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Abstract: Insulin resistance (IR), defined as an attenuated biological response to circulating
insulin, is a fundamental defect in obesity and type 2 diabetes (T2D), and is also linked to a
wide spectrum of pathological conditions, such as non-alcoholic fatty liver disease (NAFLD),
cognitive impairment, endothelial dysfunction, chronic kidney disease (CKD), polycystic ovary
syndrome (PCOS), and some endocrine tumors, including breast cancer. In obesity, the unbalanced
production of pro- and anti-inflammatory adipocytokines can lead to the development of IR and
its related metabolic complications, which are potentially reversible through weight-loss programs.
The Mediterranean diet (MedDiet), characterized by high consumption of extra-virgin olive oil
(EVOO), nuts, red wine, vegetables and other polyphenol-rich elements, has proved to be associated
with greater improvement of IR in obese individuals, when compared to other nutritional interventions.
Also, recent studies in either experimental animal models or in humans, have shown encouraging
results for insulin-sensitizing nutritional supplements derived from MedDiet food sources in the
modulation of pathognomonic traits of certain IR-related conditions, including polyunsaturated fatty
acids from olive oil and seeds, anthocyanins from purple vegetables and fruits, resveratrol from
grapes, and the EVOO-derived, oleacein. Although the pharmacological properties and clinical uses
of these functional nutrients are still under investigation, the molecular mechanism(s) underlying
the metabolic benefits appear to be compound-specific and, in some cases, point to a role in gene
expression through an involvement of the nuclear high-mobility group A1 (HMGA1) protein.
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1. Introduction

Insulin resistance (IR) has been defined as a dysmetabolic condition in which the peptide
hormone insulin produces a less-than-expected biological effect on peripheral target tissues, leading to
hyperinsulinemia, the diagnostic hallmark of IR [1]. IR affects approximately 25%–35% of Westernized
populations [2] and is consistently associated with obesity [3] and obesity-related complications, such
as type 2 diabetes (T2D) mellitus [4], cardiovascular disease (CVD) [5,6], certain types of cancer [7],
infertility [8], non-alcoholic fatty liver disease (NAFLD) [9,10], and cognitive impairment [11]. Although
surgical and pharmacological strategies [12] have been shown to be useful, energy reduced diets,
as part of a healthy lifestyle, may almost invariably facilitate weight loss and reduce IR in these
patients [13]. Even a moderate weight loss of only 5%–10% can lead to several health advantages in
obese individuals, which include improvement in cardiometabolic parameters, reduction of blood
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pressure, and increase in longevity [13], in addition to positive changes in insulin sensitivity and
inflammatory biomarkers [14–16]. As part of a hypocaloric regimen, the Mediterranean diet (MedDiet)
has proved to be associated with a greater improvement of IR in obese individuals when compared to
other low-energy dietary approaches [17], even after a mild decrement of body weight of less than
5% [18]. Also, the reduction in insulin levels and other measures of IR, i.e., the homeostatic model
assessment (HOMA) index, triggered by this dietary approach, are precocious and sustainable over
time [17,18]. These benefits should be ascribed not only to the caloric restriction state, which promotes
weight loss and reduction of IR independent of the diet composition, but also to the large amount
of functional foods and nutraceuticals naturally present within the MedDiet. The “Mediterranean
diet” term reflects food combinations typical of Mediterranean populations, such as Greeks, Southern
Italians and Spanish, in the early 1960s, in which adult life expectancy was found, together with
the Japanese population, to be among the highest in the world, with lower rates of CVD and other
chronic aging-related diseases [19]. Being predominantly plant-based, the MedDiet is characterized
by a daily abundance of vegetables, legumes, whole grain bread and other cereals, nuts and seeds,
fresh fruit as the typical dessert, extra virgin olive oil (EVOO) as the principal source of fat, a low to
moderate consumption of dairy products, fish, poultry, and eggs, a low consumption of red meat,
and a moderate consumption of wine, normally with meals [20]. As a consequence, this eating
pattern is low in saturated fat (~10% of energy) [21], and rich in several minor functional components,
including vitamins, carotenoids, unsaturated fatty acids, and various bioactive plant-derived phenolic
compounds, depicted by antioxidant and anti-inflammatory properties, currently in the center of
research interest [22]. Phenolic compounds from plant sources may also modulate insulin action
and metabolism in insulin-sensitive tissues, with potential preventive or curative effects against IR
and IR-related diseases. As recently evidenced in cross-sectional investigations, adherence to the
Mediterranean eating style can give health advantages starting from young age [23]. The consumption
of fish, nuts and dairy products, representing a fundamental aspect in the MedDiet, can be related
to a better body composition and fitness performance in adolescents, in terms of speed/agility
and cardiorespiratory endurance [23]. Nonetheless, even in European countries surrounding the
Mediterranean Sea, half of the children and adolescents show only a low adherence to this healthy
dietary tradition [24], with a high rate of pediatric overweight and development of obesity and related
complications in adult life. Rising obesity rates will contribute to large healthcare expenditure increases,
and this would require future cost containment efforts through large-scale health promotion programs
and weight loss interventions, fostering a combination of diet quality changes and physical activity [25].
In the last decade, research into the biological properties of the Mediterranean functional components
has led to the isolation of several natural active ingredients, followed by the production of distinct
semi-synthetic nutritional supplements as alternatives for pharmaceuticals for health purposes. Recent
in vivo studies, in either experimental animal models or clinical settings, have shown encouraging
results for distinct insulin-sensitizing nutraceuticals derived from Mediterranean food sources in many
IR complications. In the present narrative review, much effort has been devoted to present mechanistic
and epidemiological evidences about the role of the MedDiet and selected nutritional supplements
on hard curative IR-related diseases consistently ranked among major CVD risk factors, such as T2D,
NAFLD, endothelial dysfunction, dyslipidemia and chronic kidney disease (CKD), along with its
beneficial effects on cognitive impairment, polycystic ovary syndrome (PCOS) and breast cancer.

2. Mediterranean Diet (MedDiet) and Unsaturated Fatty Acids for Managing Type 2
Diabetes (T2D)

T2D, a frequent consequence of IR, is the most common metabolic disease, affecting millions
of people throughout the world [26]. In T2D, chronic hyperglycemia is associated with a variety
of co-morbidities, such as dyslipidemia, hypertension, micro- and macrovascular complications,
which profoundly impair the quality and expectancy of life for affected patients, with huge costs
for the health system [27]. Dysfunctional adipose tissue in obesity is associated with hypertrophy
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and hyperplasia of adipocytes, chronic inflammatory cell infiltration, and activation of the cytokine
network, representing the main determinant of IR and the major risk factor for the development of T2D
and its complications [28]. At first, in obese individuals destined to become diabetics, pancreatic β-cells
may compensate for the impaired peripheral insulin responsiveness by secreting more insulin into the
bloodstream in an effort to reduce blood glucose levels, thus leading to hyperinsulinemia, a biological
marker of IR, often indicative of a pre-diabetic status [29,30]. Then, in these individuals, the full onset
of T2D is elicited by the gradual loss of pancreatic β-cell mass and dysfunction which occur over time
and prevent further hyperinsulinemic compensation. Fortunately, the progressive nature of T2D can
be challenged by precocious interventions, based on intensive lifestyle changes and/or daily metformin
therapy, which can successfully prevent or delay the onset of diabetes among high-risk individuals by
over 50% [31]. However, the role of diet and nutrition is crucial in the overall management of T2D,
which is far from being limited to prevention. As stated in the American Diabetes Association (ADA)
guidelines [32], there is not a one-size-fits-all nutritional approach for individuals affected by T2D, and
meal planning, delivered by registered dieticians, should be individualized, taking into account current
eating patterns, preferences, and specific glycometabolic goals. With this in mind, the MedDiet [33,34],
and other plant-based [35,36] nutritional approaches, all associated with positive outcomes in clinical
research conditions, can be endorsed as suitable treatment measures to achieve glycemic control, so that
the need for pharmacological medications would be minimized. In particular, important health benefits
have been demonstrated for the Mediterranean eating pattern, which can considerably improve fasting
glucose, glycated hemoglobin (HbA1c) and insulin levels in obese diabetic patients, when compared to
low-fat diets [17]. These glyco-metabolic benefits appear to be sustainable over time, independent of
body weight change, as they do not occur with other successful nutritional interventions for weight
loss [17]. Furthermore, as evidenced in several randomized trials, adherence to typical dietary habits
of the Mediterranean countries, may help in reducing all-cause and CVD-related mortality in patients
with T2D [37,38], which is consistent with the proof of anti-hypertensive effects for specific nutrients of
the MedDiet [39]. Monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs),
in forms of olive oil, nuts and seeds in plant-based dietary regimens, may function as the driving
force for the amelioration of glucose metabolism, insulin sensitivity, blood lipids and CVD risk,
observed either in diabetic individuals [17,40,41] or in the general population [42]. Confirmation
of the antidiabetic effect of these nutrients has been given by a meta-analysis of 24 randomized
controlled trials, evidencing better glycemic control, serum lipid profile, and systolic blood pressure
among diabetics on high-MUFAs or high-PUFAs plant-based diets over low-fat, high-carbohydrate
ones [43]. Moreover, the abundant intake of MUFAs or PUFAs with olive oil and seeds, in place of
saturated or trans fatty acids, may also reduce the risk of T2D in at-risk patients by up to 83% over a
median of 4.4 years [44], even in the absence of caloric-restriction [45]. As shown in animal model
studies [46–48], PUFAs may ameliorate the adipose tissue’s inflammatory responses, with beneficial
effects on insulin sensitivity [49]. Given that pro-inflammatory cytokines and chemokines, like tumor
necrosis factor alfa (TNF-α), interleukin-6 (IL-6) and resistin, overproduced by the dysfunctional
adipose tissue in obesity, can activate intracellular pathways that trigger IR in insulin-target tissues [15],
the anti-inflammatory potential of PUFAs may indirectly improve the peripheral insulin responsiveness,
reducing the risk of glyco-metabolic alterations in patients with IR [49]. Additionally, PUFAs can bind
and stimulate G-protein-coupled receptors (GPCRs) which play important roles in regulating glucose
metabolism, such as GPR120, thereby leading to increased secretion of the glucagon-like peptide 1
(GLP-1) hormone from enteroendocrine L-cells [50]. By stimulating insulin release from pancreatic
β-cells, with immediate consequences of increased glucose uptake from skeletal muscles, raised GLP-1
levels may in turn limit postprandial hyperglycemia [51]. Also, GLP-1 may influence satiety at central
nervous system level, attenuating appetite sensations and, thus, the amount of food consumed with
meals, so that energy intake does not exceed expenditure. Figure 1 provides a schematic representation
of how PUFAs can influence glycemic control.
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From a diabetes prevention perspective, the GLP-1-releasing effects of PUFAs could be particularly
important, given that obese patients have lower GLP-1 responses to oral glucose than individuals
of normal weight, irrespective of the glycemic status [52,53]. Nonetheless, a large meta-analysis of
controlled trial, has recently evidenced that dietary supplementation with PUFAs may have little or
no effect on TD2 prevention, or measures of IR, in at-risk patients [54]. However, background eating
patterns and total fat intake, which were not reported, could have affected the results. In fact, favorable
effects of substituting unsaturated fatty acids for saturated fatty acids on insulin sensitivity can be
seen only at a total fat intake below 37% of energy [55], whereas higher quantity of fat intake increases
the risk of IR independently of quality. Finally, the positive properties of the MedDiet for prevention
and management of T2D are not confined within selected PUFA- and/or MUFA-enriched functional
foods, but incorporate additional and synergistic benefits from the ingestion of numerous promising
bioactive polyphenol compounds [56], which are currently under investigation.

