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Abstract

Proteins and their complexes can be heterogeneously disordered. In ensemble

modeling of such systems with restraints from several experimental techniques

the following problems arise: (a) integration of diverse restraints obtained on dif-

ferent samples under different conditions; (b) estimation of a realistic ensemble

width; (c) sufficient sampling of conformational space; (d) representation of the

ensemble by an interpretable number of conformers; (e) recognition of weak

order with site resolution. Here, I introduce several tools that address these prob-

lems, focusing on utilization of distance distribution information for estimating

ensemble width. The RigiFlex approach integrates such information with high-

resolution structures of ordered domains and small-angle scattering data. The

EnsembleFit module provides moderately sized ensembles by fitting conformer

populations and discarding conformers with low population. EnsembleFit bal-

ances the loss in fit quality upon combining restraint subsets from different tech-

niques. Pair correlation analysis for residues and local compaction analysis help

in feature detection. The RigiFlex pipeline is tested on data simulated from the

structure 70 kDa protein-RNA complex RsmE/RsmZ. It recovers this structure

with ensemble width and difference from ground truth both being on the order

of 4.2 Å. EnsembleFit reduces the ensemble of the proliferating-cell-nuclear-anti-

gen-associated factor p15PAF from 4,939 to 75 conformers while maintaining

good fit quality of restraints. Local compaction analysis for the PaaA2 antitoxin

from E. coli O157 revealed correlations between compactness and enhanced

residual dipolar couplings in the original NMR restraint set.
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1 | INTRODUCTION

Function of most proteins relies on a combination of
rigid and flexible sections. For rigid sections, structure is

defined at least at the resolution of chemical bond
lengths, whereas flexible sections often adapt their con-
formation upon binding to other proteins, RNA, or small
molecules. The flexible sections can undergo partial or
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complete disorder–order transitions.1 Such phenomena
cannot be described in a narrow interpretation of
Anfinsen's hypothesis,2 which assumes that amino acid
sequence encodes a single conformer at atomic resolu-
tion. Much progress has been made recently in describing
protein structure by conformational ensembles that rely
on information from different experimental techniques.3

Yet, a systematic approach to generating representative
ensembles of partially ordered proteins and their com-
plexes is still elusive. The situation is especially unsatis-
factory for assessing the width of the conformational
ensemble. RNA-binding proteins are a point in case, as
they often feature extended disordered domains that are
involved in promiscuous RNA binding4 as well as in for-
mation of membrane-less organelles by liquid–liquid
phase separation.5

Here, I introduce a new ensemble modeling tool that
is based on three established concepts:

i. Partitioning of the macromolecules in rigid and
flexible domains6

ii. Utilizing ensemble width information from
nanometer-range distance distributions,7,8

iii. Integrative structural biology.6

The partitioning concept (i) drastically reduces the
number of free parameters and thus improves sampling
of relevant conformational space. The concept assumes
that certain domains do conform to Anfinsen's hypothe-
sis, which can be experimentally tested, for instance by
NMR spectroscopy. In MMM, models with rigid domains
joined by flexible linkers are built by the RigiFlex
approach, which features another sampling advantage by
factorizing conformational space into a subspace of rigid-
body arrangement and subspaces of individual flexible
domains.

The distance distribution concept (ii) was introduced
before for ensemble modeling of disordered protein
domains9 and a brief account on a preliminary imple-
mentation of RigiFlex into MMM (Multiscale Modeling
of Macromolecules) was given.10 Here, I introduce enu-
merated sampling of rigid-body arrangements and build-
ing of flexible RNA sections.

The integrative structural biology concept (iii) is
required since each nanometer distance distribution
restraint (DDR) for a pair of spin labels requires prepara-
tion of one sample. This makes the DDRs sparse. Fur-
thermore, because of flexibility of the label itself,11–13

DDRs are unsuited for determining the structure of rigid
domains at high resolution. Finally, as DDRs are mea-
sured in the solid state, it is prudent to check whether
they are consistent with data from techniques that can be
applied in the physiologically more relevant liquid state.

In particular, the new EnsembleFit module can simulta-
neously fit DDRs and small-angle scattering (SAS) data.

