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WSB-1 regulates the metastatic potential of hormone receptor
negative breast cancer
Flore-Anne Poujade1, Aarren Mannion1, Nicholas Brittain1, Andrew Theodosi1, Ellie Beeby1, Katarzyna B. Leszczynska2,
Ester M. Hammond2, John Greenman1, Christopher Cawthorne1,3 and Isabel M. Pires 1

BACKGROUND: Metastatic spread is responsible for the majority of cancer-associated deaths. The tumour microenvironment,
including hypoxia, is a major driver of metastasis. The aim of this study was to investigate the role of the E3 ligase WSB-1 in breast
cancer biology in the context of the hypoxic tumour microenvironment, particularly regarding metastatic spread.
METHODS: In this study, WSB-1 expression was evaluated in breast cancer cell lines and patient samples. In silico analyses were used
to determine the impact of WSB-1 expression on distant metastasis-free survival (DMFS) in patients, and correlation between WSB1
expression and hypoxia gene expression signatures. The role of WSB-1 on metastasis promotion was evaluated in vitro and in vivo.
RESULTS: High WSB1 expression was associated with decreased DMFS in ER-breast cancer and PR-breast cancer patients.
Surprisingly, WSB1 expression was not positively correlated with known hypoxic gene expression signatures in patient samples. Our
study is the first to show that WSB-1 knockdown led to decreased metastatic potential in breast cancer hormone receptor-negative
models in vitro and in vivo. WSB-1 knockdown was associated with decreased metalloproteinase (MMP) activity, vascular
endothelial growth factor (VEGF) secretion, and angiogenic potential.
CONCLUSIONS: Our data suggests that WSB-1 may be an important regulator of aggressive metastatic disease in hormone
receptor-negative breast cancer. WSB-1 could therefore represent a novel regulator and therapeutic target for secondary breast
cancer in these patients.

British Journal of Cancer (2018) 118:1229–1237; https://doi.org/10.1038/s41416-018-0056-3

INTRODUCTION
Breast cancer is the second most common cancer type worldwide,
affecting one in eight women in the UK.1 Hormone receptor (HR)
status is critical in evaluating survival rates and determining
therapeutic approaches. Triple negative breast cancer (TNBC) (no
detectable oestrogen receptor (ER), progesterone receptor (PR) or
human epidermal growth factor receptor (HER2) expression), is
associated with both highest metastatic potential and worst
overall survival (OS).2

Metastatic spread is responsible for the majority of cancer-
associated deaths, and it has been extensively demonstrated that
tumour microenvironmental factors, such as hypoxia are major
drivers of metastatic disease.3 Tumour hypoxia arises as a
consequence of irregular perfusion of the tumour mass, increased
metabolic demand from rapidly proliferating cells, as well as
deregulated and non-productive angiogenesis.4 The degree of
tumour hypoxia has been shown to be associated with decreased
patient survival.5 Hypoxia gene expression signatures have
demonstrated that breast cancers are hypoxic and particularly
ER-negative (ER−), PR-negative (PR−), and TNBC tumours.6,7

Hypoxia-inducible factors (HIFs) are transcription factors consisting
of alpha (HIF1α and HIF2α) and beta (HIF1β/ARNT) subunits,
which act as key regulators of hypoxic biology by regulating
the expression of genes involved in pro-tumourigenic and

pro-metastatic pathways.3,8 Recently, the E3 ligase WSB-1
(WD-40 repeat-containing SOCS Box protein) was identified as a
transcriptional target of HIF.9,10 WSB-1 is the substrate recognition
element of an Elongin Cullin SOCS (ECS box) E3 ubiquitin ligase
complex.11 It has been proposed that a specific isoform of WSB-1
promoted cell proliferation in pancreatic cancer models12 and that
WSB-1 was involved in chemoresistance in hepatocellular cancer
cells.10 WSB-1 expression was recently associated with increased
metastatic potential in osteosarcoma and lung adenocarci-
noma.9,13 Therefore, WSB-1 appears to play an important role in
tumour progression and resistance to chemotherapy, but these
effects appear to be tumour-type specific, and the precise WSB-1
mechanisms of action remain elusive.
This study is the first to investigate the role of WSB-1 in breast

cancer biology and progression, particularly in HR-independent
backgrounds. High WSB-1 expression was associated with
decreased distant metastasis-free survival (DMFS) only for HR-
negative cases. Interestingly, although WSB-1 was induced in
hypoxic conditions, it was not associated with a canonical hypoxic
response in breast cancer. WSB-1 knockdown led to decreased
cellular invasion of HR-negative cell line models. Importantly, this
study is the first to show that WSB-1 knockdown led to decreased
angiogenic potential, through modulation of metalloproteinase
(MMP) expression and activity and vascular endothelial growth
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factor (VEGF) secretion. Finally, we showed that knockdown of
WSB-1 in this HR-negative model led to decreased metastatic
seeding and growth in vivo. This study suggests WSB-1 plays a
significant role in breast cancer, particularly in a HR and hypoxic
signalling-independent context.