3. MedDiet Flavonoids for Preventing T2D

Dietary flavonoids represent a large and heterogeneous group of polyphenols ubiquitously found
in daily consumed fruits and wine, as well as vegetables, nuts, cocoa, tea and grain seeds [57]. On the
basis of their chemical structure, flavonoids can be categorized as flavonols, flavones, flavan-3-ols,
anthocyanins, flavanones, and isoflavones [57]. Recently, a meta-analysis of 8 prospective cohort
studies, including a total of 312,015 participants, of whom 19,953 developed T2D during 4–28 years of
follow-up, investigated the role of regular consumption of flavonoids in the prevention of diabetes,
taking into account age, sex, total energy intake, body mass index (BMI), smoking, alcohol intake, and
physical activity [58]. Compared with the lowest exposed group (8.9 to 501.8 mg/day), the group with
the highest intake of total flavonoids (33.2 to 1452.3 mg/day) was associated with a 11% decreased
risk of developing T2D during follow-up. Additionally, the dose-response analysis suggested a 5%
reduction of T2D risk for each 300 mg/day increment of total flavonoids intake [59]. With regard to
flavonoid subclasses, a beneficial effect in reducing the risk of T2D was significant for anthocyanidins,
flavan-3-ols, flavonols, and isoflavones, but not for other subclasses, suggesting that different bioactive
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molecular pathways may be triggered by these nutrient compounds in relation to their chemical
structure. By way of illustration of their speculated pharmacological antidiabetic mechanisms,
we propose the lead berries-extracted quercetin, which acts as the base for the formation of other
flavonol skeletons [57]. Similar to resveratrol, other flavonoids and the biguanide metformin that
is recommended as the first-line intervention for diabetes treatment and prevention, quercetin can
activate the insulin-independent 5′ adenosine monophosphate-activated protein kinase (AMPK)
pathway of skeletal muscle cells, slowing the oxygen consumption of adenosine diphosphate in isolated
mitochondria [59]. Also, quercetin can enhance the uptake of glucose in skeletal myocytes through an
AMPK-dependent up-regulation of glucose transporter GLUT-4, which may occur independently of
the insulin signaling under oxidative stress conditions [60]. In addition to this, several in vitro studies
have confirmed that flavonoids may possess strong inhibitory activities on the intestinal α-glucosidase
enzyme that catalyzes the cleavage of glucose from disaccharides, thereby delaying the absorption of
glucose and flattening postprandial hyperinsulinemic/hyperglycemic excursions [61,62].

4. MedDiet and Extra-Virgin Olive Oil (EVOO)-Derived Secoiridoids for Treating Non-Alcoholic
Fatty Liver Disease (NAFLD)

NAFLD is an excessive fat deposition in the liver in the absence of secondary causes, which
commonly occurs in people with obesity and IR. Estimates of the prevalence of NAFLD range
from 25% in the general population [63] to over 50% in people with T2D [64]. However, the term
“NAFLD” encompasses a wide spectrum of liver diseases, ranging from fat infiltration of the liver with
minimal inflammation, known as steatosis, to nonalcoholic steatohepatitis (NASH), which consists
of a lobular inflammatory cell infiltrate with hepatocyte ballooning in the absence or presence of
fibrosis, to end-stage liver disease or cirrhosis. Approximately 25%–30% of individuals with NAFLD
can progress to NASH [65], whereas the same proportion of individuals with NASH can progress to
cirrhosis and hepatocellular carcinoma, especially those with liver fibrosis [66,67]. However, beyond
liver-related morbidity and mortality, patients with NASH have also an increased risk of CVD and
CVD-related death [68]. Given its high prevalence in the general population and the potential serious
risks on health outcomes, NAFLD should be treated immediately upon diagnosis, encouraging dietary
modifications as the first-line strategy to achieve the loss of 5%–10% of the initial body weight.
In patients with NAFLD, a modest weight loss can produce a significant decrease in liver fat content,
with improved serum aminotransferase activity and beneficial health effects [69,70]. Nonetheless, it is
worth mentioning that different weight loss goals can be set for the management of NAFLD, depending
on the detection of NASH in individual patients. In fact, while for patients with steatosis, loss of 5%–7%
of the initial body weight can suffice, in those with suspected or biopsy-proven NASH higher weight
loss goals (7%–10%) should be recommended [71]. Also, careful attention should be paid to avoid fast
and excessive weight loss in patients with NAFLD. In this regard, very low-calorie diets, providing
about 800 or less kcal per day, are not generally advisable, due to the risk of protein-calorie malnutrition
and potential exacerbation of liver fibrosis and necrosis [72,73]. Although several dietary approaches
could be used for the treatment of NAFLD [74], over the past several years, the Mediterranean one
has attracted special interest. Cross-sectional and longitudinal reports evidenced a lower likelihood
of NASH in patients who were adherent to the MedDiet [75,76], whereas randomized controlled
crossover trials defined the superiority of this diet in the improvement of insulin sensitivity, metabolic
parameters and steatosis over low-fat ones [77,78]. Furthermore, a 6-month nutritional counseling to
adhere to the MedDiet has proved to be effective in the amelioration of certain disease-specific traits,
including liver imaging, liver fibrosis score, inflammatory/oxidative biomarkers and glycemic status
indices in non-fibrotic NAFLD patients [79]. Apart from negative variations in circulating visfatin
levels, the longitudinal phenotype changes were more pronounced among individuals carrying the
signal transducer and activator of transcription 3 (STAT3) rs2293152 “G” allele, which has been linked
with greater NAFLD susceptibility and severity [79]. As such, the MedDiet eating pattern, which is rich
in unsaturated fatty acids and plant-based polyphenols, has recently emerged as the most appropriate
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nutritional approach for NAFLD, gaining the support of the European Association for the Study of
Liver (EASL) and the European Association for the Study of Diabetes (EASD) [80]. EVOO, which is the
major source of fat in the MedDiet, is probably, the main driver of its beneficial effects on liver function
and structure. Several studies, in this context, have investigated the biological activities of polyphenolic
compounds in EVOO, such as oleuropein and its derivative secoiridoids, either in vitro or in vivo,
in experimental animal models [81–84]. Recently, it has been given importance to oleacein, an abundant
lipophilic degradation product of oleuropein, present in EVOO at higher concentration and provided
with an increased bioavailability, due to higher resistance to the acidic gastric environment and better
intestinal absorption [85]. Additionally, the semi-synthesis of oleacein has proven to be sustainable [86],
laying the foundation for the future implementation of novel functional foods and nutraceuticals.
Although this concept is still at early developmental stages, mice on high fat diet (HFD), treated
with 20 mg/day oleacein for 5 weeks, were protected from abdominal fat accumulation, weight gain,
and liver steatosis when compared to untreated controls, with evidence of improved insulin action
on the liver and preserved glucose and lipid homeostasis [87]. Some of the molecular constituents,
that appear to be involved in oleacein action, include some known nutrient-responsive regulators of
lipid metabolism: the transcriptional activator sterol regulatory element-binding transcription factor-1
(SREBP-1), and its target fatty acid synthase (FAS), whose protein levels were significantly reduced
following oleacein treatment in liver and fat [85,87]. Also, phospho-ERK, a serine/threonine kinase
downstream effector of the mitogen-activated protein kinase (MAPK) cascade, was inhibited in liver
tissue of treated mice, thereby suggesting greater responsiveness to insulin and less severity of IR,
in situations of chronic high-fat hypernutrition [88].