This article is structured as follows. First, I describe
the RigiFlex pipeline consisting of the Rigi, FlexRNA,
Flex, and EnsembleFit modules. I explain enumerated
sampling in Rigi, the FlexRNA algorithm, and scoring,
sampling, and population fitting in EnsembleFit. Second,
I introduce tools for analyzing heterogeneous order in
conformation ensembles. Third, I describe tests of the
RigiFlex pipeline and analysis modules on previously
published ensembles. The Matlab®-based, open-source
program MMM can be freely downloaded at www.epr.
ethz.ch/software. The new tools are implemented in ver-
sion 2020.2. Restraint files for the worked examples in
the Supplementary Information are included in this dis-
tribution. The Supplementary Information describes the
iterative clustering and sorting module SortGroup, illus-
trates output of the PairCorrelation module, and provides
worked examples of using the new features of MMM as
well as a brief description of restraint file conventions
and keywords.

2 | RIGIFLEX PIPELINE

RigiFlex models proteins or their complexes by distrib-
uted arrangements of rigid bodies (triangles in Figure 1)
joined by flexible linkers (pale lines in Figure 1). The first
module Rigi performs enumerated sampling of distance
matrices that conform to experimental distance distribu-
tions, computes rigid-body arrangements (RBAs) by dis-
tance geometry,14 and samples and refines these RBAs by
taking into account additional restraints (Figure 2a). The
second module FlexRNA generates flexible single-
stranded RNA linkers based on a backbone pseudo-
torsion angle library.15 The third module Flex generates
flexible peptide linkers by a previously established algo-
rithm.9 The fourth module EnsembleFit scores the
ensemble model against the full restraint set and
improves this score by fitting populations of individual
conformer models. In that process, ensemble size is
reduced by discarding conformers with very low popula-
tion. Finally, the remaining conformer models are sorted
with respect to similarity by the SortGroup module
described in Supplementary Information.

2.1 | The Rigi module

We consider a protein or protein complex (entity) featur-
ing a number n of bodies that are rigid on the resolution
scale of their available atomic structures. Typically, such
rigid bodies are parts of the entity that are resolved in an

126 JESCHKE

http://www.epr.ethz.ch/software
http://www.epr.ethz.ch/software


x-ray or cryo-EM structure or well defined in an NMR
ensemble. RNA binding motifs can be part of a rigid body
that consists mainly of protein domains.

The RBA is fully specified by 3(n − 1) translation and
3(n − 1) rotation parameters. Three reference sites per
rigid body suffice for RBA determination via pair dis-
tances, as the number 9n(n − 1)/2 of accessible restraints
exceeds 6(n − 1) for all n > 1.10 The optimal choice of the
three reference sites in a rigid body are the vertices of the
largest nearly equilateral triangle that can be realized,
since this choice minimizes the potential for linear
dependence of the reference DDRs. The problem is
beyond a classical rigid-body docking problem, as an
ensemble of RBAs is sought that fits not only mean dis-
tances, but rather a set of distance distributions for refer-
ence point pairs.

Rigi performs enumerated sampling of distance distri-
butions instead of directly sampling the translation and
rotation parameters. For each distance between two of
the 3n reference sites, the samples are si points equidis-
tant at restraint sampling resolution Δri and situated in
an interval between a lower bound li and an upper bound
ui (Figure 3a). For experimental restraints, specified by a
mean distance hrii and standard deviation σr,i, I use
li = hrii − σr,i, and ui = hrii + σr,I, whereas for
undetermined distances, I use a lower limit of 5 Å and a
user-defined upper limit that defaults to 180 Å. The
number si of sampling points per restraint is selected
by finding the minimal Δr = max(Δri) under the con-
straint that the total number T (up to a few million) of

distance restraint sets must fulfill the condition

T =
Q9n n−1ð Þ=2

i=1
si ≤Tmax . Since each distance restraint set

defines a complete distance matrix for the 3n reference
points, triangular bound smoothing14 can be applied in
this optimization. By varying Tmax, the user can set a suit-
able Rigi sampling resolution Δr.

RBAs that conform to the experimental distance dis-
tributions are generated by distance geometry14 for all
T sets of sampled distances. Rigi then tests each RBA
against further restraints in the order of increasing com-
putational expense (Figure 2a). In particular, Rigi tests for
auxiliary DDRs, where at least one labeling site is not a
reference site, for a maximum length of peptide linkers
of 3.8 Å per amino acid residue, for user-specified maxi-
mum lengths of all RNA linkers (default: <7 Å per
nucleotide), and for rigid-body clashes. Simulated dis-
tances are converted to a fraction of the total distribution
that still includes them (Figure 3b). An RBA is rejected if
the geometric mean of all these fractions is above a user-
defined threshold.9 The default threshold of 0.5 corre-
sponds to a mean coverage of 50% of the distributions.
The user can further specify that a certain fraction
0 ≤ fx ≤ 1 of crosslink restraints must be fulfilled in any
accepted RBA.

