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Abstract
Single-molecule RNA fluorescence in situ hybridization (RNA FISH)-based spatial transcriptomics
methods have enabled the accurate quantification of gene expression at single-cell resolution by visualizing
transcripts as diffraction-limited spots. While these methods generally scale to large samples, image analysis
remains challenging, often requiring manual parameter tuning. We present Piscis, a fully automatic deep
learning algorithm for spot detection trained using a novel loss function, the SmoothF1 loss, that
approximates the F1 score to directly penalize false positives and false negatives but remains differentiable
and hence usable for training by deep learning approaches. Piscis was trained and tested on a diverse
dataset composed of 358 manually annotated experimental RNA FISH images representing multiple cell
types and 240 additional synthetic images. Piscis outperforms other state-of-the-art spot detection
methods, enabling accurate, high-throughput analysis of RNA FISH-derived imaging data without the
need for manual parameter tuning.

1 Main
Modern fluorescence imaging techniques have enabled the study of complex biological systems at higher resolution and
with more precision than ever before, and with it the demand for analytical tools that can perform at scale has grown.
One specific area of interest is spot detection, owing to the development of numerous methods for single-molecule
visualization (DNA1, RNA2, protein3) in which the targets are fluorescently labeled and detected as diffraction-limited
spots. Spot detection allows for precise quantification of the abundance and localization of these molecules in single
cells. In this rapidly evolving field, high-throughput spatial transcriptomics technologies4–6 such as MERFISH7 and
SeqFISH+8 have emerged as powerful tools that can simultaneously measure the transcript abundance of large numbers
of genes. These methods utilize combinatorial labeling and sequential imaging to capture and decode thousands of
unique mRNA species in situ, generating vast datasets containing thousands to millions of cells, each with hundreds to
thousands of fluorescent spots. Manual analysis is intractable, requiring an automatic and scalable workflow.
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Figure 1: Piscis is a deep learning algorithm for accurate spot detection and localization. a, A single-molecule
RNA FISH image (single z-level) of human fibroblast cells grown in vitro with DAPI-stained nuclei (blue), spots of
single mRNA molecules for the gene UBC (red), and the corresponding manual ground truth annotations (white).
b, Comparison between Piscis and other spot detection algorithms applied to the image from a. The output of each
algorithm is labeled with its F1 score, a performance metric ranging from 0 to 1, with 1 representing perfect agreement
with the ground truth. c,A clampFISH 2.09 image (single z-level) of human melanoma cells grown in mice with DAPI-
stained nuclei (blue), spots of single mRNAmolecules for the geneNGFR (red), and the corresponding manual ground
truth annotations (white). d,Comparison between Piscis and other spot detection algorithms applied to the image from
c. The output of each algorithm is again labeled with its F1 score. e, Piscis uses a Feature Pyramid Network to predict
classification labels and displacement vectors from a raw image. f, A deformable sum pooling operation is applied to
generate more sharply peaked pooled labels. g,A post-processing step involving local maxima analysis and application of
displacement vectors is performed to obtain predicted spots.
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Various computational methods have been developed to automate spot analysis. These generally rely on bandpass filters
via mathematical operators such as Laplacian of Gaussian10 or Difference of Gaussian11, coupled with a manual
intensity threshold to differentiate high-frequency signals (spots) from low-frequency noise (background fluorescence).
However, these methods often end up requiring ad hoc parameter tuning, which is time-consuming and may yield
inconsistent results due to the subjective nature of manual adjustments. For instance, in two prominent software
implementations, TrackMate (LoG)12 and RS-FISH (DoG)13, spot detection accuracy is highly dependent on the
selected parameter combination (Supplementary Fig. 1), resulting in the need for extensive manual fine-tuning across
different parts of the same dataset, such as different fields of view or even within the same field of view2. Moreover,
when applied to images with high background noise, such as those with pronounced autofluorescent regions,
TrackMate and RS-FISH are prone to detecting high numbers of false positives in these areas, severely distorting the
final per-cell transcript counts (Fig. 1c-d).