5. MedDiet and Purple Plant-Derived Anthocyanin Extracts for Neuroprotection

Increasing evidence is linking adiposity to impaired brain structure, with proof of frontal gray
matter atrophy across all ages in patients with excessive body weight [89,90]. Also, obese individuals
suffering from T2D, have higher levels of cerebrovascular disease, smaller total and regional brain
volumes, decreased cerebral connectivity and metabolic brain networks [91], increased β-amyloid
deposition and tau phosphorylation, accelerated rates of cognitive impairment and, especially in
women, higher risk of developing Alzheimer’s dementia [92]. This latter risk is directly proportional to
the duration and magnitude of hyperglycemia in T2D, but is also detectable in pre-clinical stages of T2D,
during compensatory hyperinsulinemia and peripheral IR. In this context, it has been proposed that in
patients with declining cognitive abilities, from premorbid levels to clinical evidence of dementia, with
or without comorbid T2D, the brain itself becomes insulin resistant. As such, like insulin-sensitive
peripheral tissues, the insulin signaling and cerebral structure may be influenced by dietary energy
content and food composition [93]. Hypocaloric diets and/or diets of higher quality, with low fat and
sugar intakes, are associated with larger brain volumes, better white matter integrity, and better cerebral
health [94] in animal models. Although the human evidence is less consistent, adherence to the MedDiet
may reduce the progression of well-established neuroimaging biomarkers of cognitive impairment,
including β-amyloid deposition and cerebral glucose utilization via positron emission tomography,
and provide 1.5 to 3.5 years of protection against Alzheimer’s dementia, in middle-aged cognitively
normal individuals [95]. Also, cross-sectional studies have found positive associations between higher
adherence to the MedDiet and larger brain volumes [96–98], cerebral connectivity [99], or fewer white
matter lesions [100] at older ages, whereas hypercaloric diets, high in meat, carbohydrate and sugars
intake and low in fish and vegetables contents, are associated with brain atrophy [94] and cortical
thickness [101]. Discrepancies in long-term neurological outcomes between these two nutritional
styles could be, at least in part, explainable by the different amounts of flavonoids, a class of phenolic
compounds widely distributed in plants. In particular, one of the major flavonoid subclasses, known
as anthocyanins, which are responsible of the red, blue, and purple pigmentation of many vegetables
and fruits, have earned significant attention in the context of neurodegenerative diseases [102]. After
entering the brain tissue, anthocyanins tend to accumulate [103–105], with the potential of high local
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bioavailability for neuroprotective actions [105]. The efficacy of anthocyanins has been assessed either
in vitro or in vivo, using various animal models of early-onset Alzheimer’s disease, such as the APP/PS1
double transgenic mouse [106,107], which overexpresses both a mutant human amyloid precursor
protein (APP) and a mutant human presenilin 1 (PS1) and is prone to cognitive impairment due to
increased cerebral deposition of β-amyloid. Treatments with either total anthocyanins extracted from
bilberry and black currant [106] or isolated cyanidin-3-O-glucopyranoside, which is the predominant
anthocyanin in colored fruit and vegetables [107], were able to ameliorate cognitive functions in
APP/PS1 mice. As summarized in Figure 2, the beneficial cognitive effects of anthocyanins are related,
at least in part, to the improvement in processing of beta amyloid and neuroinflammation, which
follows the activation of peroxisome proliferator-activated receptor γ (PPARγ) [106].
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neuroprotection. PPARγ, peroxisome proliferator-activated receptor γ; FFA, free fatty acids.

PPARγ belongs to a nuclear hormone receptor superfamily of ligand-inducible transcription
factors that heterodimerize with the retinoid X receptor (RXR) [108] and bind to peroxisome proliferator
response elements (PPREs) in the promoter region of target genes [109]. Although present in most
cell types, such as vessels, neurons, macrophages, microglia and astrocytes, in which it attenuates the
expression of proinflammatory mediators [110], PPARγ is predominantly expressed in adipocytes,
wherein modulates lipid metabolism in form of release, transport, and storage of free fatty acids
(FFAs) [111,112]. By enhancing the uptake and storage of FFAs in adipose tissue, PPARγ agonists
may decrease ectopic fat accumulation [113], thus preserving non-adipose peripheral tissues from the
wide range of lipotoxicity complications, including IR, liver steatosis, hyperglycemia and CVD [114].
However, peripheral IR is strongly related to brain dysfunction, either due to reduced insulin
transport into the brain [115] or to altered local insulin receptor sensitivity and activation [116].
Notwithstanding a marginal role in neuronal glucose uptake under basal conditions, as it mostly
occurs in an insulin-independent manner, insulin positively regulates the normal brain function,
particularly by enhancing the spatial working memory via the insulin-sensitive glucose transporter
GLUT-4 [117]. In line with these considerations, cyanidin-3-O-glucopyranoside, by acting as a potent
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natural agonist for PPARγ with peripheral and central insulin-sensitizing effects, has been shown not
only to reduce liver fat [118] and fasting glucose concentrations [107] of treated animals, but also to
increase cerebral glucose uptake [107]. Furthermore, promising clinical results about the impact of
anthocyanin consumption in elderly individuals with mild cognitive impairment has emerged recently.
In these patients, the dietary introduction of a daily anthocyanin-rich fruit juice significantly improved
verbal fluency, as well as short-term and long-term memory, over a 12-week period [119], which is
consistent with other reports [120,121]. Nonetheless, it cannot be excluded that some benefits on
cognitive processes may have been caused by detrimental effects of nutritional deficiencies in control
subjects, rather than the surplus consumption of anthocyanins in interventional groups. However,
the incorporation of functional beverages into normal dietary patterns might still be a practical and
convenient strategy to increase the daily intake of phytochemicals with insulin sensitivity-promoting
effects in the general population, closing the gap between the actual vegetable intake and clinical
recommendations [122]. On a different note, the beneficial cognitive effects of the MedDiet in elderly
patients with dementia may be augmented by the isocaloric dietary supplementation of medium-chain
saturated fatty acids in the form of coconut oil, which correlates with an immediate increase of
circulating ketone bodies [123]. Brain exposure to ketone bodies can replace the brain’s normal reliance
on glucose and potentially reverse the pathological alterations of Alzheimer’s disease, ultimately
improving the cognitive performances in affected patients, with a greater impact on women than men,
after only 21 days of coconut oil supplementation [123].

6. MedDiet and Resveratrol in Polycystic Ovary Syndrome (PCOS)

PCOS, characterized by hyperandrogenism, chronic anovulation and/or sonographic evidence of
small cysts in one or both ovaries, is the most common endocrinological disorder among women of
reproductive age and the main cause of female infertility [124]. Although the etiology is still unknown,
obesity, IR and hyperinsulinemia are cardinal features of PCOS [124]. Insulin regulates the ovarian
function through interactions with gonadotropins, and, in case of raised levels, amplifies the luteinizing
hormone (LH)-induced ovarian androgen production, ultimately preventing ovulation [125]. Besides
a well-established role of weight gain in the pathophysiology of IR, there is evidence that ovarian
dysfunction in PCOS may be further enhanced by specific nutritional deficiencies and high dietary
contents of sugar and fat [126,127]. Also, it should be noted that obese women with PCOS-related
infertility have also been shown to engage in inappropriate eating behaviors, which can often interfere
with traditional weight-loss programs [128,129]. On the other hand, in PCOS women, even a modest
weight reduction may exert significant beneficial effects on IR, hyperandrogenism and menstrual
problems, allowing the complete resolution of all symptoms of PCOS in some cases [130]. The adherence
to hypocaloric low-carbohydrate, low-fat diets may induce both short and long-term reductions in
fasting and post-challenge insulin concentrations, as markers of increased insulin sensitivity, that
can over time improve menstrual regularity and reproductive outcomes in obese women with
PCOS [131,132]. Preliminary evidence of positive metabolic and endocrinological outcomes, in terms
of reduced body weight, free testosterone, LH and fasting insulin levels, has been also reported on
a calorie-restricted, very-low carbohydrate, ketogenic diet (VLKD) [133]. On the other hand, it is
still uncertain for how long a very-low carbohydrate dietary pattern can be followed to achieve the
best outcome without resulting in potential safety concerns [133,134]. In contrast, the effects of the
MedDiet on PCOS outcomes have attracted intense interest in the last few years [135,136]. Based
on the current view, the dietary management of PCOS, which relies on energy restriction and a
Mediterranean nutritional approach, is deemed to have a beneficial impact on some reproductive
and metabolic parameters, including menstrual regularity, blood pressure, glucose homeostasis, lipid
profile and estimates of CVD risk [137]. In this context, several dietary biomolecules, widely found
in Mediterranean foods, are postulated to be responsible for the amelioration of distinct PCOS traits.
For example, the polyphenol stilbene derivative resveratrol, found in grape seed, red wine and some
berries, may appease the hyperandrogenic traits of PCOS (Figure 3).
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women over a period of 3 months [138]. Changes in androgen levels could have been explained by 
the direct inhibitory effects of resveratrol on ovarian theca-interstitial proliferation and expression of 
17α-hydroxylase/C17-20-lyase, known as the rate-limiting enzyme in androgen biosynthesis, which 
were demonstrated in in vitro experimental models [139,140]. However, significant decrement in 
insulin concentrations and a consistent increase of insulin sensitivity, in terms of Matsuda insulin 
sensitivity index values, were noted in PCOS women after treatment with resveratrol [138]. Given 
that chronic hyperinsulinemia can stimulate an excessive production of androgens in PCOS women, 
the antiandrogenic effects of resveratrol are probably indirect and driven by the reduction of IR in 
these patients [141–144], in contrast to pharmacologic intervention with metformin [145,146]. 
Disregarding this special effect, the insulin-sensitizing actions of resveratrol are complex and not 
completely elucidated. Part of the pharmacodynamic effects of this stilbene compound could derive 
from its capacity to modulate different pathways and molecular targets, including those downstream 
of the insulin receptor and mediated by AMP-activated protein kinase (AMPK) and sirtuin 1, as 
reported in clinical studies on diabetic patients and rodent models of IR, as well as in vitro 
experimental settings [147–151]. In these studies, treatment with resveratrol has proved to activate 
both fuel-sensors AMPK and sirtuin 1 in insulin-sensitive peripheral tissues, especially skeletal 
muscles. Sirtuin 1 is a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase 
involved in the regulation of mitochondrial biogenesis, inflammation, intracellular metabolism, 
apoptosis and glucose homeostasis, whereas AMPK is a serine/threonine protein kinase complex, 
that, following activation by caloric starvation and ATP depletion, regulates fatty-acid oxidation, 
glucose uptake and mitochondrial function and biogenesis, in partnership with sirtuin 1. Based on 
these considerations, nutritional interventions with AMPK activators, such as resveratrol and other 
plant-based polyphenols, may mimic caloric restriction and secure similar effects on health and 
wellbeing as a calorie-deprived dietary regimen [152], potentially offsetting safety limitations and 
sustainability of long-term very-low-energy diet programs for weight loss, typically encountered in 
clinical practice. 
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In a randomized placebo-controlled trial, treatment with 1500 mg daily of resveratrol significantly
decreased testosterone and dehydroepiandrosterone sulfate excess by ~23% in PCOS women
over a period of 3 months [138]. Changes in androgen levels could have been explained by the
direct inhibitory effects of resveratrol on ovarian theca-interstitial proliferation and expression of
17α-hydroxylase/C17-20-lyase, known as the rate-limiting enzyme in androgen biosynthesis, which
were demonstrated in in vitro experimental models [139,140]. However, significant decrement in
insulin concentrations and a consistent increase of insulin sensitivity, in terms of Matsuda insulin
sensitivity index values, were noted in PCOS women after treatment with resveratrol [138]. Given
that chronic hyperinsulinemia can stimulate an excessive production of androgens in PCOS women,
the antiandrogenic effects of resveratrol are probably indirect and driven by the reduction of IR in these
patients [141–144], in contrast to pharmacologic intervention with metformin [145,146]. Disregarding
this special effect, the insulin-sensitizing actions of resveratrol are complex and not completely
elucidated. Part of the pharmacodynamic effects of this stilbene compound could derive from its
capacity to modulate different pathways and molecular targets, including those downstream of the
insulin receptor and mediated by AMP-activated protein kinase (AMPK) and sirtuin 1, as reported
in clinical studies on diabetic patients and rodent models of IR, as well as in vitro experimental
settings [147–151]. In these studies, treatment with resveratrol has proved to activate both fuel-sensors
AMPK and sirtuin 1 in insulin-sensitive peripheral tissues, especially skeletal muscles. Sirtuin 1 is a
nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase involved in the regulation of
mitochondrial biogenesis, inflammation, intracellular metabolism, apoptosis and glucose homeostasis,
whereas AMPK is a serine/threonine protein kinase complex, that, following activation by caloric
starvation and ATP depletion, regulates fatty-acid oxidation, glucose uptake and mitochondrial
function and biogenesis, in partnership with sirtuin 1. Based on these considerations, nutritional
interventions with AMPK activators, such as resveratrol and other plant-based polyphenols, may
mimic caloric restriction and secure similar effects on health and wellbeing as a calorie-deprived dietary
regimen [152], potentially offsetting safety limitations and sustainability of long-term very-low-energy
diet programs for weight loss, typically encountered in clinical practice.
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7. MedDiet and Nutrient–Gene Interactions in the Modulation of Breast Cancer Risk