If an RBA passes all tests at the sampling resolution
Δr, it is refined by optimization of the rotation and trans-
lation parameters. In order to prevent artificial narrowing
of the ensemble, refinement stops as soon as all restraints
are fulfilled, now without considering the sampling reso-
lution as a contribution to uncertainty. Control of Rigi is
explained in Supplementary Information.

2.2 | FlexRNA

The FlexRNA module uses the same approach as Flex9 by
replacing peptide backbone torsion angles by the pseudo-
torsion angles defined by Humphris-Narayanan and
Pyle.15 Their fragment library at 5� resolution16 and their
algorithm for backbone generation are used. Figure 2b
shows a flow chart of FlexRNA. To fix moderate misses
in reaching the C30-terminal anchor nucleotide as well as
moderate clashes with the environment, FlexRNA distrib-
utes the required stretch and rotation uniformly over the
whole RNA backbone. This deformation is later relaxed
by refining with Yasara.17 Linker generation can fail if no
conformation is consistent both with the distance
between the anchor nucleotides and with avoiding cla-
shes with the rigid bodies. In order to avoid stalling of
RigiFlex in such cases, the user can set runtime limits for
FlexRNA and Flex. If not all flexible linkers can be gener-
ated for an RBA, the RBA is discarded.

FIGURE 1 RigiFlex representation of a conformational

ensemble. Each rigid body beyond the reference one (dark green)

adds 6 free rotation and translation parameters, which are

distributed. If three reference sites are selected per rigid body, the

number of accessible pair distance distributions suffices for

characterization of the distribution of rigid-body arrangements

(RBAs). Flexible peptide and RNA sections (pale shades) are added

in a second step
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Sampling resolution of the Flex and FlexRNA mod-
ules is not currently assessed separately. Instead,
EnsembleFit (vide infra) predicts distance distributions
for the whole ensemble. If these distance distributions
are reasonably continuous and smooth and overlap well
with the experimental distributions, sampling resolution
is considered to be sufficient. A more sophisticated esti-
mate of sampling resolution for stochastic sampling has
been described.18

2.3 | The EnsembleFit module

Description by a conformational ensemble aims at func-
tional realism, as we want to understand how the entity

performs tasks within a cell. Unfortunately, we cannot
generally verify functional realism. Instead, we have to
be content with a description that is in line with all experi-
mental information—as far as that is possible—and parsimo-
nious. With parsimony, we run the risk of underestimating
the true width of the ensemble.9 The RigiFlex approach con-
tains this risk by fitting not only the mean distances but also
distribution widths and shapes. Populations pj are assigned
to individual conformer models and are varied in order to
find the best-fit ensemble. To that end, the EnsembleFit
module maximizes overlap od =

P
min{Ppred, PDDR} of the

distance distribution Ppred predicted for the ensemble model
and the experimental distance distribution PDDR (Figure 4),
taking into account the whole ensemble of conformer
models. By maximizing the geometric mean of overlaps oi of

FIGURE 2 Flow charts for

the Rigi module (a) and the

FlexRNA module (b)
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all DDRs indexed by i, fitting strongly penalizes small overlap
of individual DDRs.

Such fitting of populations is straightforward if exper-
imental errors are purely statistical and if the same score,
preferably χ2 values, can be applied for all restraints. In

practice, integrative structural biology relies on data from
different techniques, performed on different sample prep-
arations under different conditions. Systematic errors are
not negligible and models for predicting data from struc-
ture are imperfect. This complicates weighting of devia-
tions between the different techniques and introduces
poorly quantified sources of uncertainty into Bayesian
approaches. In order to address this problem,
EnsembleFit first separately fits subsets of restraints that
share the same score metric (homogeneous restraints).
Second, it combines the subsets by balancing loss in fit
quality between them.