Recent advancements in deep learning have profoundly transformed many areas of biological image analysis, with
neural networks achieving near-human-level performance in complex tasks like cell segmentation14–17 and tumor
classification18,19. Such approaches thus hold considerable promise for automatic spot detection, with deepBlink20 and,
more recently, Polaris21 being the most sophisticated implementations to date. However, a significant challenge in
training neural networks for this application is class imbalance: most image pixels represent the background, while
relatively few pixels correspond to spots. This imbalance can bias the neural network toward the majority background
(negative) class when using traditional training techniques, resulting in a high false negative rate for the
underrepresented yet crucial spot (positive) class.

In principle, one method for training neural networks in the presence of class imbalance is to directly optimize the F1
score, which is a metric that balances the number of false positives and false negatives into a single value. However,
the F1 score is generally non-differentiable, making it incompatible with optimization algorithms used to train neural
networks. Others have implemented several alternative approaches, including variants of the cross entropy and Dice
loss functions. Cross entropy loss is an information-theoretic metric that treats predicted and ground truth values as
two probability distributions and quantifies their difference. Despite being a common choice for classification tasks,
cross entropy loss is severely impacted by class imbalance. It is often computed pixel-wise and subsequently averaged or
summed over the whole image, meaning that the negative class, with significantly more pixels than the positive class, has
a larger influence on the loss value and is thus focused on more during training. This bias generally yields models with
high classification accuracy for the negative class but low classification accuracy for the positive class, ultimately resulting
in poor spot detection.

In contrast, Dice loss uses the Dice similarity coefficient, which measures the amount of overlap in the positive class
between the predicted and ground truth values, normalized by the average number of positive instances from each. In
this way, Dice loss does not rely on the absolute number of pixels from each class, making it less susceptible to class
imbalance. Empirical comparisons have indeed shown that Dice loss and its variants aremore effective than cross entropy
loss and its variants, such as weighted cross entropy loss and focal loss, at handling class imbalance in numerous medical
image segmentation tasks22,23. For this reason, deepBlink employed the Dice loss in its training process, but it was still
insufficient for preventing underdetection in images with higher background noise and less well-defined spots, such as
those from tissue samples (Fig. 1d).

We developed a deep learning algorithm called Piscis to address the challenge of spot detection. Piscis solves the class
imbalance problem by training models using a loss function that we call the SmoothF1 loss, a differentiable
approximation of the F1 score that can be optimized via gradient descent. When trained using the SmoothF1 loss, Piscis
significantly outperforms other state-of-the-art spot detection methods without the need for manual parameter tuning.
We anticipate that our approach for approximating the F1 score will have broad application to other problems
exhibiting class imbalance.
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2 Results
In order to achieve accurate spot detection and localization using deep learning, we first needed to encode spots in a
representation that a neural network can learn from and predict. Following a similar strategy to that of deepBlink and
Polaris, we used an auxiliary representationwhere the task is divided into predicting two types of images known as feature
maps: 1. binary classification labels of each pixel as either spot or background and 2. displacement vectors that point each
pixel to the nearest true spot center (Fig. 1e). The displacement vectors allow for the separation of nearby spots from each
other because pixels in between spotswill point either oneway or the other. From the ground truth spots, we can generate
the ground truth classification by labeling background pixels as 0 and spot pixels as 1. The number of pixels considered
part of each spot depends on the loss functionwe use formodel training. By default, ourmethod Piscis uses a 3×3 region
around the center of each spot. We can generate the ground truth displacement vectors by identifying the spot nearest to
each pixel and then calculating the difference between their coordinates. If we could train a model to accurately predict
these feature maps, we can subsequently process them to recover spot coordinates with subpixel localization accuracy,
provided each pixel contains no more than a single spot. Note that even if a pixel contains two or more overlapping
spots, they would be impossible to distinguish in practice due to the diffraction limit.