A large body of epidemiological evidence indicates an association between T2D and increased
risk of developing some common female malignancies, including breast, endometrial and ovarian
cancers [7,153]. Also, even in non-diabetic populations, the presence of obesity-related IR can increase
the risk of malignancies in both premenopausal and postmenopausal phases of a woman’s life [154].
Breast cancer is the most commonly occurring cancer (over 2 million incident cases in 2018) in women,
and the second most diagnosed cancer overall, following lung cancer [155,156]. Breast malignancies are
also the leading cause of worldwide cancer mortality (626,679 cancer deaths in 2018) in women [155].
Modifiable lifestyle risk factors can play a critical role in cancer prevention [157]. In this respect, several
clinical investigations have demonstrated the role of regular, long-term consumption of plant-based
diets in reducing breast cancer risk. In a case-control Spanish study [158], adherence to the MedDiet
was related to a lower risk [odds ratio (OR) for the top quartile vs. the bottom quartile 0.56 (95%
confidence interval (CI) 0.40–0.79)] of breast cancer/overall risk for the top quartile vs. the bottom
quartile 0.56 (95% CI 0.40–0.79), whereas adherence to a Western dietary pattern was related to a higher
risk [OR for the top vs the bottom quartile 1.46 (95% CI 1.06–2.01)], especially in premenopausal women.
Higher consumption of fruits, vegetables, legumes, oily fish, and EVOO significantly decreased the risk
of mammary neoplasms, and in particular the most aggressive triple-negative (ER-, PR- and HER2-)
subtype [158]. However, stronger evidence for primary chemoprevention of breast malignancies
with frequent consumption of EVOO is provided by a prespecified outcome of the PREvención
con DIeta MEDiterránea (PREDIMED) trial [159]. After a median follow-up of 4.8 years, on 4282
postmenopausal women, 35 incident cases of breast cancer were identified. The observed incidence
rates (per 1000 person-years) of breast cancer were 1.1 for the EVOO-enriched MedDiet group, 1.8 for
the nuts-enriched MedDiet group, and 2.9 for the control group [159]. Epidemiological studies assessing
the potential health benefits of nutritional interventions have generally investigated the occurrence
of individual events as an outcome (e.g., incidence of cancer). Nonetheless, the frequent clustering
of cancer and cardiometabolic diseases within the same individual indicates common etiological
pathways, in which IR and inflammation are of paramount importance [160,161]. Recently, a large
prospective European cohort study [162] investigated the association between lifestyle factors and risk
of cancer-cardiometabolic multimorbidity, defined as developing subsequently at least two morbidities,
including first cancer at any site (apart from non-melanoma skin cancer), CVD and T2D. Among the
291,778 participants, after a median follow up time of 10.7 years, 22,185 primary cancers, 9016 CVD
events and 10,295 newly diagnosed T2D cases were identified. As expected, adiposity was strongly
associated with risk of developing a first chronic, IR-related disease, especially T2D, with a hazard ratio
(HR) of 2.13 (95% CI, 2.1 to 2.17) per 5% increases in BMI, and more weakly with CVD (HR 1.20 [95%
CI, 1.17 to 1.23]) and cancer (HR 1.03 [95% CI, 1.01 to 1.05]) [162]. The 10-years absolute risk estimates
for developing multimorbidity ranged between 5 and 17% among cancer patients, and between 20 and
40% among T2D and CVD patients, depending on gender and pre-diagnostic adherence to healthy
lifestyle habits. Adherence to the MedDiet reduced the risk of developing CVD and T2D among
cancer patients, with a HR of 0.89 (95% CI, 0.81 to 0.97). The beneficial effects of a healthy lifestyle,
inclusive of healthy eating habits, in reducing the risk of cancer-cardiometabolic multimorbidity, were
particularly marked in patients developing cancer in sites with high 5-year survival rates [162]. These
findings are consistent with cross-sectional studies [163] and earlier small cohort investigations [164]
that found positive associations between cancer-cardiometabolic multimorbidity and smoking, high
alcohol consumption, low physical activity, low fruit and vegetable intake and obesity, supporting
World Health Organization (WHO) recommendations for public-health policy to adhere to multiple
healthy lifestyle factors for a better prognosis of cancer, CVD and T2D [165]. In addition, an updated
meta-analysis of 14 cohort and 18 case-control observational studies has reviewed and summarized the
evidence on the association between different dietary patterns and breast cancer risk [166]. The pooled
analysis resulted in a positive association between adherence to Western diet and breast malignancies
in post-menopausal women, whereas adherence to a “prudent” dietary pattern, that complies well with
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WHO healthy eating recommendations and rich in vegetables, fruit, fish, poultry and low-fat dairy
products, was associated with reduced risk (−23%) of breast malignancies in premenopausal women.
However, adjustment for BMI attenuated the magnitude of the correlation between Western diet and
risk of breast cancer, suggesting that this eating pattern increases the oncological risk indirectly, through
promotion of obesity and consequent adipose tissue dysfunction [7,167]. After menopause, when the
ovarian production of estrogens ceases, the adipose tissue remains the major source of circulating
estrogens, mainly in the form of estradiol. Obese postmenopausal women have both relatively high
serum levels of estradiol and an increased risk of breast cancer, particularly the estrogen/progesterone
receptor-dependent (ER+ and/or PR+) subtype [7,168]. As a corollary, adherence to a prudent dietary
pattern was significantly associated with a lowered risk of both ER+ and/or PR+ and ER− and PR−
breast tumors [166]. Overall, these findings support the role of plant-based diets in regulating not only
molecular mechanisms involved in estrogen metabolism, but also other cell signaling transduction
pathways and gene expression patterns, which could be either upstream or downstream of the insulin
receptor (INSR) signal.