Given Nv valid conformers, in a first step vectors p(k)

of populations pj
(k) ( j = 1… Nv) are fitted by minimizing

some measure m1
(k) for the fit deviation of only the kth

subset of restraints (k = 1… R, where R is the number
of restraint subsets with different metrics). For example,
if both DDRs and small-angle scattering (SAS)
restraints are available, we have R = 2 and define

m 1ð Þ
1 =m

DDRð Þ
1 = 1−

QD
i=1oi

� �1=D
, where the oi are the

overlaps for D DDRs, and m 2ð Þ
1 =m

SASð Þ
1 =

PS
i=1

χ2i , where

the χ2i are the χ2 values for S SAS curve fits. Population
vectors p(1) and p(2) generally differ.

In a second step, the final population vector p is fitted

by minimizing the loss of merit, L= 1
R

PR
k=1

m kð Þ
2

m kð Þ
1

−1, where

the m kð Þ
2 follow the same definition as the m kð Þ

1 , but relate
to p rather than to the p(k). Only if all R restraint subsets
were perfectly consistent, the vectors p(k) would all be
identical and we would have L = 0. If they are somewhat

inconsistent, normalization by the individual m kð Þ
1

ensures that they are weighted according to their quality.

FIGURE 3 Processing of distance restraints in the Rigi module. (a) For each distance ri between two reference points in different rigid

bodies, si equidistant sampling points (si = 3 in the example) with restraint sampling resolution Δri are distributed between a lower bound li
and an upper bound ui. RBAs that fulfill all restraints at respective resolutions Δri are refined and tested against a probability criterion. (b) The

probability threshold pthr rules acceptance of models with distances ri,sim. It is related to function values gi = exp(−(ri,sim − hrii)2/(2σr,i2). The
threshold pthr is defined by probability percentage (here 50%) covered by values gi ≥ pthr. Models are rejected if the geometric mean of all gi is

smaller than pthr. Note that pthr is lower for a higher probability percentage

FIGURE 4 Definition of overlap for distance distribution

restraints. The experimental distance distribution PDDR (black) and

the distribution predicted for the ensemble Ppred (red) are

normalized to unit area. The fraction of overlapping area (green) is

a measure for agreement of the ensemble with the restraint.

Primary data were taken from the thesis of Christoph Gmeiner19 on

the PTBP1/EMCV-IRES DtoF complex and reprocessed with

DeerLab.20 The colored bar below the distribution encodes

reliability of the distribution. Shape is reliable in the range marked

green, width is still reliable in the yellow range, mean distance still

reliable in the orange range, and the presence of some

contributions can still be ascertained in the red range. Modulation

depth (mod. depth) is one characteristic of sample quality
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This weighting still depends on the exact definition of the

m kð Þ
1 , but it does take into account systematic measure-

ment errors and prediction errors. Furthermore, the loss
of merit L is a measure for inconsistency of the restraint
subsets.

The global minima of the m kð Þ
1 and of L can be found

with reasonable computational expense for up to about
NB = 100 conformer models. The total number Nc of con-
former models of the RigiFlex pipeline at the input of
EnsembleFit can be much larger. This problem is solved
by adhering to the principle of parsimony and by an
iterative approach. After minimizing L for a block of NB

conformers, all conformers with pi<0.01�max(pi) are
discarded. Often, many of the pi approach zero during
fitting. Removed conformers are then replaced by previ-
ously untested conformers to fill to the original block
size NB. This process is repeated until no untested con-
formers are left. Dependence of the result on block size
is weak if the number of conformers with pi>0.01 max
(pi) is significantly smaller than block size. Larger block
sizes up to about 250 can be used, albeit at the expense
of longer computation times for the same total number
Nc of conformers. The final ensemble is described by
N conformers and their populations 0≤ pc≤ 1 (c = 1… N,
Σc pc = 1).

The current implementation of EnsembleFit pro-
cesses only the two subsets of restraints mentioned
above, DDRs and SAS curves, with the χ2i values being
computed by CRYSOL (small-angle X-ray scattering) or
CRYSON (small-angle neutron scattering) of the ATSAS
package.21 Implementation of restraint subsets for other
techniques requires a module that predicts experimental
data for a single conformer and a definition of the metric
m kð Þ

1 .
In the original output ensemble of EnsembleFit, the

N conformers appear in no particular order. The addi-
tional tool SortGroup, described in Supplementary Infor-
mation, sorts and groups conformers by similarity.

EnsembleFit does not rely on raw ensembles gener-
ated by RigiFlex. It can also process unrestrained ensem-
bles generated by flexible-Meccano22 or TraDES23 or
restrained ensembles generated by CYANA.24 In that
sense, EnsembleFit is an alternative to ASTEROIDS25 or
ENSEMBLE,26 which can take advantage of distance dis-
tribution information. Unlike these tools, EnsembleFit
cannot yet utilize NMR restraints.

