and/or the enhancer because ChIP-seq database
showed this possibility in the KATO III gastric cancer cell line
(http://chip-atlas.org/, Supplementary Fig. S3A). In addition,
the JASPAR transcription–prediction tool [37] indicated that
the transcription factor KLF5 protein is able to bind to both
promoter and enhancer of KLF5 gene (Supplementary Fig. S3B, C).
ChIP-qPCR analyses revealed that the KLF5 protein bound to the
KLF5 promoter and enhancer in the HT29 and SW48 cell lines
(Fig. 2a, b). In addition, we found that BRD4, MED1 (mediator
complex protein) and RAD21 (cohesin complex protein) were also
involved in the machinery constructing promoter–enhancer
looping by binding to both regions (Fig. 2a, b). Moreover, a single
knockdown of BRD4, MED1 and RAD21 and triple knockdown
of these genes led to a modest decrease in KLF5 expression
(Fig. 2c and Supplementary Fig. S3D). These results suggest that
the KLF5 protein and co-factors may contribute to construct the
promoter–enhancer looping of the KLF5 gene. Besides KLF5
protein, JASPAR transcription–prediction tool indicated that the
transcription factors, Myeloid ecotropic viral integration site 1
(MEIS1), Reproductive homeobox on X-chromosome F1 (RHOXF1),
Zinc finger protein 354 C (ZNF354C) proteins might have the
potential to bind to both promoter and enhancer of KLF5 gene
(Supplementary Fig. S3B, C). Therefore, we performed ChIP-qPCR
analyses and revealed that the MEIS1, RHOXF1 proteins, but not
ZNF354C bound to both promoter and enhancer of KLF5 gene
(Supplementary Fig. S3E).

The KLF5 enhancer is associated with cancer stem-like
properties in CRC cells
In human clinical CRC tissues (n= 131) we found that the high
KLF5 mRNA expression group had a worse prognosis than low
KLF5 mRNA expression group when the cut-off point was set at a
median value of KLF5 mRNA expression (P= 0.039, Fig. 3a and
Supplementary Table S2). To investigate the functional relevance
of the KLF5 enhancer in cancer stem-like properties, we examined
the chemoresistance, sphere-formation ability and expression
level of CSC-related genes in heterodeletion mutants of the KLF5
enhancer. The heterodeletion mutants were more sensitive to
5-FU and oxaliplatin (L-OHP) and showed lower sphere-formation
activity than parental cells (Fig. 3b, c and Supplementary Fig. S4A,
B). The cells had significantly decreased mRNA expression of the
CSC-related markers BMI1, LGR5 and CD44v9 by RT-PCR (Fig. 3d),
and the double-positive fractions of CD133 and CD44v9 in
heterodeletion mutants also decreased to various extents
compared with parental cells by flow cytometric analysis (parent
88.2% vs mutants 28.0, 61.0, 41.3, 28.7 and 69.7%) (Fig. 3e and
Supplementary Fig. S4C).

The KLF5 promoter interacts with the CCAT1 TSS region
located on a distinct chromosome
We next analysed the interchromosomal interaction with the KLF5
promoter. Among many candidates, the most significant interac-
tion was found with the CCAT1 TSS region located at chromosome
8 (Fig. 4a and Supplementary Fig. S5A). To clarify whether the
CCAT1 TSS region functions as an enhancer of the KLF5 gene, we
produced ten heterodeletion mutants of the CCAT1 TSS region
(Fig. 4b–d). We found that these mutants clones displayed a large
reduction in CCAT1 expression (Fig. 4e), but KLF5 expression levels
were not affected (Fig. 4f). At the transcription level, knockdown of
CCAT1 RNA did not affect KLF5 expression either (Fig. 4g).
We next investigated the possibility that the KLF5 gene