INSR is predominantly involved in the regulation of glucose metabolism in response to insulin
and is expressed at high levels in the classical insulin target tissues muscle, adipose tissue and liver,
whereas in epithelial cells, it is usually expressed at low levels [169]. INSR overexpression, which
occurs in human breast cancer and other epithelial tumors, independently of ER status, remarkably
increases the response to circulating insulin, especially when the hormone is abnormally high, as in
obesity and T2D. In these circumstances, INSR can exert its oncogenic potential, by directly affecting
cell metabolism and/or by synergizing with other oncogenes, with adverse impact on tumor growth
and differentiation [169]. The high-mobility group A1 protein (HMGA1) is as a crucial regulator of
INSR gene transcription, which directs the assembly of a transcriptionally active multiprotein-DNA
complex on the INSR gene promoter [169,170]. As demonstrated by our group [169], the physical and
functional cooperation between the transcription factor AP2 and HMGA1 is a fundamental prerequisite
for INSR overexpression in neoplastic breast tissues. In addition, breast cancer growth can take
advantage of systemic metabolic effects linked to HMGA1-regulated genes in organs distant from
the tumor site, reinforcing the close relationship between cancer and abnormal glucose metabolism.
HMGA1 regulates both insulin transcription in pancreatic β-cells and expression levels of IGF1-binding
proteins involved in glucose disposal in peripheral tissues [170,171], other than a variety of adipokines
related to IR and genes relevant for cholesterol biosynthesis [171,172]. Although no data are currently
available regarding a potential overlap between cancer and T2D [172], HMGA proteins are also
implicated in the multistep processes of tumorigenesis and are susceptible of microRNAs-dependent
suppression in normal tissues [173]. Epigenetic silencing of specific microRNAs, such as microRNA-15,
microRNA-16, microRNA-26a, microRNA-196a2 and Let-7a, via DNA methylation and histone
modification, may lead to increased expression levels of HMGA1 and HMGA2 proteins, likely
contributing to tumorigenesis [173]. As concerns possible mechanisms for a chemopreventive role of
the MedDiet, several in vitro [174] and in vivo [175,176] studies have described dramatic changes in the
transcription of genes and micro-RNAs involved in the pathophysiology of cardiometabolic diseases
and cancer, following EVOO interventions. In particular, the acute intake of 50 mL of polyphenol-rich
EVOO [175] has been proved to alter the transcriptional regulatory network associated with glucose
and lipid metabolism in peripheral blood mononuclear cells, and this paralleled the beneficial effects
on glucose and HOMA-IR. Interestingly, the cAMP response element binding protein (CREB) binding
protein gene (CREBBP) was downregulated following acute EVOO intervention, in both normal weight
and obese individuals [175]. CREBBP catalyzes the acetylation of HMGA1 [177] and histone H2B [178],
exerting a modulatory effect on HMGA1-linked transcriptional programs in breast cancer cells. Also,
given that one of the genes modulated by EVOO is the argonaute RISC catalytic component 2 (AGO2),
a master regulator of microRNAs biogenesis and protein synthesis, it is unsurprising that microRNA
expression could be also affected by EVOO, with pleiotropic consequences on IR, inflammation and
tumorigenesis [175].
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8. Influence of Polyphenols on Endothelial Dysfunction and Atherosclerosis

Endothelial dysfunction is a key initiating event in the vascular remodeling processes that lead
to atherosclerosis, as well as one of the earliest signs of IR [179]. Clinical studies have evidenced an
impaired endothelium-dependent dilatation in both T2D patients [180] and related high-risk conditions,
including obesity, prediabetes or first-degree familial history of diabetes [181–183]. According to
current understanding, endothelial dysfunction is associated with oxidative stress and reduced
nitric oxide bioavailability, increased anticoagulant properties and platelet aggregation, increased
expression of adhesion molecules (i.e., P- and E-selectin, intercellular adhesion molecule-1 (ICAM-1) and
leukocyte adhesion molecules [i.e., vascular cell adhesion molecule-1 (VCAM-1), increased secretion
of proinflammatory chemokines (monocyte chemotactic protein (MCP-1), and cytokines (i.e., IL-1b,
IL-6, IL-8, TNF-a)] [184,185]. A systematic review and meta-analysis [186] reported that a regular
consumption of EVOO (approximately between 1 and 50 mg daily) could favorably affect circulating
inflammatory biomarkers, known as acute-phase reactants, and the flow-mediated vasodilation, thus
contributing to the CVD protective effects of the MedDiet, observed in epidemiological studies [37,38].
Major phenolic compounds within EVOO, such as hydroxytyrosol and oleuropein, can directly target
and inhibit the expression of cytokines, chemokines and adhesion molecules, induced by inflammatory
stimuli, in human endothelial in vitro systems, via blocking the signaling of nuclear factor-kB (NF-kB),
which is a critical regulator of the inflammatory response [187]. However, in a synergistic cooperation
with endothelial cells, smooth muscle cells (SMCs) perform also essential functions in sustaining
vascular homeostasis, so that their reciprocal interactions may represent novel therapeutic targets
for anti-atherogenic interventions [188]. Normally, differentiated SMCs within adult blood vessels
proliferate at extremely low rates and produce only a small amount of extracellular matrix components,
displaying a contractile phenotype [189]. Nonetheless, under pathophysiological conditions, such
as vascular remodeling after endothelial dysfunction, or immunological and mechanical damage,
vascular SMCs switch to a de-differentiated, proliferative, and secretory phenotype, which facilitates
their ability to migrate to the intima and contribute to the development of atherosclerotic lesions [189].

The architectural transcription factor HMGA1 is a master regulator of the vascular SMCs
phenotypic switch that follows vessel wall injury and release of proinflammatory cytokines [6,190,191].
In addition, covering a broad spectrum of mechanistic roles in IR, glucose homeostasis, lipid metabolism
and atherogenesis, HMGA1 has been recently proposed as a convincing molecular link between two
overlapping pathological traits, such as T2D and CVD [6], other than a potential intervention target
for multiple IR-related diseases [172]. In skeletal myocytes, which are the main determinants of
insulin sensitivity in humans, saturated fatty acid-induced IR can be rescued by a plant-derived
polyphenol through an HMGA1-mediated mechanism [192]. Saturated fatty acids impair insulin
biological activity through a kinase independent phosphorylation of the isoform ε of protein kinase C
(PKCε) enzyme, which, in its phosphorylated form, migrates to the nuclear region and phosphorylates
HMGA1. Phospho-HMGA1 interacts with positively charged histones in heterochromatin regions,
reducing its occupation of the INSR promoter, and thus, negatively affecting INSR protein expression.
In in vitro models of differentiated skeletal myocytes, polyphenol ferulic acid can reduce the activation
and nuclear migration of PKCε, induced by saturated fatty acids, and secure the transactivating
potential of HMGA1 on INSR gene, thus preserving a normal downstream insulin signaling [192].
On the other hand, ferulic acid is also able to attenuate IR in adipocytes of HFD-fed mice, by targeting
different pathways, such as those mediated by fetuin-A and NF-kB, ultimately reducing the secretion
of proinflammatory cytokines with favorable consequences on the glyco-metabolic status [192]. It is
conceivable that other plant-based dietary polyphenols concurrently interact with HMGA1 and NF-kB
functions, but their biological activities are likely to be cell type or tissue-dependent, opening a yet
unexplored potential for CVD prevention. Figure 4 provides a schematic representation of how
polyphenols and saturated fatty acids might influence HMGA1-mediated gene transcription, with
divergent effects on glycemic control, tumorigenesis and atherosclerosis.
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9. MedDiet, EVOO and EVOO-Derived Polyphenols on Hypertension 

Hypertension, defined as blood pressure (BP) consistently higher than 130/80 mmHg, according 
to the most recent American Heart Association guidelines, is the main risk factor for CVD and all-
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9. MedDiet, EVOO and EVOO-Derived Polyphenols on Hypertension

Hypertension, defined as blood pressure (BP) consistently higher than 130/80 mmHg, according to
the most recent American Heart Association guidelines, is the main risk factor for CVD and all-cause
mortality [193]. Promoting a healthful lifestyle is a critical first-line strategy for reducing hypertension
and its adverse CVD outcomes [193]. However, if targeting whole food combinations in a dietary
pattern may have synergistic and cumulative effects on BP over individual foods and nutrients [194],
this is even more pronounced for the MedDiet, which offers considerable and secure benefits against
the risk of hypertension and CVD. A large cross-sectional study from Tuscany, Central Italy, showed
inverse significant associations between specific Mediterranean-based eating patterns, and systolic
(SBP) and diastolic blood pressure (DBP) values in non-hypertensive adults [195]. The favorable effects
of the MedDiet on BP have been also demonstrated in specific patient groups with multiple CVD risk
factors. The milestone interventional PREDIMED trial verified that the MedDiet supplemented with
olive oil or nuts could reduce DBP by 22,121.5 mmHg and −0.7 mmHg, respectively, in comparison
to a low-fat diet over 4 years in patients with high CVD risk [196]. More recently, the large 1-year
multicentric New Dietary Strategies Addressing the Specific Needs of Elderly Population for Healthy
Aging in Europe (NU-AGE) trial assessed the effects of a Mediterranean-based dietary intervention,
with specific nutritional advices adapted for adults over 65 years of age, counting of high intakes of
whole grains, protein (from low-fat dairy, lean meat and fish), low intakes of sodium and vitamin D
supplementation (10 µg/day), on BP and vascular stiffness in this special population [39]. Specifically,
at 1-year follow-up, SPB decreased by −4.7 mmHg (95% CI, −7.8 to −1.5) in the interventional group,
whereas in control group participants, requested to continue with their usual eating habits, a 0.9 mmHg
(95% CI, −2.2 to 4.1) SBP increase was observed [39]. Congruous with the observation that in older
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adults SBP is a more robust CVD risk factor than DBP, and that aging is associated with structural
and functional changes in the vascular wall that increase arterial stiffness and SBP, the NU-AGE
study found no difference in DPB, following nutritional intervention [39]. In addition, marked gender
differences were observed in response to the MedDiet in this study, with reduced SBP in males, and
decreased arterial stiffness, but not peripheral BP, in females, which agrees with arterial structure
dimorphisms and hormonal influences on BP [39]. However, discrepancies in CVD effects of nutritional
interventions, may also arise from gender-specific pharmacokinetics of phenolic compounds contained
within foods and dietary supplements [197], which is similar to that of cardiovascular-protective
antidiabetic drugs [53]. Although the CVD influence of the MedDiet is mediated by the combination
of different foods and healthy lifestyle habits, some specific polyphenol-rich dietary components
might be more effective than others in modulating BP and conferring vasoprotection, particularly on a
background of IR. EVOO with high polyphenols is probably the most important food from this point
of view, being able to improve body composition and reduce BP in obese hypertensive women [198].
The anti-hypertensive actions of EVOO, and EVOO-related functional compounds, appear to be
related to an increased endothelial synthesis of nitric oxide (NO), a potent vasodilator [198,199],
which is disrupted in carriers of Glu298Asp polymorphism in the endothelial NO synthase (eNOS)
gene [200] as well as under IR conditions [201], together with a decreased endothelial synthesis of the
vasoconstrictor endothelin (ET-1) [199]. The NO/ET-1 unbalance, which alters the vascular tone and
drives hypertension, can be induced by increased plasma levels of FFAs and glucose, two well-known
features of IR states [201]. In endothelial in vitro models, hydroxytyrosol and the total polyphenolic
extracts from EVOO partially reversed the intracellular NO levels that were reduced by elevated
medium concentrations of glucose and FFAs [199]. These effects were related to a positive modulation
of insulin signaling, that, via PI3K/Akt, is considered a critical regulator of eNOS phosphorylation and
activity [199].