MATERIALS AND METHODS
Cell lines and hypoxia treatment
MDA-MB-231, MDA-MB-468, MDA-MB-361, MDA-MB-436, BT474,
T47D, and MCF-7 breast cancer cell lines and Human Mammary
Epithelial Cells (HMEpC) were purchased from ATCC (US) or ECCAC
(UK). Breast cancer lines were grown in DMEM (Corning) and
HMEpC in HMEC Growth Medium (Lonza), both supplemented
with 10% FBS. All cell lines were routinely tested as negative for
mycoplasma. Cells were maintained at 5% CO2 and 37 oC. Hypoxia
treatments were performed in a H35 Hypoxystation (Don Whitley
Scientific) with humidified atmosphere containing 2% O2, 5% CO2

at 37 oC.

Absolute quantitative PCR
A standard curve was prepared containing known number of
WSB-1 copies, using the pFLAG-CMV2 plasmid containing the
WSB1 gene (a kind gift from Prof. Hironobu Asao, Yamagata
University, Japan) as a template.14 The standard samples were
analysed alongside unknown samples using QuantiFAST SYBR
Green (Qiagen) in the StepOnePlus™ Real-Time PCR System
(Thermo Scientific).

Quantitative real-time PCR
Transcript levels in cell line samples were monitored by
QuantiFAST SYBR Green (Qiagen) using the StepOnePlus™ Real-
Time PCR System (Thermo Scientific). Transcript expression levels
were normalised to B2M (β-2-microglobulin). Primer sequences are
available in Supplementary Information.
Transcript levels in TissueScan breast microarray plates (panels I,

II, IV) (OriGene) were analysed using TaqMan qPCR SsoAdvanced
Universal Probes for WSB1 (qHsaCIP0050519), CA9 (qHsa-
CIP0031395) (BioRad), and B2M (4326319E) (Applied Biosystems).
Patient information is available in Supplementary Information.

Breast cancer patient DMFS analysis
Kaplan–Meier curves for DMFS were generated using the KM-
plotter tool (http://kmplot.com/analysis).15 The analysis used
microarray data from 1809 breast cancer patients. Analyses were
performed for the following groups: all patients, ER+, ER−, PR+,
or PR− patients. Analysis of WSB1 expression was performed
using the mean expression of four WSB1 Affymetrix probes:
201294_s_at, 201295_s_at, 201296_s_at, and 210561_s_at.
Patients were grouped as having high or low WSB1 expression,
and median expression was used as the cut-off.

Gene expression correlation analysis in cancer datasets
RNA-sequencing datasets (RNA Seq V2 RSEM) for breast invasive
carcinoma tumours were downloaded from the TCGA project
accessed through cBioportal (http://www.cbioportal.org). These
datasets included all patients (n= 1110), ER+ patients (n= 593)
and ER− patients (n= 174). To examine WSB1 expression against
hypoxia metagene signature16 or the 26-gene hypoxia signature,17

raw data for each sequenced gene and WSB1 were rescaled to set
the median equal to 1. Expression values for hypoxia signatures
was determined by quantifying the median expression of
signature genes. Log10 conversion of the hypoxia signatures were
plotted against Log10 conversion of rescaled data for WSB1.

Cell lysis and Western blotting
Whole cell lysates (WCL) were prepared using UTB (9M urea, 75mM
Tris–HCl pH 7.5 and 0.15M β-mercaptoethanol) and immunoblotted

as previously.18 For protein presence in conditioned media, cells
were incubated for 24 h with serum-free media and media was
concentrated using Vivaspin 4 ultrafiltration spin column (Sartorius).
Antibodies used were anti-WSB-1 (Genetex), anti-HIF1α (BD-Bios-
ciences), anti-MMP1 (R&D Systems), anti-MMP2 (Cell Signaling
Technology), and anti-MMP14 (Abcam). Anti-GAPDH (BD-Bios-
ciences) and anti β-actin (Santa Cruz) were used as loading controls.
Densitometric analysis of band intensity was performed using
ImageJ software (NIH).

siRNA knockdown
For transient knockdown experiments, cells were transfected
using DharmaFECT1 (GE Dharmacon), as per manufacturer’s
instructions. siRNA oligos used were: non-targeting siRNA and
siGENOME SMARTpool WSB-1 siRNA (GE Dharmacon).