We trained a deep neural network to predict both the binary classification and displacement vectors from our raw images
(Fig. 1e). The neural network architecturewas a Feature PyramidNetwork24with anEfficientNetV225 backbone, chosen
for its previously demonstrated accuracy in image classification tasks and its superior parameter efficiency compared to
other similar-performingmodels. This choice in network architecturewas similar to those used in deepBlink, Polaris, and
cell segmentation algorithms likeCellpose15. The neural network ultimately outputs three featuremaps corresponding to
the classification labels and the horizontal and vertical components of the displacement vectors. The classification labels
predicted by the neural network alone can identify the image pixels that correspond to spots, but the identification of
these regions alone is generally insufficient for discriminating individual spot centers as regions corresponding to nearby
spots may merge together. We thus used the displacement vectors to distinguish the individual spots occupying these
regions. We designed a deformable sum pooling operation, which shifts the classification label value of each pixel by
its displacement vector to a new location (Fig. 1f). The resulting feature map, which we call the pooled labels, is more
sharply peaked at spot centers, and height of each peak can be interpreted as a spot detection confidence score. After this
sum pooling operation, we post-processed the final feature maps to obtain spot coordinates by performing local maxima
analysis with a global threshold and further refining to subpixel localization accuracy via the application of predicted
displacement vectors (Fig. 1g).

For model training and testing, we collected new or used existing experimental single-molecule RNA FISH images
(n = 358; 23,222 spots) from a variety of cell types, including human fibroblasts, melanoma, lung adenocarcinoma,
and macrophages (Fig. 2a). In our samples, multiple genes were labeled using probes coupled to various fluorophores
and imaged across different fluorescent channels using either standard single-molecule RNA FISH or Hybridization
Chain Reaction (HCR) RNA FISH. The objective of curating such a diverse dataset, representing a wide range of
experimental and imaging conditions, was to train a model that can robustly generalize effectively to new, unseen
images without extensive retraining. We further supplemented our dataset with synthetic images (n = 240; 24,768
spots) from the datasets used to train deepBlink. These datasets, named “Particle,” “Microtubule,” “Receptor,” and
“Vesicle,” contained small particle-like objects with slightly different shapes and sizes compared to the spots in our
experimental datasets. We included these datasets with the aim of further enhancing the robustness of our model.

We manually annotated each spot in the experimental RNA FISH images using the custom software NimbusImage, an
open-source, web-based platform for biological image analysis (see Methods). The coordinates of these manual
annotations were refined by Gaussian fitting to obtain pseudo-ground truth for their subpixel localization. Synthetic
images from the deepBlink datasets were pre-annotated, so we used their coordinates directly without additional
processing. The final combined dataset of 608 images was then randomly split into training (n = 418; 33,821 spots),
validation (n = 89; 6,977 spots), and testing (n = 91; 7,192 spots) sets.
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Figure 2: Piscis is trained on a diverse dataset using the SmoothF1 loss function. a,The dataset used to train and test
Piscis included experimental RNA FISH images of human inducible fibroblast-like (hiF-T) cells26,27, WM989 human
melanoma cells28,29, Calu-3 human lung adenocarcinoma cells30, and primary human monocyte-derived macrophages
(hMDMs). Images are shown with DAPI-stained nuclei (blue), spots of single mRNA molecules (red), and the
corresponding manual ground truth annotations (white). b, The SmoothF1 loss function enables direct optimization
of the F1 score via an approximation of the true F1 score by assigning pixel values of the predicted pooled labels as either
true positive (TP), false positive (FP), or false negative (FN) according to the manual ground truth annotations. Note
that the pooled labels image shown here is a hypothetical example.
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To train Piscis, we needed to develop a custom loss function that addresses the class imbalance problem inherent to spot
detection. In the specific case of spot detection, significantly more pixels are background and thus can dominate the
sparser spot pixels when using standard loss functions. Although the Dice loss used in deepBlink has been previously
shown to mitigate the effects of class imbalance and improve model performance, our testing still revealed a tendency for
deepBlink to underdetect spots, leading to a high false negative rate (Fig. 1d).

In addition to the Dice loss, deepBlink artificially reduced class imbalance by grouping pixels into larger regions known
as grid cells. Spots were then predicted on each grid cell rather than individual pixels. Larger grid cells thus reduced class
imbalance but at the cost of lower detection accuracy in regions of high spot density, as the model cannot distinguish
multiple spots within the same grid cell (Supplementary Fig. 2a-d). Among the 220 experimental images in our dataset
containing at least ten spots, deepBlink’s default 4 × 4 grid cells would inadvertently omit more than 5% of the ground
truth spots in 58 of these images during training (Supplementary Fig. 2e). These issues motivated us to develop a loss
function that addresses class imbalance without relying on the pixel grouping inherent to grid cells.