product might conversely regulate CCAT1 expression and found
that knockdown of KLF5 mRNA decreased CCAT1 expression in
HT29 cells (Fig. 5a), and a KLF5 inhibitor, ML264, also suppressed
CCAT1 expression in HT29 and SW48 cell lines (Fig. 5b). As a
ChIP-seq database survey and a prediction of transcription
factor-binding site showed that the KLF5 protein-binding region
coincided with the CCAT1 TSS region (Supplementary Fig. S5B
and C), our ChIP-qPCR analyses revealed that the KLF5 protein
and BRD4, MED1 and RAD21 bound to the CCAT1 TSS region in
the HT29 and SW48 cell lines (Fig. 5c). In heterodeletion mutants
of the KLF5 enhancer, we found that CCAT1 expression markedly
decreased, with an average of 21.8% (Fig. 5d, P < 0.01). More-
over, BRD4, MED1 and RAD21 knockdown significantly decreased
the CCAT1 expression (Supplementary Fig. S5D). These findings
imply that the KLF5 protein and co-factors could participate also
in the three-dimensional genome binding between KLF5 gene
and CCAT1.

KLF5 and CCAT1 expression are correlated in CRC clinical
samples
We next examined the expression of the KLF5 protein and CCAT1
RNA in 27 CRC tissue samples by immunohistochemistry and
in situ hybridisation using RNA scope [32]. In normal tissue,
nuclear KLF5 expression was observed predominantly at the
colonic crypt bottom as previously reported [12] (Fig. 6a). In
cancer tissues, KLF5 expression was observed in the nucleus or
cytoplasm, and CRC cancer samples were divided into three
groups based on the nuclear staining as follows: weak: 7.4%,
moderate: 37.0%, and strong: 55.6% (Fig. 6a, b). On the other
hand, CCAT1 was rarely expressed in normal epithelium and
increased in cancer tissue (weak: 11.1%, moderate: 40.7%, strong:
48.2%) (Fig. 6a, b). The KLF5 expression score was significantly
correlated with that of CCAT1 (P= 0.0086, Fig. 6b; scoring
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system for KLF5 and CCAT1 is described in the legend of Fig. 6a).
This correlation was also observed when we analysed in well-
differentiated adenocarcinoma samples (P= 0.0256, Supplemen-
tary Fig. S6). In addition, qPCR analysis using RNA extracted from
131 CRC patients indicated that the expression levels of KLF5
mRNA and CCAT1 RNA were significantly correlated (r= 0.563, P <
0.0001) (Fig. 6c).

DISCUSSION
It is recently reported that KLF5 transcripts are actively regulated by
three-dimensional structural changes through promoter–enhancer
binding in head and neck cancer cells [38]. We investigated this
possibility in CRC because the enhancer markers H3K27ac and
BRD4 showed similar peaks downstream of the KLF5 gene in HT29
colon cancer cells by a ChIP-seq database search (ChIP-Atlas:
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Fig. 1 Identification of the KLF5 enhancer region by in vitro enChIP-seq. a List of regions that bind to the KLF5 promoter by in vitro enChIP-
seq analysis. The regions of the top five highest P scores on chromosome 13 are shown. First line shows the KLF5 promoter region including
the target region of two gRNAs. The obtained reads from NGS were mapped to the human hg19 reference genome using the COBWeb
algorithm. Peak calling was performed using the MACS peak detection algorithm at default settings on Strand NGS software version 3.4
(Agilent Technologies, Santa Clara, CA, USA). The peaks were determined using gRNA-A and gRNA-B as biological duplicates against gRNA-NC
(negative control) filtered for P score (−log10(P values)) and fold change ≥2.0. b Integrative genome viewer (IGV) tracks of in vitro enChIP-seq
peaks (gRNA-A, gRNA-B, gRNA-NC) and ChIP-seq peaks of H3K27ac and DNase-seq peaks from the ChIP-Atlas database in HT29 cells. The
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mutants. c Schematic illustration of the KLF5 enhancer candidate region deleted by the CRISPR/Cas9 system. The positions of the primers for
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products that are amplified by Enh-F1 and Enh-R2 primers in five heterodeletion mutants. The deleted region is surrounded by a square and
the predicted sequence after deletion is shown as ‘Predicted’. e Expression level of KLF5 mRNA in five deletion mutants. The relative value is
calculated by the expression level of the parental cells. The average value of five heterodeletion mutants is also shown. *P < 0.01.
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https://chip-atlas.org/, Supplementary Fig. S7A). As result, we found
that the KLF5 promoter bound not only to its enhancer region but
also to lncRNA CCAT1.
Three-dimensional genome structure has been gradually uncov-