VEGF ELISA and in vitro angiogenesis branch forming assay
Quantification of VEGF in conditioned media was detected using
the VEGF ELISA kit (Invitrogen), as per manufacturer’s instructions.
Human umbilical vein endothelial cells (HUVEC) were grown in

complete endothelial cell growth medium (Lonza). Branch forming
assay was performed using the In Vitro Angiogenesis Assay Kit
(Merck Millipore), as per manufacturers’ instructions. Branching
was quantified by scoring the number of branching points in three
random fields per replicate per experiment.19

In vitro cellular invasion assays
Cellular invasion assays were performed using Matrigel coated or
uncoated transwell chambers (BD Bioscience) as per manufac-
turer’s instructions and as previously described.20 Cells were then
counted in three distinct fields per triplicate well, histograms
depict average invasion index.

Gelatine zymography
Conditioned media was processed as described before, and
separated through a non-denaturing 10% acrylamide gel contain-
ing 1mg/mL gelatine. Complete media (DMEM supplemented
with 10% FBS) was used as a control. Gelatine gel was incubated
in renaturing buffer (Novex) 1 h and in 1 × developing buffer
(Novex) at 37 °C overnight. Gel was stained in Coomassie-blue
solution as previously described.21

Mammosphere formation assay
Mammosphere formation assay was performed as previously
described.22 In brief, 2500 cells were seeded in wells coated with
Matrigel (BD Biosciences, USA) diluted 1:1 in serum-free media.
Mammospheres were grown for 10–14 days and imaged.
Diameters were determined using ImageJ software (NIH). At least
150 mammospheres were measured per condition.

Experimental metastasis models
MDA-MB-231 cells were stably transfected with WSB-1 shRNA-
targeting or non-targeting shRNA-containing plasmids (OriGene;
sequence details in Supplementary Information) using TurboFect
as per manufacturer’s instructions (Fisher Scientific). 5 × 105 cells
were injected into the tail vein of female CD-1 nude mice aged
5–7 weeks (Charles River) (n= 6 per group). All animal work was
performed in accordance with the Animals (Scientific Procedures)
Act 1986 and the NCRI guidelines for the use of animals in
cancer research,23 using protocols approved by the local Animal
Welfare and Ethical Review Body (AWERB) under Home Office
Project License number 60/4549 held by Dr. Cawthorne.
Haematoxylin and eosin (H&E) staining of equally distanced
paraffin embedded lung sections was performed as previously
reported.18 Images were acquired using an Eclipse 80i
microscope (Nikon), using the Image Pro Premier software (Media
Cybernetics). Image analysis was performed using Image J
software (NIH).
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Statistical analysis
Statistical significance was determined by Student’s t-test (one
variable) or two-way ANOVA with Tukey correction (multiple
variables). For the tissue cDNA microarray analyses, significance
was determined by Kruskal–Wallis test for non-parametric data.
Gene expression correlation and statistical significance were
determined by calculating Spearman’s rho rank correlation
coefficients and two-tailed P. Error bars represent mean ± SEM.

RESULTS
High WSB1 expression is associated with decreased DMFS in HR-
negative breast cancer patients
In order to evaluate the expression of WSB-1 in breast cancer, we
analysed the levels of WSB1 transcript in both a panel of cell lines
and patient samples (clinical information noted in Supplementary
Table 1). WSB1 was not shown to be consistently up-regulated or