Notably, one metric that does not suffer from class imbalance problems is the F1 score itself. The F1 score, defined as
TP

TP+ 1
2 (FP+FN)

, neatly incorporates true positives (TP), false positives (FP), and false negatives (FP) and indeed is often the
metric used to measure overall model performance. However, the F1 score is typically a discrete function of the model
predictions and hence is non-differentiable, making it impossible to use for model training as a loss function because
gradient descent inherently requires differentiation. In the case of spot detection, the F1 score can only be calculated after
several post-processing steps, including local maxima analysis to identify spot peaks and a combinatorial optimization
algorithm to assign predicted spots to ground truth spots, both of which are non-differentiable. To address this issue, we
developed the SmoothF1 loss function, a differentiable approximation of the F1 score for model training (see Methods).
This approximation computes sums of the values in the pooled labels near, distant from, and missing at ground truth
spots as proxies for the counts of true positives, false positives, and false negatives, respectively (Fig. 2b). We then used
these values to compute an approximate F1 score. Given that the F1 score increases with improving model performance
while loss functions decrease by convention, we thus define the SmoothF1 loss as the negative of this approximated F1
score.

To evaluate the effectiveness of the SmoothF1 loss function, we trained Piscis on our combined dataset and compared
its performance on the testing set using the F1 score against deepBlink, TrackMate, and RS-FISH (Fig. 3a). To ensure a
fair comparison, we retrained deepBlink on our combined dataset usingmultiple grid cell sizes and chose to represent the
model with the optimal size of 2×2 pixels in our benchmarking results (Supplementary Fig. 3). We also performed a grid
search over the relevant parameter spaces of the spot size and threshold parameters for both TrackMate and RS-FISH.
Their results were shown using both global and per-image parameter tuning, where the former used a single parameter
combination that achieved the highest mean F1 score, and the latter used the best parameter combination for each image.
In our benchmarks, Piscis achieved amean F1 score of 0.895, significantly outperforming all other algorithms. Although
deepBlink (F1 = 0.863) outperformed both globally tuned TrackMate (F1 = 0.756) and RS-FISH (F1 = 0.665), it
performed worse than per-image tuned TrackMate (F1 = 0.874), which represented the upper-performance limit for a
human user who always chooses the optimal parameter combination for each image. In contrast, Piscis still surpassed
this upper limit for both TrackMate and RS-FISH without needing any manual parameter tuning.

We also trained Piscis on our combined dataset using the Dice loss and two common variants of cross entropy, the
weighted cross entropy loss and focal loss, to compare their performance with the SmoothF1 loss. Again, the Piscis
model trained using the SmoothF1 loss, as described previously, significantly outperformed the model trained using
these other common loss functions (Fig. 3b). In line with previous works that found the Dice loss to be more effective
than variants of the cross entropy loss, the model trained using the Dice loss resulted in the closest performance to the
SmoothF1 loss. Looking at the individual experimental and synthetic datasets included in our combined dataset, we
found that training Piscis using the SmoothF1 loss yielded the highest mean F1 score for six out of nine experimental
conditions and all four synthetic particle types (Supplementary Fig. 4-5).
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Figure 3: Piscis outperforms other state-of-the-art spot detection methods. a, Bar plot comparison between Piscis
and other spot detection methods over the testing images from our combined dataset (n = 91). Statistical significance
was determined using the one-sidedWilcoxon signed-rank test, with the hypothesis that Piscis yielded higher F1 scores. b,
Bar plot comparisonbetweenPiscismodels trainedusing the SmoothF1,Dice, weighted focal, andweighted cross entropy
losses over the testing images from our combined dataset. Statistical significance was similarly determined using the one-
sided Wilcoxon signed-rank test. c, Comparison between the true F1 scores and those estimated by the SmoothF1 loss
for the Piscis model trained using the SmoothF1 loss. Each data point corresponds to a single image from our training
dataset (n = 418). d, Comparison between the true F1 scores and those estimated by the Dice loss for the Piscis model
trained using the Dice loss. Each data point again corresponds to a single image from our training dataset.
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To explain why the SmoothF1 loss resulted in better performance than the Dice loss, we plotted the F1 scores over our
training set for both Piscis models against their negative loss values. Linear regression revealed that the SmoothF1 loss
provided an accurate approximation of the true F1 score, as evidenced by a high R2 value of 0.915 (Fig. 3c). In contrast,
the data for the Dice loss exhibited a weaker correlation, reflected in a lower R2 value of 0.668 (Fig. 3d). Furthermore,
almost all points in the plot for the Dice loss lie above the y = x line, which means that it consistently underestimates
the true F1 score. We believe one major cause for this underestimation is that spot pixels in the predicted classification
labels can often be slightly offset from the ground truth. Even if this offset is only a single pixel, the Dice loss would
classify the predicted spot pixel as a false positive. The SmoothF1 loss does not suffer from the same issue because it is
computed from the pooled labels, where our deformable sum pooling operation corrects slightly offset spot pixels using
the predicted displacement vectors. To demonstrate the effect of this difference, we randomly shifted spots in each image
of our training set by small vectors and computed both the SmoothF1 andDice losses. Theoretically, small offsets should
still result in an F1 score of approximately 1 if the predicted displacement vectors are accurate. The SmoothF1 loss indeed
has this property, whereas the Dice loss does not (Supplementary Fig. 6). The F1 scores predicted by theDice loss rapidly
decrease as the magnitude of the randomly sampled vectors increases (Supplementary Fig. 6a).