3 | ENSEMBLE ANALYSIS

Two new tools in MMM serve for characterizing hetero-
geneous disorder. PairCorrrelation is suitable for

revealing a low extent of disorder while LocalCompaction
can reveal a small extent of order. With the Cα root mean
square deviation Dij of conformers i and j i upon their
optimal superposition, we define an ensemble width

Γ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN−1

i=1

PN
j= i+1

pipjD
2
ij

PN−1

i=1

PN
j= i+1

pipj

vuuuuuut ð1Þ

as well as a distance between two ensembles E1 and E2

ΓE1,E2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Si�E1

P
Sj�E2

pipjD
2
ijP

Si�E1

P
Sj�E2

pipj

vuut ð2Þ

where the two sums run over all conformers in E1 and
E2, respectively. The distance ΓE1,E2 defined in this way
cannot be expected to be lower than the geometric mean
of the two ensemble widths.

3.1 | The PairCorrelation module

We consider Cα distances r jð Þ
mn for a pair of residues with

indices m and n in structures with index j. These dis-
tances have a mean value hrmni and a standard deviation
σ(rmn). The standard deviation σ(rmn) and relative stan-
dard deviation σ(rmn)/hrmni are measures for the distribu-
tion of the Cα-Cα distance between residues m and n.
Values of zero denote perfect order, as expected, for
instance, within the same rigid body. A colored matrix
representation of the σ(rmn) reveals residue pairs whose
motion may be correlated in the conformational dynam-
ics that underlies the ensemble. Two examples are given
in the Supplementary Information.

3.2 | The LocalCompaction module

Compactness of a section of a random coil between resi-
duesm and n (m < n) is quantified by its radius of gyration

R m,nð Þ
g =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−m+1

Xn
k=m

rk−rcð Þ2
s

, ð3Þ

where

rc =
1

n−m+1

Xn
k=m

rk ð4Þ
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is the center coordinate of the section. For comparing the
radius of gyration to SAS data, k must run over all atoms.
For ensemble analysis, it suffices to consider the Cα
atoms. Flory theory predicts for a random coil

R m,nð Þ
g =R0 n−mð Þν, ð5Þ

where R0 is a segment length and exponent ν quantifies
compactness. The range for ν extends from 0.33 for a col-
lapsed coil in a poor solvent to 0.6 for an extended coil in
a good solvent. The latter value has been found to good
approximation in experimental27 and a computational28

studies for chemically unfolded proteins.
In an ensemble on N conformers with nres residues

each, LocalCompaction fits Equation (5) globally to
N�nres�(nres − 1)/2 segments by defining an ensemble
average that scales linearly with nres for an ideal chain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R m,nð Þ
g

� �2
� �s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i=1

pi R m,nð Þ
g,i

� �2

vuut : ð6Þ

The symmetric matrix G with elements

Gnm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R m,nð Þ
g

� �2
� �s

−R0 n−mð Þν

R0 n−mð Þν : ð7Þ

quantifies deviation of the radius of gyration of each
chain segment from a mean random-coil description of
the whole chain.

This concept can be extended to a more intuitive
proximity matrix P. For a random coil in an ideal (theta)
solvent (ν = 0.5), we have R2

� �
=6R2

g . For good (ν>0.5)
or poor (ν<0.5) solvents, I empirically assume thatffiffiffiffiffiffiffiffiffiffi

R2
� �q

has the same scaling behaviour as
ffiffiffiffiffiffiffiffiffiffiffiffi
Rg

2
� �q

. Local

Compaction performs a global fit of the root mean square

end-to-end distance of segments
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
mn

� �q
from residue

m to n to a Flory equation,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
mn

� �q
=R0,ee n−mð Þνee ,

where R0,ee is an effective segment length and νee a scal-
ing exponent. Matrix elements Pmn of the proximity
matrix P can then be defined in analogy to Equation (7).
This proximity matrix P is more sensitive to local com-
paction or expansion than the compactness matrix G.