down-regulated between normal mammary epithelial cells and
breast cancer cells (Fig. 1a). WSB1 expression was also not
significantly altered in tumours when compared to normal tissue
(Fig. 1b). Interestingly, when patient cohorts were clustered by
subtype or HR status, WSB1 expression was significantly lower in
the most aggressive tumours, such as HR− and TNBC (Figure S1).
Analysis of a larger cohort (TCGA dataset, 1100 patients) also
indicated that WSB1 expression is decreased in breast cancer
samples (Figure S2). We then asked whether, within breast cancer
patient cohorts, differential WSB-1 expression was associated with
differences in survival. For this, we determined the impact ofWSB1
expression on several aspects of patient survival, including OS,
relapse free survival (RFS), and DMFS (Fig. 1c–g, S3-S4).
Importantly, although WSB1 expression did not impact DMFS for
the whole patient cohort (Fig. 1c), WSB1 expression levels higher
than median were associated with significantly decreased DMFS
for ER− and PR− patients (Fig. 1e, g), but not for ER+ or PR+
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patients (Fig. 1d, f). There was no impact of WSB1 expression on
OS, but high WSB1 expression was a poor prognostic indicator for
RFS for ER− patients (Figures S3-S4). These data demonstrate that,
although WSB1 expression is not significantly altered between
normal and breast tumour tissue, higher WSB1 expression levels in
HR-negative patients are associated with increased likelihood of
metastatic disease.

WSB1 expression is not associated with hypoxic gene expression
signatures in patient samples
WSB-1 has been previously reported to be a hypoxia-inducible
factor in a HIF-dependent manner in osteosarcoma and hepato-
cellular carcinoma.9,10 As hypoxic regions are a common feature in
breast cancer and known key drivers of metastatic potential, we
were surprised that WSB-1 expression was not elevated in breast
cancers compared to normal tissue. However, in breast cancer cell
lines, WSB-1 mRNA and protein levels were significantly induced in
a HIF1-dependent and HIF2-independent manner (Figure S5). To
investigate HIF1-dependent WSB-1 expression in patient samples,
we used the TCGA patient cohort dataset to ask whether WSB1
expression was associated with two well-characterised hypoxia

signatures containing well-known HIF targets.16,17 Surprisingly,
these data showed that WSB1 expression was inversely correlated
or not correlated with either hypoxia signatures for all cohorts
analysed, which included both ER+ and ER− patients (Fig. 2). This
was in contrast with the expression of known HIF target genes
involved in breast cancer metastasis not included in the hypoxia
signatures (LOX, LOXL2, LOXL4, CCL2, L1CAM, ANGPT1, and ANGPT2),
whose expression showed a positive correlation with the
signatures (Supplementary Table 2). Taken together, these data
indicate that WSB-1 can be induced by HIF1 in hypoxic in breast
cancer cell lines, but that this mechanism is unlikely to be the main
driver for WSB-1 expression in breast cancers.

WSB-1 affects the expression of pro-tumourigenic and pro-
metastatic factors in a HR-dependent manner
It has been previously reported that WSB-1 could itself regulate
the stabilisation of HIF1α via its E3 ligase, VHL. Here, we also
observed an impact of WSB-1 knockdown on HIF1α which varied
between cell lines (Fig. 3a-c, S6). Specifically, WSB-1 knockdown
was associated with a significant upregulation of HIF1α protein
expression in MCF7 cells, but not in MDA-MB-231 cells.
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Surprisingly, this was not reflected on the impact of WSB-1 on the
expression of canonical HIF target genes SLC2A1, VEGFA, CA9, and
HK2. WSB-1 knockdown did not affect the expression of these
genes for HR-positive cell lines MCF7 and T47D, suggesting that
the increased stabilisation of HIF1 observed (Fig. 3a) was not
significant to HIF activity (Fig. 3d–g, S7). Interestingly, in HR-
negative cell line MDA-MB-231, WSB-1 knockdown led to a
significant decrease in VEGFA and HK2 expression in both
normoxia and hypoxia (Fig. 3e, g), with a similar trend observed
for MDA-MB-468 HR-negative cells (Figure S7). Finally, we
investigated whether there was any link between the expression
of WSB1 and HIF targets SLC2A1, VEGFA, CA9, and HK2 in breast
cancer patients. In contrast to WSB1 expression, which was not
different or decreased between normal tissue and tumour tissue
(Fig. 1, S2), the expression of all these genes was increased in the
tumour tissue (Figure S1). Furthermore, we evaluated the
correlation between WSB1 expression and SLC2A1, VEGFA, CA9,
and HK2 expression in the TCGA dataset. Whereas there was a
significantly positive correlation between WSB1 and VEGFA
expression, no significant correlation was observed between the
WSB1 and the other genes (Figure S8). These data show that WSB-
1 can impact the expression of pro-tumourigenic and pro-
metastatic factors, potentially in a HIF-independent manner.