In addition to our combined dataset, we trained Piscismodels on the six datasets from the deepBlink paper and compared
them against the pre-trained deepBlinkmodels. Although the differences in F1 scores wereminor, Piscis (Single-molecule
RNA FISH: F1 = 0.935, SunTag: F1 = 0.800, Particle: F1 = 0.950, Microtubule: F1 = 0.661, Receptor: F1 =
0.686, Vesicle: F1 = 0.739) still outperformed deepBlink (Single-molecule RNA FISH: F1 = 0.916, SunTag: F1 =
0.748, Particle: F1 = 0.943, Microtubule: F1 = 0.638, Receptor: F1 = 0.683, Vesicle: F1 = 0.729) on all datasets
(Supplementary Fig. 7).

To illustrate a situation where Piscis’ superior performance was particularly advantageous, we applied all algorithms to
an additional image containing a prominent autofluorescent region, which is a common feature of data collected from
tissue samples (Fig. 1c). This image, featuring human melanoma cells grown in mice, was not part of our combined
dataset and was analyzed after model training. As described previously, we performed a grid search to find the optimal
parameter combination for both TrackMate and RS-FISH. While deepBlink tended to undercount across the image,
leading to many false negatives, both TrackMate and RS-FISH yielded many false positives in the autofluorescent
region. In contrast, Piscis successfully detected most true spots while avoiding the autofluorescent region (Fig. 1d). This
ability to reduce false positives in noisy image regions, which normally requires extensive and tedious manual
correction, demonstrates Piscis’ potential to streamline the analysis of RNA FISH-derived data.

3 Discussion
We have here shown that Piscis is a highly capable deep learning algorithm for spot detection that significantly
outperforms other state-of-the-art methods across a range of datasets representing diverse cell types and experimental
conditions. It performs exceptionally well in areas of high spot density and images with high background noise, where
other methods would yield many false positives.

A key to the high performance of Piscis is the development and application of a differentiable approximation of the F1
score as the loss function. The F1 score is, in many ways, the ideal loss function for many classification tasks because it
naturally balances the true positive, false positive, and false negative rates. However, it is usually not differentiable, hence
impossible to use for model training. Thus, our development of the SmoothF1 loss function is a significant step towards
a general solution to class imbalance issues in deep learning. Indeed, the framework we provided here should allow for
smooth approximations of the F1 score in many other image analysis tasks, extending the applicability of our approach
to a broader range of scientific domains.