4 | TESTS

4.1 | RigiFlex pipeline

As test case for the RigiFlex pipeline, I use the 70 kDa
complex of three dimers of the translation-repression

protein RsmE with the first 72 nucleotides of the small
RNA RsmZ that can sequester RsmE and thus de-repress
translation initiation. Structures of two conformers of this
complex had been originally modeled by CYANA24 based
on NMR restraints for the RsmE dimer, the first four
stemloops (SL) of RsmZ, and a short GGA binding motif
in the linker between SL2 and SL3 as well as on 21 DDRs
between RNA labeling sites.29 The ensemble of 20 models
of conformer R of the RsmE/RsmZ complex (PDB 2MF1)
is considered here as the ground truth. Rigid bodies were
extracted from model 1 of the ensemble. Since the origi-
nal restraint set does not conform to the RigiFlex
approach, I assigned valines 8 and 40 in loop regions of
the first RsmE protomer and valine 40 in the second
protomer of a dimer as reference sites and valine 8 in the
second protomer as an auxiliary site. Using rotamer
library modeling in MMM, I computed 18 reference
DDRs involving two reference sites and 6 auxiliary DDRs
involving one reference site and one auxiliary site. I
encoded them as Gaussian restraints. The restraint file is
distributed with MMM 2020.2. For a first test, I specified
a maximum of Tmax = 200000 trials for exhaustive search
of RBA space. As the distance distributions computed
from the ground-truth ensemble are narrow, this leads to
a sampling resolution Δr as good as 3.4 Å with
T = 170496 trials. This run provided 25 RBAs, of which
21 could be linked by FlexRNA. Figure 5a,b demonstrates
that the width of this ensemble (Γ = 4.26 Å) is larger
than the one of the ground truth ensemble (Γ = 1.85 Å).
The distance from the ground truth ensemble,
Γa,b = 4.20 Å, exceeds the geometric mean of the two
ensemble widths (2.81 Å), but appears acceptable given
the uncertainty of about 2–3 Å in rotamer simulations of
label-to-label distances.12,13

As a second test, I generated a moderately sized raw
ensemble of the RsmE/RsmZ complex with T = 311 040
trials in Rigi (sampling resolution Δr = 3.1 Å). Of the
301 RBAs found in this run, 224 could the linked by
FlexRNA. Using EnsembleFit, I reduced this raw ensem-
ble to a representative ensemble of N = 30 conformers.
This ensemble (Figure 5c) has about the same width
(Γ = 4.30 Å) as the small raw ensemble generated by Rigi
and FlexRNA without ensemble fitting (Figure 5b). It
slightly better matches the ground truth (Γa,c = 4.08 Å).
The limited resolution resulting from the uncertainty of
the spin label positions cautions against using this
approach for structure determination of highly ordered
systems.

4.2 | EnsembleFit

As a test for using the EnsembleFit module on ensembles
generated by other approaches, I reduced the ensemble of
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the highly disordered 111-residue-long proliferating-cell-
nuclear-antigen (PCNA)-binding protein p15PAF, which is
based on NMR and SAXS information.30 For the 4,936
conformers of ensemble PED6AAA from the protein
ensemble database,31 I simulated 21 DDRs for all site pairs
in the set V2, V17, S35, C54, L71, S88, and L101 and esti-
mated uncertainty of the DDRs by separating the ensem-
ble into two subensembles with 2,470 and 2,469
conformers. For the complete ensemble, I found imperfect
agreement between the SAXS curve predicted by CRYSOL
(version 3.0.1 of ATSAS)21 and the experimental curve
(χ2 = 3.053). As the SAXS curve could be fitted well with
small subsets of conformers, I first fitted only this curve by
optimizing populations for 49 individual blocks of 100 con-
formers and a final block of 39 conformers. The 50 sub-
sensembles contained 135 conformers. Assuming uniform
populations, they fit the experimental SAXS curve with
χ2 = 1.294 and the DDRs with a mean overlap of 0.897.

I then treated these 135 conformers as a single block
and fitted to the DDRs and the SAXS curve simulta-
neously. The resulting ensemble with 75 conformers had
a SAXS χ2 of 1.241, a DEER overlap of 0.940, and a loss
of merit L = 0.088, indicating good consistency between
the restraint subsets for the strongly reduced ensemble.
Figure 6 shows that this ensemble fits the SAXS curve
reasonably well and that even for the two DDRs with the
worst overlap of 0.917, mean, width, and shape of the dis-
tance distributions match quite well.