ered due to the development of technologies such as Hi-C, chromatin
interaction analysis by paired-end tag sequencing (ChIA-PET) analysis,
and in vitro enChIP-seq method [20, 21, 39, 40]. Promoter– enhancer
looping is constructed by the protein complex, including BRD4, the
mediator complex, the cohesion complex and transcription factors
[41, 42]. Using the in vitro enChIP-seq method, we identified a tightly
bound region ~370 kb downstream of the KLF5 gene (chr13,
74,003,796–74,004,073, 278 bp), and experiments using heterodele-
tion mutants of the enhancer verified that this region was indeed an
enhancer of the KLF5 gene. Although this region partially overlapped
with one of the enhancer regions reported in head and neck cancer
(chr13, 74,002,153–74,004,229, 2077 bp) [38], we successfully encom-
passed the essential region. During the cloning process, we eventually
obtained only five heterodeletion mutants and no homodeletion

mutants out of 672 single cells into which the CRISPR-Cas9 system
was transduced. One possible reason for missing the homodeletion
clones is that the KLF5 gene is essential for cell survival. To support
this idea, it was reported that KLF5 homozygous knockout mice died
before embryonic day 8.5 [43], and even mice with conditional
complete deletion of KLF5 in the gut died shortly after birth due to
the absence of proliferation in the intestinal epithelium [44].
Cumulative evidence suggests that enhancer regions typically

contain TF-binding motifs [36]. For example, in murine embryonic
stem cells, various enhancers are occupied by multiple TFs,
including Oct4, Sox2 and Nanog [17]. Accordingly, we sought the
TF-binding motif in the KLF5 promoter and enhancer by the
JASPAR tool to further elucidate the molecular mechanism of KLF5
gene regulation. Notably, we found that the KLF5 protein itself
was the candidate TF for regulating KLF5 expression and
confirmed binding of the KLF5 protein to not only the enhancer
region but also the promoter together with co-factors including
BRD4, MED1 and RAD21 by ChIP-qPCR. A similar instance was
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recently reported in oesophageal squamous cell carcinoma cell
lines; KLF5 participated in the core-regulatory circuitry (together
with TFs, TP63 and SOX2 and co-factors) to construct the three-
dimensional genome of the ALDH3A1 or EGFR gene [45]. Our
finding may be more unique regarding autoactivation because the
regulatory circuitry containing the KLF5 protein contributes to the
three-dimensional genome structure of the KLF5 gene. On the
other hand, we found that other two transcription factors, MEIS1
and RHOXF1, also bound to both KLF5 promoter and enhancer
region, despite the binding may be weaker compared to the
KLF5 protein. MEIS1 belongs to a family of the three amino acid

loop extension (TALE) homeodomain transcription factor and it
was reported that MEIS1 functions as the regulator of the cell
cycle, cell proliferation and differentiation [46]. Of note, it was
reported that MEIS1 is involved in superenhancer associated
gene expression in combination with EWS-FLI in Ewing sarcoma
[47]. RHOXF1 (originally called as OTEX and hPEPP1) is a member
of Rhox gene family, which is expressed in ovary, testis,
epididymis, prostate and mammary gland [48] and malignant
diseases of prostate cancer, leukaemia and CRC [49, 50]. Further
studies will be needed on whether these proteins are also
involved in the core-regulatory circuitry.
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Long-range genome interactions, as well as local genome
interactions, are known to regulate cell-type-specific gene
expression and maintain cell identity. Interchromosomal interac-
tions have been demonstrated between SOX9 and the lncRNA
CISTR-ACT gene or the ATF4 and FIRRE genes to serve biological
processes including mammalian development and differentiation,
as well as cancer stemness [51]. For the interchromosomal
interaction, we focused on the specific binding between the
KLF5 promoter and the CCAT1 TSS region because the peak of this
region was even higher and more significant than that of
intrachromasomal interaction including KLF5 promoter–enhancer
interaction (Figs. 1a, b and 4a, b).