Piscis has the potential to enhance many practical aspects of spot detection. In our experience, researchers face several
significant problems when confronted with real-world data that create significant bottlenecks in the analysis pipeline.
One is the challenge of uneven background intensity, which makes it impossible to choose a global threshold for spot
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detection methods based on Laplacian of Gaussian or Difference of Gaussian filters. Another is the false positives that
appear when looking at, for example, tissue sections, which often have areas of bright autofluorescence that Laplacian
of Gaussian or Difference of Gaussian methods misidentify as clusters of spots. Currently, these areas must be manually
removed from the analysis, which is tedious for large imaging fields. Piscis alleviates both issues, allowing for automated
analysis that enables image quantification on a much larger scale.

Another important application for spot detection is multiplex imaging. Typically, multiplex biomolecule detection
with fluorescence microscopy is limited by the number of fluorescent dyes that can be discriminated via optical
bandpass filters, which is usually around four or five. Nevertheless, a number of recent spatial transcriptomics
techniques have emerged that circumvent these limitations to greatly enhance our ability to detect and quantify many
more RNA species simultaneously, often into the hundreds or even thousands4–6. These methods typically work by
reading out a sequence of fluorescent colors for each target RNA through multiple rounds of chemistry and imaging to
obtain a molecular “barcode.” For instance, one type of RNA molecule may be labeled “Red-Green-Red-Blue,” while
another may be labeled “Red-Blue-Red-Red.” Accurately reading these barcodes is a spot detection problem for which
Piscis may have much practical potential. Moreover, it may prove useful to develop variants of spot detection
algorithms like Piscis that can explicitly detect spots over these multiple rounds of imaging, potentially leveraging image
information across successive rounds of imaging to read out barcodes more accurately than would be possible by just
applying Piscis to a single round at a time.

4 Materials and Methods

4.1 Datasets
4.1.1 Training and testing data

The dataset used to train Piscis and test all algorithms consists of experimental RNA FISH and synthetic data. For the
experimental data, we performed either standard single-moleculeRNAFISHorHCRRNAFISHand imaged cells using
fluorescence widefield microscopy. We collected six datasets representing multiple cellular systems, including WM989
human melanoma cells28,29 grown in vitro and in NOD SCID mice31, human inducible fibroblast-like (hiF-T) cells26,27,
Calu-3 human lung adenocarcinoma cells30, and primary humanmonocyte-derivedmacrophages (hMDMs). All images
were acquired at 60x magnification and 1.4 numerical aperture using a Nikon Ti-E microscope. More specifics for each
dataset, including the imaging channels, targeted genes, and probe fluorophores, can be found in Supplementary Table
1.

For the synthetic data, we took a subset of the datasets used to train deepBlink20. These included the “Particle” dataset,
generated by the “SyntheticDataGenerator” plugin in Fiji32, and the “Microtubule,” “Receptor,” and “Vesicle” datasets,
created for the Particle Tracking Challenge at the 2012 International Symposium on Biomedical Imaging33.

4.1.2 Annotation of experimental images

Experimental images were manually annotated using the custom software NimbusImage, which can be found at
https://github.com/Kitware/UPennContrast. During the annotation process, we identified spots based on
their shape and intensity relative to the background while cross-referencing with the nuclei channel and adjacent z-levels
when available. We also generally avoided ambiguous image regions, where a low signal-to-noise ratio made it difficult
to obtain a definitive ground truth. The resulting annotations, including their x and y coordinates and fluorescence
channels, were exported as .json files for further processing.

4.1.3 Processing of annotated images

Several processing steps were then applied to prepare datasets for model training and testing. For the experimental data,
manual annotationswere improved to subpixel accuracy byGaussian fitting. Eachmanual annotationwas snapped to the
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corresponding image’s local maxima within a 3× 3 pixel kernel. A three-dimensional Gaussian function was then fitted
in a 3×3 pixel kernel around this local maxima using the curve_fitmethod from the SciPy package34, whereby the center
of the fittedGaussianwas taken to be ground truth coordinates. Multiple annotations could be inadvertently fitted to the
same spot due to accidental double annotation or high spot density. To account for these scenarios, we removed potential
duplicates by replacing each group of points within a 1-pixel radius with a single point representing the centroid. After
this process, images were tiled to create smaller crops of 256 × 256 pixels while keeping only those containing at least
one ground truth spot. The tiled images and annotations were then randomly partitioned into training (70%), validation
(15%), and testing (15%) splits to generate a single .npz file for each channel of each dataset. In the end, we obtained a
total of 358 images across the six experimental datasets as shown in Supplementary Table 1.