4.3 | LocalCompaction

The LocalCompaction module was tested on the NMR/SAXS
ensemble of PaaA2 antitoxin from E. coli O15734
(PED5AAA),32 which is highly flexible, but contains two
preformed helices. The random-coil fit provides ν = 0.538,

FIGURE 5 Cartoon plots of ensemble models for conformer R of RsmE/RsmZ. The models are superimposed on the RsmE homodimer

in rigid body 2 (dark green/light green). The other RsmE homodimers are colored crimson/orange red (rigid body 1) and dark blue/steel

blue (rigid body 3), whereas RNA is colored grey. (a) Ground-truth ensemble stemming from a CYANA computation with experimental

restraints (PDB 2MF1, 20 models, ensemble width Γ1 = 1.85 Å).19 (b) Small raw ensemble recomputed with RigiFlex from simulated DDRs

(21 models, ensemble width Γ2 = 4.26 Å). (c) Representative ensemble generated by EnsembleFit from a RigiFlex raw ensemble with

224 models using the same DDRs (30 models, ensemble width Γ3 = 4.30 Å). Populations are encoded by transparency, with the most

populated model shown fully opaque
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FIGURE 6 Restraint fits for the representative ensemble of 75 conformers reduced from the original NMR/SAXS ensemble of p15PAF

(4,939 conformers)30 by a two-step approach using the original SAXS curve and simulated DDRs (see text). Shown are the fit of the SAXS

curve (a) by CRYSOL21 with χ2 = 1.241 and the distance distribution fits for the two DDRs with the worst overlaps (b,c) between ground-

truth distance distribution (black with grey confidence bands) and the distribution for the ensemble (crimson). The colored reliability bars

(see Figure 5 for explanation) refer to putative experimental DEER data of 8 μs length

FIGURE 7 Compactness (a,b) and proximity (c,d) analysis of the NMR/SAXS ensemble of PaaA2.32 (a) Distribution of segment radii of

gyration in the ensemble (black dots) as a function of segment length and fit by a random-coil model (crimson line) with R0 = 2.07 Å and

ν = 0.538. (b) Compactness matrix G. Blue shades mark segments that are more compact than expected from the random-coil fit, red shades

those that are more extended. (c) Distribution of segment root mean square end-to-end distances as a function of segment length (black dots)

and fit by a random-coil model (crimson line) with R0,ee = 5.31 Å and νee = 0.538. (c) Proximity matrix P. Blue shades mark segments that

are on average shorter than expected from the random-coil fit, red shades those that are on average longer
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corresponding to a somewhat more compact ensemble than
is observed for chemically unfolded proteins (Figure 7a). Fur-
thermore, the two preformed helices are clearly discernible
in G as compact segments (blue shades in Figure 7b).

As seen by comparing Figure 7a,b, root mean square
end-to-end distances are more broadly distributed at
given segment length than are the radii of gyration. The

scaling exponent νee = 0.538 for
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
mn

� �q
is identical to

the one for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R m,nð Þ
g

� �2
� �s

by coincidence. In the prox-

imity matrix P (Figure 7d), the two preformed helices are
better defined than in matrix G and the degree of com-
paction or extension between segments of the protein is
better visible.

5 | CONCLUSION

Proteins and their complexes are often neither
completely structured nor completely unstructured. The
exhibit semistructure with an extent of order that varies
between domains or even along peptide or nucleic acid
chains within the same domain. Such semistructured
entities must be represented by ensembles. The ensem-
bles are based on restraints from different experimental
techniques that are performed with different sample
preparation and under different conditions. The
restraints may thus not be fully consistent. Here, I intro-
duced several tools for generating and analyzing ensem-
bles that represent all subsets of experimental data
weighted by their quality.

In particular, the RigiFlex approach models proteins
and their complexes in terms of distributed arrangements
of rigid bodies connected by flexible linkers. The
EnsembleFit module integrates restraint subsets from dif-
ferent techniques by balancing loss in fit quality when
going from fits of subsets to fits of all restraints.
EnsembleFit generates moderately sized ensembles by
fitting populations. Both RigiFlex and EnsembleFit are
intended for combining distance distribution restraints
with other types of restraints in integrative structure
modeling. Ensemble models obtained by the RigiFlex
pipeline or by other approaches can be analyzed for weak
disorder or weak order effects by the PairCorrelation and
LocalCompaction modules, respectively.

I hope that these tools provide further inroads into
the advancing field of ensemble modeling. RigiFlex and
EnsembleFit are currently being extended to further
types of experimental restraints.
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