10. MedDiet, EVOO and EVOO-Derived Polyphenols on Lipid Abnormalities

There is compelling longstanding evidence that dyslipidemia is a major modifiable risk factor
for the development and progression of CVD [202]. It has been also recognized that, irrespective
of T2D, a complex interplay between IR and plasma lipid abnormalities exists, and this could be a
novel target for cardioprotective interventions [203]. Indeed, insulin-sensitizing dietary approaches
have a significant impact on lipid metabolism and CVD risk and should be recommended for
cardiovascular prevention [202]. In particular, the PREDIMED trial demonstrated beneficial effects of
the EVOO-enriched MedDiet on primary prevention of CVD in at-risk individuals, which appears
to be related, at least in part, to an improved and less atherogenic lipid profile, in terms of resistance
against oxidation, size and cytotoxicity of low-density lipoprotein (LDL) particles [204]. In this regard,
it has been highlighted that oxidized LDL particles might play a role in atherosclerosis onset and
progression, given their ability to induce endothelial dysfunction and macrophagic transformation
into foam cells, following phagocytosis of LDLs [204,205]. Also, compared to normal size LDL, small
LDL particles possess decreased affinity for LDL receptors and have a longer permanence in the
bloodstream, where are easily oxidized, becoming more capable to traverse the endothelial barrier [206].
Considering that high concentrations of small LDL lipoproteins are associated with a greater incidence
of atherosclerosis and CVD events [207], it is plausible that the cardioprotective effects of EVOO
are related to increased LDL size and resistance against oxidation, which are all consequences of its
polyphenolic content and antioxidant capacity [208]. Beside PREDIMED, several studies have shown a
decrease in the ability of LDL to be oxidized after consumption of polyphenol-rich EVOO [209,210],
although the true contribution of such modifications to CVD risk reduction remains elusive [208].
In addition, randomized controlled trials have reported a dose-dependent increment in high-density
lipoprotein (HDL) levels with EVOO [211,212], and these, contrary to LDL species, are strongly
inversely associated with CVD [213]. The antiatherogenic functions of high-density lipoproteins (HDLs)
have been investigated in terms of both plasma concentrations and cholesterol efflux capacity (CEC),
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the latter expressing the ex vivo ability of an individual’s HDL to promote cholesterol efflux from
macrophages in cell culture [213]. In this regard, when compared to a low-fat diet, adherence to
either EVOO-enriched or nut-enriched MedDiet was associated with a trend of decrement in HDL
levels, along with a significant increase in CEC [214], which was linked to a reduced risk of first CVD
events [214]. Given the similar effects of EVOO and nuts supplementations on HDL quality, it is
quite possible that this is an added value of the MedDiet, that focuses on whole foods and nutrients
combination. More recently, a cross-sectional analysis of the baseline data of overweight and obese
participants enrolled in the PREDIMED-Plus trial emphasized the effects of dietary polyphenol intake
and polyphenol subclasses on individual components of the metabolic syndrome, including, among
others, plasma lipid abnormalities [215]. Positive associations were found between HDL levels and
all polyphenol classes except for phenolic acid and lignan intake [215]. Similar positive associations
between HDL and total polyphenol intake were also found in patients with T2D [216], and elderly
non-diabetic patients at high CVD risk [217], reinforcing the protective or therapeutic effects of the
MedDiet on lipid abnormalities under different IR-related situations.

11. MedDiet and Management of Chronic Kidney Disease (CKD)

CKD, a condition characterized by a gradual loss of kidney function until severe insufficiency
and need of replacement therapy, is associated with a high risk of CVD and CVD-related mortality,
even in non-diabetic patients [218]. The strong relationship between CKD and CVD can be explained
with the notion of shared inflammatory and glycometabolic abnormalities, frequently related to IR,
as mutual risk factors. In the last decades, insulin action defects have been reported in the early stages of
CKD [219,220] as well as in CKD progressors [221], and it has been proposed that IR can promote kidney
damage through hemodynamic mechanisms, including a sympathetic nervous system overactivity,
increased sodium retention, glomerular hyperfiltration and elevated vascular permeability [222].
CKD is also considered a major risk factor for IR development, given the unbalance of circulating
pro-inflammatory cytokines and adipokines that follows the reduction in kidney function. In particular,
leptin accumulates to a larger extent than adiponectin in CKD, and this highly abnormal ratio may favor
the onset of IR and metabolic disorders [223,224]. However, recently, the Chronic Renal Insufficiency
Cohort (CRIC) study [225] questioned the causal link between IR and progression of CKD in absence of
diabetes. In this large prospective observational cohort study, enrolling 3939 non-diabetic patients with
CKD from the United States, there were no significant association between baseline HOMA-IR and
CKD progression, atherosclerotic CVD event, or all-cause mortality during 10 years of follow-up [225].
On the other hand, previous reports on CKD demonstrated a more severe reduction of kidney function
in patients with IR [226,227], so that the available evidence in this context remains inconclusive. Also,
it cannot be excluded that different dietary management could have confounded the results. In this
regard, emerging evidence suggests that fruit and vegetable-rich diets, such as the MedDiet, may be
helpful to delay CKD progression and prevent complications [228]. Based on these considerations, the
MedDiet has been recently promoted by the European Renal Association–European Dialysis Transplant
Association (ERA-EDTA) as the most appropriate choice for the nutritional management of CKD [229].
Protein intake in the MedDiet is very close to that of traditional controlled protein diets for CKD (~0.8
g/kg/day). Also, in Mediterranean Countries, red meat and processed meats are consumed less than
vegetables, fish and white meat, and this may convey a lower amount of dietary sodium, phosphate
and potassium, which represent a major concern in patients with CKD due to an intrinsic risk of
water-electrolyte decompensation [229]. A lower consumption of dairy, red meat and meat processed
products would also reduce the proinflammatory saturated fatty acid intake, possibly ameliorating the
atherogenic lipid levels and systolic blood pressure [230], where the abundant supply of dietary fiber
would mitigate the systemic inflammatory milieu. Indeed, the Third National Health and Nutrition
Examination Survey (NHANES III) showed that the total dietary fiber intake was low in most cohort
participants (median 14.5 g of fiber/day), and higher dietary fiber consumption was associated with
lower serum levels of C reactive protein, a widely used clinical marker of inflammation, and lower risk
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of mortality in the subpopulation with CKD. Specifically, each 10 g/day increase in total dietary fiber
reduced the risk of mortality by 17% in this population [231]. However, as underlined by ERA-EDTA
itself, the high consumption of fresh fruits and vegetables typical of the Mediterranean traditions and
culinarian style, enhances the risk of hyperkalemia in advanced stages of CKD, so that low potassium
alternatives or boiling cooking methods should be still cautiously considered when adapting the
MedDiet to patients with reduced kidney function [229].

Clinical and preclinical evidences on the role of the MedDiet and its functional compounds
against IR and IR-related diseases, which have been discussed in this review, are reassumed in Tables 1
and 2, respectively.
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Table 1. Summary of clinical studies assessing the efficacy of MedDiet and nutritional supplements against IR and IR-related diseases.

Design Subject Diet/Supplement Main Findings Ref.

Prospective
cohort study

1302 patients with
CVD MedDiet Higher adherence to the MedDiet was associated with a lower all-cause and CVD

related-mortality rate (−27% and −31%, respectively) over 3.78 years of follow up. [37]

Prospective
cohort study

22,043 adults free of
cancer, T2D or CVD MedDiet

Higher adherence to the MedDiet was associated with a lower all-cause, cancer and
CVD related-mortality rate (−25%, −24% and −33%, respectively) over 44 months of
follow up.

[38]

RCT 1294 elderly adults MedDiet adapted for the
adults ≥65 years of age

After 1-year follow up, adherence to the MedDiet was associated with decreased levels
of SPB (−4.7 mmHg), whereas in control group participants, requested to continue with
their usual eating habits, SBP increased by 0.9 mmHg. Differences in SBP between
groups were significant for males, but not for females.

[39]

Prospective
cohort study

12,168 middle-aged
adults without CVD Plant-based diets

Higher adherence to an overall plant-based diet, or a provegetarian diet, was associated
with a lower risk of CVD-related and all-cause mortality (−19% and −11%, respectively)
over 19 years of follow up.

[42]

Metanalysis of
RCTs

1460 patients with
T2D

MUFA-enriched diets vs.
CHO-enriched diets

High-MUFA diets were associated with significant reductions in fasting plasma glucose
(WMD −0.57 mmol/L), triglycerides (−0.31 mmol/L) body weight (−1.56 Kg), and SBP
(−2.31 mmHg) along with significant increases in HDL cholesterol (0.06 mmol/L) when
compared to high-CHO diets.

[43]

Prospective
cohort study

13,380 adults
without T2D MedDiet

Higher adherence to the MedDiet was associated with lower incidence of T2D over 4.4
years of follow up. A two-point increase in the adherence score was associated with a
35% relative risk reduction of developing T2D.

[44]

RCT
418 middle-aged and

elderly adults
without T2D

EVOO-enriched (1
L/week) MedDiet vs.

nut-enriched (30 g/day)
MedDiet vs. low-fat diet

Adherence to both EVOO-enriched and nut-enriched MedDiets were associated with
lower incidence of T2D over a median 4-year follow up (HR of T2D 0.49 and 0.48,
respectively) when compared to low-fat diet.

[45]

Metanalysis of
RCTs

121,070 patients with
T2D or at risk for

T2D

Individual or total PUFA
supplements

PUFA supplements had little or no effect on likelihood of T2D diagnosis (RR 1.00) or
measures of glucose metabolism and IR (mean differences in HbA1c −0.02%; plasma
glucose 0.04 mmol/L; fasting insulin 1.02; HOMA-IR 0.06).