For the synthetic data, a subset of 60 images and their corresponding annotations were taken from each of the four
deepBlink datasets, using the same split ratios as before, with 42 for training, 9 for validation, and 9 for testing. Smaller
crops of 256×256 pixels were then extracted from the center of each image. In the end, we obtained a total of 240 images
across the four synthetic datasets.

Finally, the experimental and synthetic images, along with their annotations, were compiled into our combined dataset
for model training and testing.

4.1.4 Additional data with autofluorescent noise

In addition to the training and testing data, we used one more dataset to evaluate the performance of all algorithms on
an image with pronounced autofluorescent noise (Fig. 1c-d). For this experimental data, we performed clampFISH 2.09
on WM989 cells28 grown in NOD SCID mice31 and imaged the resulting tissue section using fluorescence widefield
microscopy. These images were acquired at 20x magnification and 0.75 numerical aperture using a Nikon Ti-E
microscope. The specific image used in our comparison was a 512 × 512 crop from the CY3 channel, where the gene
NGFRwas labeled using probes with the fluorophore Cy3. Wemanually annotated this image using NimbusImage and
applied the same Gaussian fitting process as previously described.

4.2 Piscis algorithm design
4.2.1 Auxiliary representation of spots

Spots can be represented using a set of feature maps with the same spatial dimensions as the raw image, which consists
of binary classification labels of each pixel as background or spot and displacement vectors pointing each pixel to the
nearest true spot center (Fig. 1e). Ground truth classification labels L are generated by first setting pixels containing a
spot center to a value of 1 and all other pixels to a value of 0. Morphological dilation can be optionally applied to expand
the region occupied by each spot, mitigating class imbalance and increasing the tolerance for slight positional offsets
between a model’s prediction and the ground truth. Ground truth vector displacements, with vertical components V
and horizontal componentsH, are generated by assigning each pixel to the nearest spot center via a Voronoi tessellation
and calculating their coordinate difference. A deep neural network is then used to predict these feature maps from the
raw image.

4.2.2 Deep neural network

The deep neural network was based on the Feature Pyramid Network24, a state-of-the-art architecture for object
detection (Fig. 1e). In the bottom-up pathway, a modified EfficientNetV225 backbone processes a one-channel input
image, standardized to zero mean and unit variance, to extract four sets of feature mapsC1,C2,C3, andC4 with 32, 64,
128, and 256 channels respectively. While C1 preserves the spatial dimensions of the input image, the convolutional
blocks generating C2, C3, and C4 are each preceded by a downsampling operation that reduces the spatial resolution by
a factor of two. This downsampling is performed via a max pooling operation instead of using a convolutional stride of
two like in the original EfficientNetV2 implementation. The following stages of the network are primarily adapted

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2024. ; https://doi.org/10.1101/2024.01.31.578123doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.31.578123
http://creativecommons.org/licenses/by-nc-nd/4.0/


from Cellpose15, a popular deep learning algorithm for cellular segmentation. A difference in our network architecture
is the construction of a feature pyramid in the top-down pathway and the aggregation of feature maps from all spatial
resolutions, in contrast to Cellpose’s utilization of only the final output layer.

Between the bottom-up and top-down pathways, an image style vector s is computed by a global average pooling
operation on the feature mapsC4 and subsequent normalization:

s∗[k] =
∑
i,j

C4[i, j, k]

s = s∗/∥s∗∥2,

where i, j are the spatial indices, and k is the channel index. The resulting 256-dimensional unit vector s is a compressed
representation of the input image, which is later transferred to each level in the feature pyramid.

In the top-down pathway, pyramid levels are created via a combination of upsampling and convolutional operations.
First, define a 2 × 2 nearest-neighbor upsampling operation U2×2; a projection operation P1×1 combining batch
normalization and a 1 × 1 convolutional layer; a convolutional operation F combining batch normalization, the swish
activation function, and a 3 × 3 convolutional layer; and an addition operation G of a broadcasted projection of the
image style vector s via a dense layerP to the output ofF :

G(x)[i, j, k] = F(x)[i, j, k] + P(s)[k].