WSB-1 regulates angiogenic potential in vitro
As we observed an impact of WSB-1 on the expression of the pro-
angiogenic factor VEGFA, we further investigated whether VEGF
secretion was also affected by WSB-1 knockdown in a HR-

dependent manner. WSB-1 knockdown led to a decrease in VEGF
secretion in HR-negative cell lines MDA-MB-231 and MDA-MB-468,
but not in HR-positive lines MCF7 and T47D (Fig. 4a). Importantly,
this correlated with an effect on angiogenic potential in vitro.
HUVEC cells incubated with conditioned media from MDA-MB-231
cells transfected with WSB-1 siRNA had a significantly decreased
endothelial branching ability when compared with conditioned
media from cells transfected with non-targeting siRNA (Fig. 4b-c).
Together, these data implicate WSB-1 in the angiogenic potential
of HR-negative breast cancer cell lines.

WSB-1 regulates invasiveness of HR-negative cells in vitro
We then investigated other mechanisms, besides altered angio-
genic potential, by which WSB-1 could impact the likelihood of
metastatic spread in a HR-negative context. WSB-1 knockdown led
to decreased in vitro invasive potential for MDA-MB-231 cells, but
not MCF7 cells, in hypoxia (Fig. 5a). This was not associated with
EMT markers expression changes (Figure S9). The impact of WSB-1
knockdown on the expression and activity of MMPs, key for the
metastatic process, was also evaluated. WSB-1 knockdown was
associated with decreased expression of MMP1 and MMP14 at
both transcript and protein level, but again only for MDA-MB-231
HR-negative cells (Fig. 5b, c). The levels of the secreted active form
of MMP2, regulated by MMP14, were also decreased by WSB-1
knockdown, with concomitant decrease in MMP2 gelatinase
activity (Fig. 5c). These data indicate that WSB-1 regulates the
expression and activity of key enzymes involved in increased
invasiveness and extracellular matrix (ECM) remodelling.
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WSB-1 promotes metastatic potential in vivo
In order to validate our in vitro observation in vivo, we generated
WSB-1 shRNA (shWSB-1) cell lines and matching non-targeted
controls (shNT) in MDA-MB-231 cells (Fig. 6, S10A). shWSB-1 cells
had a lower expression of VEGF both at transcript and
protein levels (Fig. 6b and c), similarly to WSB-1 siRNA treated
cells (Fig. 4). Interestingly, although there was no difference
in the growth rates or cell cycle profiles of the two cell lines when
grown in 2D (Figure S10B-C), shWSB-1 cells originated smaller
mammospheres in Matrigel when compared with shNT cells
(Fig. 6d).
MDA-MB-231 shNT or shWSB-1 cells were then injected into the

tail veins of two groups of mice, and metastatic burden in the
lungs was evaluated ex vivo after 12 weeks. Importantly, we
observed a significantly lower metastatic burden (lesions/lung) for
the cohort of animals injected with WSB-1 shRNA cells, when
compared to the shRNA NT control cells (Fig. 6e–g) in this
experimental metastasis model. This was also reflected in the size
of metastatic lesions present. These observations further validate
the pro-metastatic phenotype observed in vitro, and indicate that
WSB-1 is necessary for the metastatic seeding and growth of HR−
breast cancer cells in vivo.

DISCUSSION
In this study, we have shown that high expression of WSB-1 in
breast cancer is a marker for increased metastatic disease in HR-
negative breast cancer patients. Downregulation of WSB-1
expression led to decreased angiogenic and invasive potential
of HR-negative breast cancer cell lines in vitro and metastatic
seeding and growth in vivo (Figure S11).

The present study indicates that increased WSB-1 expression is
associated with an increased metastatic propensity in ER− and
PR− breast cancer patients. This is in accordance with Cao and
colleagues, who demonstrated that higher WSB-1 levels in
metastatic osteosarcoma tumours were associated with decreased
DMSF, indicating low WSB-1 expression might have a good
prognostic value for metastasis-free survival.9 Kim and colleagues
investigated WSB-1 expression levels in several cancer types (lung
adenocarcinoma, melanoma, prostate cancer, and bladder cancer)
and found that WSB-1 level was elevated in metastatic tissues
when compared to primary tumours, and that this effect was
mediated by a regulation of HIF1 function.13 Our study is the first
to show a link between WSB-1-associated metastatic phenotypes
and HR status, in particular linked with angiogenesis promotion.
VEGF and other pro-angiogenic factors are known key
players during the metastatic cascade, through increased vascu-
larisation and vasculature permeability.24 Intravasation and extra-
vasation are reliant on ECM-remodelling, as well as increased
vascular permeability. MMP levels can indicate increased inva-
siveness of cancer cells and reveal an aggressive tumour.25