[54]

Metanalysis of
prospective

cohort studies

312,015 adults
without T2D

High (33.2 to 1452.3
mg/day) vs. low (8.9 to

501.8 mg/day) total
flavonoid intake

High total flavonoid intake was associated with decreased risk (−11%) of developing
T2D during 4–28 years of follow-up, when compared to a low intake. Each 300 mg/day
increment in flavonoids consumption was associated with 5% reduction in T2D risk.
The protective effect was significant for anthocyanidins, flavan-3-ols, flavonols, and
isoflavones.

[58]



Nutrients 2020, 12, 1066 18 of 37

Table 1. Cont.

Design Subject Diet/Supplement Main Findings Ref.

Cross-sectional 58 patients with
NAFLD MedDiet

Higher adherence to the MedDiet was negatively correlated to serum liver enzymes,
fasting insulin, HOMA-IR and NAFLD severity, and positively correlated to serum
adiponectin levels. Patients with NASH exhibited lower adherence to the MedDiet
compared to those with simple steatosis.

[76]

Crossover RCT 12 patients with
NAFLD

MedDiet vs. low-fat high
CHO diet

A 6-week MedDiet intervention enhanced the relative reduction in hepatic steatosis
(−39 ± 4%) when compared to a low-fat high CHO diet (−7 ± 3%). Insulin sensitivity,
assessed by hyperinsulinemic clamp, improved significantly with the MedDiet
intervention, but not with the control diet.

[77]

RCT
98 patients with
moderate-severe

NAFLD

Low-glycemic index
MedDiet

Adherence to a low-glycemic index MedDiet significantly reduced the NAFLD score
(−4.14) within 6 months. [78]

Prospective
intervention

study

44 patients with liver
steatosis MedDiet

Adherence to the MedDiet was associated with significant amelioration of clinical,
biochemical, and inflammatory biomarkers of NAFLD after 24 weeks. STAT3 rs2293152
G-carriers experienced more beneficial changes at the end of the dietary intervention.

[79]

Prospective
cohort study

70 cognitively
normal middle-aged

adults
MedDiet

Lower adherence to the MedDiet was associated with progressive AD biomarkers
abnormalities, including lower FDG-PET glucose metabolism, and higher β amyloid
load in AD-affected brain regions.

[96]

Cross-sectional

4447 adults without
dementia or

cerebrovascular
disease

High quality vs. low
quality diets

High quality diets, with high consumption of vegetables, fruit, whole grains, nuts, dairy,
and fish and low intake of sugar-containing beverages, were related to larger brain
volumes, gray matter volumes, white matter volumes, and hippocampal volumes.

[97]

RCT
49 elderly patients

with mild to
moderate AD

Anthocyanin-rich cherry
juice (200 mL/day)

Twelve-week intervention with cherry juice was associated with significant
improvements in verbal fluency, short-term memory, long-term memory and SBP levels
when compared to the control group. Markers of inflammation (CRP and IL-6) were
unchanged.

[119]

RCT
12 elderly patients

with mild cognitive
impairment

Flavonoids-rich concord
grape juice (6–9

mL/Kg/day)

Twelve-week intervention with flavonoids-rich concord grape juice was associated with
improvement in verbal learning and non-significant enhancement of verbal and spatial
recall. A small increase in fasting insulin was also observed.

[120]
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Table 1. Cont.

Design Subject Diet/Supplement Main Findings Ref.

RCT 44 elderly patients
with AD

Coconut oil-enriched
(40 mL/day) MedDiet

After 21 days of intervention with coconut oil-enriched MedDiet, improvements in
episodic, temporal orientation, and semantic memory were observed, and these were
more pronounced in women with mild-moderate disease.

[123]

Cross-sectional 112 treatment-naïve
women with PCOS MedDiet

PCOS women showed higher testosterone levels, Ferriman–Gallwey/hirsutism score,
fasting insulin, fasting glucose levels and HOMA-IR when compared with control
healthy women. Despite no differences in energy intake, PCOS women consumed less
EVOO, legumes, fish/seafood, and nuts with a higher quantity of simple carbohydrate,
total fat, SFA when compared to controls. In PCOS women, adherence to the MedDiet
was negatively associated with testosterone levels.

[135]

Prospective
cohort study

259 healthy
premenopausal

women
MedDiet

Adherence to the MedDiet was associated with decreased plasma biomarkers of
lipoperoxidation and oxidative stress, such as 8-iso-PGF2α and 9-HODE, and increased
levels of ascorbic acid.

[137]

RCT 34 women with
PCOS

1500 mg/day of oral
micronized

trans-resveratrol

After 3 months, resveratrol treatment led to a significant decrease of total testosterone,
dehydroepiandrosterone sulfate and fasting insulin (−23.1%, −22.2%, and −31.8%,
respectively), along with an increase of the Insulin Sensitivity Index (66.3%), when
compared to placebo.

[138]

RCT 50 patients with
NAFLD 500 mg/day of resveratrol After 12 weeks, resveratrol supplementation reduced liver enzymes and steatosis

significantly more than placebo. BP, IR markers or body weight remained unchanged. [143]

Metanalysis of
RCTs

283 patients with
T2D

8–3000 mg/day of
resveratrol

Treatment with resveratrol significantly improved fasting plasma glucose (−0.29 mmol),
insulin levels (−0.64 U/mL), HOMA-IR (−0.52), SBP and DBP (−0.58 and −0.43 mmHg,
respectively) when compared to placebo. Subgroup analysis revealed that resveratrol
supplementation doses ≥ 100 mg/day were associated with more favorable results.

[151]

Case-control

1017 women newly
diagnosed with

breast cancer, and
1017 healthy

matched controls

MedDiet

Compared with controls, women with incident breast cancer were more likely to adhere
to a high-energy Western diet. Adherence to the MedDiet was associated with
decreased risk of breast cancer (OR 0.56), that was more pronounced for triple-negative
tumors (OR 0.32), whereas adherence to the Western diet was related to a higher risk
(OR 1.46), especially in premenopausal women.

[158]

RCT
4152 women at high

CVD risk without
breast cancer

EVOO-enriched
(1 L/week) MedDiet vs.
nut-enriched (30 g/day)

MedDiet vs. low-fat diet

After a median follow up of 4.8 years, breast cancer rates (per 1000 person-years) were
1.1 for the EVOO-enriched MedDiet, 1.8 for the nut-enriched MedDiet, and 2.9 for the
control low-fat diet, with adjusted HR for the EVOO-enriched and nut-enriched
MediDiets of 0.32 and 0.59, respectively.

[159]
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Table 1. Cont.

Design Subject Diet/Supplement Main Findings Ref.

Prospective
cohort study

291,778 middle-aged
adults free of cancer,

T2D, CVD
MedDiet

After a median cohort follow up of 10.7 years, 22,185 primary cancers, 9016 CVD events
and 10,295 new cases of T2D were identified. Adherence to the MedDiet significantly
reduced the risk of developing CVD and T2D multimorbidity among cancer patients,
with a HR of 0.89.

[162]

Metanalysis of
observational

studies

43,285 women with
breast cancer

Prudent diet vs. western
diet

Adherence to a prudent diet was associated with 23% reduced risk of breast cancer in
premenopausal women, irrespective of the hormonal receptor status. Adherence to the
Western diet resulted in 20% increased risk of ER+ and/or PR+ breast cancer in
post-menopausal women.

[166]

RCT
7447 middle-aged

and elderly patients
at high CVD risk

EVOO-enriched
(1 L/week) MedDiet vs.
nut-enriched (30 g/day)

MedDiet vs. low-fat diet

After a median follow up of 4 years, the percentage of participants with controlled BP
increased in all groups. However, adherence to EVOO-enriched and nut-enriched
MedDiets was associated with significantly lower DBP values (–1.53 and –0.65 mmHg,
respectively) when compared to the control low-fat diet.

[196]

RCT 41 overweight young
adult women

EVOO-enriched
(25 mL/day) vs. soybean
oil-enriched (25 mL/day)
energy restricted normal

fat diet

After 9 weeks, adherence to the EVOO-enriched diet was associated with higher fat loss
(−2.4 vs. −1.3 Kg) and reduced DBP levels (−5.1 vs. 0.3 mmHg), than the control diet.
There was also a trend of reduction for the proinflammatory IL-1βwith EVOO.

[198]

RCT 210 patients at high
CVD risk

EVOO-enriched
(1 L/week) MedDiet vs.
nut-enriched (30 g/day)

MedDiet vs. low-fat diet

After 1 year of follow up, adherence to the EVOO-enriched MedDiet significantly
increased LDL resistance against oxidation (+6.46%) and estimated LDL particle size
(+3.06%), with respect to the low-fat-diet. Adherence to the nut-enriched MedDiet was
not associated with changes in LDL traits.

[204]

RCT 296 patients at high
CVD risk

EVOO-enriched
(1 L/week) MedDiet vs.
nut-enriched (30 g/day)

MedDiet vs. low-fat diet

After 1 year follow up, adherence to both the EVOO-enriched and nut-enriched
MedDiets significantly increased CEC relative to baseline, by improving HDL oxidative
status and composition.

[214]

Metanalysis of
prospective

cohort studies

15,285 patients with
CKD Plant-based healthy diets

Adherence to plant-based healthy diets, including MedDiet, were consistently
associated with lower all-cause mortality (−27%) when compared to other dietary
patterns. There was no statistically significant association between adherence to healthy
diets and risk of ESRD.