Studies have shown that the CCAT1 genomic region is a part
of the superenhancer for the MYC gene and that CCAT1 RNA
facilitates EGFR expression through activation of the EGFR
enhancer by recruiting the transcription factors p63 and SOX2
[52]. However, in the current case, the KLF5 expression level was
not altered when CCAT1 DNA was heterogeneously deleted or
the CCAT1 transcript was suppressed by the specific siRNAs.
Conversely, KLF5 knockdown by specific siRNAs and treatment
with the KLF5 inhibitor suppressed CCAT1 expression. Since the
KLF5 protein bound to the CCAT1 TSS region as well as the KLF5
promoter and enhancer together with co-factors (BRD4, MED1,
RAD21), we speculate that the KLF5 gene product participates in
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the core-regulatory circuitry and may regulate CCAT1 expres-
sion. We performed the knockdown experiment by treating the
single or triple combination of siRNAs against co-factors (BRD4,
mediator, cohesin) and the result showed that knockdown
efficiency was sufficient in both conditions but the down-
regulation of KLF5 was still modest. These results suggest that
knockdown of co-factors alone was not enough to achieve the
complete disruption of the regulatory machinery for KLF5 gene
expression although it is indeed partially involved. It is of
interest, according to the CCLE gene expression database
(https://portals.broadinstitute.org/ccle), that both CCAT1 and
KLF5 RNAs are upregulated in gastrointestinal cancers and
downregulated in leukaemia and lymphoma (Supplementary
Fig. S7B, C). In clinical samples, we verified a tight correlation
between the expression of KLF5 and CCAT1. These findings
imply the coordinated expression of the two genes in CRC and
possibly in other type of human cancers.
The KLF5 enhancer region plays a biologically important role in

cancer stem-like properties. Thus, even heterogenous deletion
mutant clones exhibited a decrease in CSC markers such as LGR5,
BMI1, CD133, and CD44v9, restored susceptibility to chemother-
apy, and reduced sphere formation. This could be attributed to
the downregulation of KLF5 because the KLF5 inhibitor
suppressed CSC-related gene expression in CRC cell lines
(Supplementary Fig. S8A, B). Moreover, we and another group
recently showed that the treatment of miR-4711-5p targeting to
the 3’-UTR of KLF5 mRNA or KLF5-siRNA attenuated the CSC
properties in CRC cell lines [10, 11]. We also showed in this study
that high KLF5 expression in CRC clinical samples was correlated
with poor prognosis, which is consistent with other studies [10].
In addition, studies reported that CCAT1 stimulated symmetric
division and self-renewal, which are hallmarks of CSCs in lung
cancer, and that CCAT1 is required for the maintenance of
stemness, proliferation, migration and invasion of breast cancer
stem cells [53, 54]. It was also reported that BMI1, which is one of
the CSC-related genes, was decreased by the knockdown of
CCAT1 [55]. Because CCAT1 expression was decreased in the
deletion mutants of the KLF5 enhancer, it is suggested that the
KLF5 enhancer may play a crucial role in the maintenance of
cancer stemness by regulating KLF5 and CCAT1. Taken together,
these results show that targeting therapeutics against the KLF5
enhancer, e.g., blockade of KLF5 promoter–enhancer binding by
the decoy oligonucleotide strategy may be an efficient ther-
apeutic option for CSCs.
In summary, we identified an enhancer of KLF5 downstream of

the KLF5 gene that interacted with the KLF5 promoter, and this
enhancer region was associated with CSC properties in CRC. We
also found that the KLF5 promoter interacted with the CCAT1 TSS
region, which is located on different chromosomes. Notably, our
results suggest that the core-regulatory circuitry containing the
KLF5 gene product and co-factors help to construct three-
dimensional genome interaction and regulates the gene expres-
sion of KLF5 and CCAT1 (Fig. 6d), and this mechanism may
facilitate the maintenance of CSC properties in CRC.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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