Specifically, MMP1 and MMP14 increased expression in breast
cancer has been correlated with poor prognosis.26,27 In our study,
WSB-1 knockdown led to a decrease in MMP expression and
activity. Interestingly, Kim and colleagues found that tumour
metastasis with high WSB-1 expression presented increased
expression of MMP2 and MMP9 levels in patients with lung
cancer.13

We propose that, for HR-negative breast cancer patients, WSB-1
is a key regulator of several molecular pathways central to
metastatic seeding and growth of HR-negative breast cancer,
including remodelling of the ECM by MMPs and increased
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angiogenic sprouting via MMPs and VEGF. However, the mechan-
ism behind the impact of WSB-1 function in this context remains
unclear.
WSB-1 has been previously reported to be upregulated at the

gene and protein level in tumour vs. normal tissues for cancer
types, such as osteosarcoma and lung adenocarcinoma.9,13

However, in our study the trends observed indicated a decrease
in WSB1 expression in patient samples, and particularly in the
more aggressive tumour types. These differences could be due to
our analysis focusing on WSB-1 transcript levels, whereas previous
studies investigated WSB-1 protein expression, indicating other
post-transcriptional regulatory processes may be involved. It could
also be associated with the nature of the tissue samples analysed
that would be comprised of many different cell types, which could
have masked expression pattern changes.
WSB-1 was previously identified as a HIF1 target gene in

osteosarcoma and hepatocellular carcinoma.9,10 We also observed
that WSB-1 was upregulated in hypoxic conditions in vitro in a
HIF1-dependent manner in breast cancer cell lines. However,
surprisingly, in patient samples WSB1 expression was inversely
correlated with that of two well-characterised hypoxia gene
expression signatures, the majority of which are HIF-targets.16,17

This is even more surprising considering other HIF-target genes
involved in breast cancer metastasis correlated with the hypoxia
signatures. These data indicate that the hypoxic microenviron-
ment is not a key contributor for differences in WSB1 expression in
patient samples. It is plausible that WSB-1 regulation by HIF has a
role in earlier stages of tumour development, which are not
reflected in the later stage patient samples analysed. These data
have implications for the link between WSB-1 expression and
hypoxia and HIF, and the usefulness of WSB-1 as a hypoxia
biomarker.

It has been previously reported that increased WSB-1 activity
was associated with altered HIF stabilisation and function.13 We
observed a similar effect of WSB-1 knockdown on HIF stabilisation
in HR-positive, but not in a HR-negative context. Interestingly, this
is mirrored to a degree in impact of WSB-1 on the expression of
canonical HIF targets, such as SLC2A1, VEGFA, CA9, and HK2. In the
HR-positive cell line MCF7, WSB-1 knockdown did not significantly
alter gene expression (with a non-significant trend for increased
expression for SLC2A1, VEGFA, and HK2), which would mirror an
increase in HIF levels. In the HR-negative cell line MDA-MB-231,
WSB-1 knockdown was associated with significantly
decreased expression of VEGFA and HK2. Furthermore, WSB1
expression in patient samples did not correlate with several HIF
targets including HK2, SLC2A1, and CA9 in breast cancer patient
samples, unlike that shown in other tumour types.9,13 This further
indicates that the role of WSB-1 in breast cancer HR-negative cells
might not be fully dependent on HIF activity, and that other
transcription factors are potentially involved. It is also plausible
that WSB-1 could regulate the expression of only a selected
number of HIF target genes, rather than all HIF-dependent
expression, as it is the case in breast cancer, respectively, for
co-factors p300 and DEK for GLUT-1 (SLC2A1) and VEGF (VEGFA)
expression.28,29

Breast cancer is the second most represented cancer type
worldwide and metastatic (or secondary) breast cancer is
responsible for the majority of patient deaths. Improvement of
diagnosis and early detection of metastatic propensity, and the
identification of relevant molecular players continue to be areas of
unmet need. We have shown a novel role for WSB-1 in promotion
of metastasis seeding and growth in breast cancer, suggesting
that WSB-1 regulates key pathways for the establishment of
secondary breast cancer in HR-negative patients, an area
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identified as of key importance in the field.30 Further clarification
of the regulatory pathways downstream of WSB-1 will help to
further elucidate the biology of these aggressive and invasive
breast cancers, and potentially uncover novel potential therapeu-
tic targets.
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