[228]

IR, insulin resistance; CVD, cardiovascular disease; T2D, type 2 diabetes mellitus; RCT, randomized controlled trial; MUFA, monounsaturated fatty acid; CHO, high carbohydrate; WMD,
weighted mean difference; HDL, high-density lipoprotein; LDL, low-density lipoprotein; EVOO, extra virgin olive oil; HR, hazard ratio; PUFA, polyunsaturated fatty acid; RR, relative risk;
HbA1c, glycated hemoglobin; HOMA-IR, homeostatic model assessment for insulin resistance; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; STAT3,
signal transducer and activator of transcription 3; FDG-PET, fluorodeoxyglucose-positron emission tomography; AD, Alzheimer disease; SBP, systolic blood pressure; DBP, diastolic
blood pressure; CRP, C reactive protein; IL-6, interleukin 6; PCOS, polycystic ovary syndrome; SFA, saturated fatty acid; OR, odds ratio; IL-1β, interleukin 1β; ER, estrogen receptor; PR,
progesterone receptor; CKD, chronic kidney disease; ESRD, end-stage renal disease; CEC, cholesterol efflux capacity.
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Table 2. Summary of preclinical studies exploring the bioactivity potential of Mediterranean nutrients against IR.

Design Subject Nutrient (Dose) Main Findings Ref.

In vivo HFD-fed mice PUFA-enriched oil
(30% of total energy)

Restoration of HFD-induced glucose intolerance, vascular dysfunction and
hypercholesterolemia, via enhanced Akt/PKB phosphorylation. [46]

In vivo Obese Zucker rats PUFA-enriched oil
(10% of total energy)

Restoration of obesity-induced glucose intolerance via enhanced Akt/PKB
phosphorylation and mitochondria bioenergetics. [47]

In vitro L6 rat skeletal
muscle cells

MUFAs and PUFAs
(200–700 µM)

Dose-dependent enhancement and prolongation of insulin-induced Akt/PKB and
ERK1/2 phosphorylation, via repression of PP2A activity. [48]

In vitro

C2C12 mouse
skeletal muscle cells;

L6 rat skeletal
muscle cells

Quercetin and quercetin
3-O-glycosides

(25–100 µM)

Enhanced muscular glucose uptake (38%–59%) in the absence of insulin via activation
of the AMPK pathway and translocation of GLUT4. [59,60]

In vitro Yeast α-glucosidase Flavonoids
(0–200µM) Strong inhibition of α-glucosidase activity (IC50 ≤ 200µM). [62]

In vivo HFD-fed mice Oleacein
(20 mg/Kg/day)

Prevention of HFD-induced adiposity, hyperglycemia, hyperinsulinemia,
hyperlipidemia and liver pathology via reduced FAS, SREBP-1, ERK, and p-ERK liver
protein levels. No signs of oleacein-induced organ toxicity.

[85]

In vivo; in vitro
HFD-fed mice;
3T3-L1 mouse
preadipocytes

Oleacein
(20 mg/Kg/day; 0–100 µM)

In vivo prevention of HFD-induced increase of adipocyte size, adipose tissue
inflammation and fibrosis, via reduction of PPARγ and SREBP-1 protein expression;
enhancement of adiponectin production in adipose tissue and increased expression of
GLUT4 in skeletal muscle cells.
In vitro dose-dependent prevention of lipid droplets accumulation during adipocyte
differentiation via inhibition of FAS and PPARγ.

[87]

In vivo; in vitro
APP/PS1 mice;

SH-SY5Y human
neuroblastoma cells

Cyanidin-3-O-glucopyranoside
(5 mg/Kg/day; 25 µM)

In vivo amelioration of object recognition, spatial memory, behavioral abnormalities
and glucose intolerance.
In vitro cytoprotective effects against amyloid β-induced toxicity via PPARγ
upregulation.

[107]

In vitro Rat ovarian
theca-interstitial cells

Resveratrol
(30–100 µM)

Dose-dependent inhibition of cell growth and cell viability; counteraction of
insulin-induced pro-proliferative and anti-apoptotic effects. [139]

In vitro Rat ovarian
theca-interstitial cells

Resveratrol
(1–10 µM)

Inhibition of androstenedione and androsterone production (−78% and −74%,
respectively), via Akt/PKB signaling pathway. [140]
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Table 2. Cont.

Design Subject Nutrient (Dose) Main Findings Ref.

In vitro

Human embryonic
kidney 293T cells;
Human epithelial

HeLa cells; HUVEC
human endothelial
cells; 3T3-L1 mouse
preadipocytes; CHO
hamster ovarian cells

Resveratrol
(50–100 µM)

Cell-specific activation of AMPK, that can be linked to ATP synthase inhibition (energy
restriction-sensitive), SIRT1-LKB1 stimulation, or both mechanisms. [148]

In vivo HFD-fed mice Resveratrol
(5.2–22.4 mg/Kg/day)

Longer lifespan, increased insulin sensitivity, reduced IGF-1 levels, increased liver
AMPK activity, decreased liver, heart and aorta pathology, increased mitochondrial
number, and improved motor function under chronic high fat hypernutrition.

[149]

In vitro HFD-fed Rats; L6 rat
skeletal muscle cells

Ferulic acid
(0.6 mg/Kg/day; 2–20 µg/mL)

In vivo prevention of IR in adipose tissue, stimulated by SFA oversupply, via fetuin-A
downregulation.
In vitro dose-dependent improvement of SFA-induced muscular IR via inhibition of
PKCε phosphorylation and restoration of HMGA1-mediated transcription of the INSR
gene.

[192]

In vitro ECV304 human
endothelial cells

Hydroxytyrosol and EVOO
total polyphenol extract

(10 µM)

Prevention of NO reduction and ET-1 synthesis, induced by elevated glucose and FFA
concentrations, via PI3K/Akt modulation. [199]

IR, insulin resistance; HFD, high-fat diet; PUFA, polyunsaturated fatty acid; MUFA, monounsaturated fatty acid; Akt/PKB, protein kinase B; ERK, extracellular signal-regulated kinase;
PP2A, protein phosphatase 2A; APP/PS1, double transgenic mutant human amyloid precursor protein/presenilin 1; PPARγ, peroxisome proliferator-activated receptor γ; AMPK,
AMP-activated protein kinase; SIRT1, sirtuin 1; LKB1, liver kinase B1; IGF-1, insulin-like growth factor 1; SFA, saturated fatty acid; PKCε, protein kinase C isoform ε; HMGA1, high-mobility
group A1 protein; INSR, insulin receptor; FAS, fatty acid synthase; SREBP-1, sterol regulatory element-binding transcription factor-1; GLUT4, glucose transporter 4; EVOO, extra virgin
olive oil; NO, nitric oxide; ET-1, endothelin; FFA, free fatty acid; PI3K, phosphoinositide 3 kinase.
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12. Limitations and Future Research Perspectives

Although there is a growing range of studies evaluating the anti-inflammatory, anti-obesity,
anti-diabetic and anti-cancer properties of the MedDiet functional components, schematically illustrated
in Figure 5, the present knowledge about their role in the modulation of insulin action and signaling
pathways is still limited. Further studies, with particular emphasis on in vivo approaches, are required
to determine their therapeutic potential in humans and to provide a better understanding of their
biological activities at different tissue levels. Also, given the recent characterization of a large number
of diverse bioactive compounds from plant-based natural products, which would challenge the
feasibility of a large-scale in vitro testing for the identification of potential health effects [232], novel in
silico approaches have been proposed. Methods such as molecular docking, virtual screening, and
molecular dynamics simulation, can provide a critical basis for understanding the complex interaction
of these compounds with cellular enzymes and regulatory molecules [233]. While isolation of natural
compounds directly from the plant species is acceptable when only small to moderate amounts are
required, sustainable synthetic routes for resupply need to be considered once the healthcare demands
increase. However, despite representing a novel treatment paradigm for IR and IR-related diseases,
polyphenol-based synthetic supplements may have several drawbacks [232]. Often polyphenols act
synergistically with other nutrients to influence glucose homeostasis and cellular processes, so it is
uncertain whether isolated supplements would have the maximum effect without eating a variety of
whole foods, as in the MedDiet eating pattern [232]. Furthermore, the in vivo safety of high doses of
pure compounds (over 100 times higher than the natural occurrence in some cases) is unlikely to be
feasibly extrapolated from in vitro mechanistic research, with several studies reporting the increased
risk of hepatotoxicity [234], and others highlighting the increased risk of stroke and premature
death [235], and even carcinogenesis [236]. As a consequence, more investigations are needed to
establish which dosages of the isolated polyphenol compounds are safe and effective for clinical
use, testing first the concentrations close to those present in humans as a result of a healthy dietary
intake [237]. Finally, even for some of the most promising dietary supplements explored in this review,
longer follow-up periods and larger sample sizes are essential to assess the interventions’ outcomes in
the long run [119–121,123,138].
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13. Conclusions

Adherence to the MedDiet affords protection from hard curative IR-related diseases such as
obesity, T2D, NAFLD, cognitive impairment, CVD, CKD, PCOS and breast cancer. Given the growing
evidence regarding the intake of particular functional components of the MedDiet on the modulation of
disease-specific pathognomonic traits, in the present narrative review we aimed at providing instances
of mechanistic explanation for the observed clinical phenomena from a compound-centric perspective.
Interestingly, according to nutrigenomic studies, some of the health benefits can relate to the ability of
several plant-based polyphenols to positively affect gene transcription patterns, in which HMGA1 acts
as a critical regulator, opening new avenues for researchers. The identification of nutrients, regulating
molecular pathways particularly relevant for glucose homeostasis, cognitive functions, tumorigenesis
or atherogenesis, in either an individual or cooperative manner, may contribute to the formulation
of functional food-based dietary guidelines for managing the clinical spectrum of IR, reducing the
need for pharmacological interventions, with a favorable impact on healthcare. However, even if
older people with mild cognitive decline may take advantage of nutritional supplements for correcting
dietary inadequacies and deficiencies in a practical manner, uncertainties surround the likelihood of
metabolic benefits and safety of unsaturated fatty acid-enriched diets and polyphenol-based synthetic
supplements at a general population scale. On the other hand, considering its merits and sustainability,
the adoption of the MedDiet as a healthy eating behavior should be further encouraged by public
nutritional policies.
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