Using these operations, construct two residual blocks:

x∗ = G(F(x) + y) + P1×1(x)
z = G(G(x∗)) + x∗,

which combined form a convolutional operationH with z = H(x, y). The four pyramid levels P4, P3, P2, and P1, each
with 32 channels, are then iteratively generated:

P∗
t =

{
C4 if t = 4
U2×2(Pt+1) if t < 4

Pt = H(P∗
t ,Ct).

Here, setting y = Ct and adding it with F(x) in the first residual block would create a lateral skip connection that
enhances the feature maps in the top-down pathway with the equivalent resolution feature maps from the bottom-up
pathway.

The top three pyramid levels P4, P3, and P2 are further upsampled to match the spatial size of the bottom level P1. First,
define a combined upsampling and convolutional operation

U(x) = H(U2×2(x), 0),

where the 0 element indicates the lack of a lateral skip connection. This operation is then applied for three iterations on
P4, two iterations on P3, and one iteration on P2 to generate P′

4, P′
3, and P′

2 respectively:

P′
4 = U(U(U(P4)))

P′
3 = U(U(P3))

P′
2 = U(P2).

The final pyramid levels are aggregated via addition, the result of which is then projected from 32 to 3 channels,
corresponding to the classification labels L̂ and the vertical components V̂ and the horizontal components Ĥ of the
displacement vectors:

F′ = P1×1(P1 + P′
2 + P′

3 + P′
4).
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4.2.3 Deformable sum pooling

A deformable sum pooling operation was applied on the predicted classification labels L̂ to obtain a more refined feature
map we call the pooled labels L̂∗, which is characterized by sharper peaks at spot centers (Fig. 1f). We implemented a
discrete variant for inference that is less computationally costly and a smooth, differentiable variant for training that is
compatible with gradient descent. Both variants of the operation are applied pixel-wise using a d × d pixel kernel with
radius r = (d − 1)/2. During both model training and inference, we chose the radius r = 1, corresponding to a 3 × 3
pixel kernel, which was well-suited for the spot sizes in our dataset and minimized the computational cost. Similar to a
standard convolution operation, the feature maps L̂, V̂, and Ĥ are understood to have been zero-padded on each side by
r pixels.

For the discrete variant, define an indicator function

1(i, j, k, l) =


1 if (k+ V̂[k, l], l+ Ĥ[k, l])

∈ [i− 0.5, i+ 0.5)× [j− 0.5, j+ 0.5)
0 otherwise,

which determines whether the displaced coordinates of pixel [k, l] falls within the bounds of pixel [i, j]. The pooled labels
L̂∗ is then generated as follows:

L̂∗[i, j] =
i+2r∑
k=i

j+2r∑
l=j

1(i+ r, j+ r, k, l) · L̂[k, l],

which is more sharply peaked at spot centers, enabling further post-processing steps to accurately compute their
coordinates.

For the smooth variant, define a two-dimensional isotropic Gaussian function gwith standard deviation σ:

g(x, y, μx, μy) = exp

(
−
(x− μx)

2 + (y− μy)
2

2σ2

)
.

This Gaussian is used to define a soft indicator function

1̃(i, j, k, l) =
g(i, j, k+ V̂[k, l], l+ Ĥ[k, l])

k+r∑
m=k−r

l+r∑
n=l−r

g(m, n, k+ V̂[k, l], l+ Ĥ[k, l])

,

which approximates 1 by first evaluating the Gaussian, centered around the displaced coordinates of pixel [k, l], at pixel
[i, j]. This value is then normalized by the sum of the Gaussian over a d × d pixel kernel centered at pixel [k, l]. Here, it
is assumed that pixel [i, j] is contained within this kernel. To ensure that 1̃ is an accurate approximation of 1, we chose
σ = 0.5, corresponding to a narrow Gaussian with a full width at half maximum of around one pixel. The approximate
pooled labels L̂∗ is then generated as follows:

L̂∗[i, j] =
i+2r∑
k=i

j+2r∑
l=j

1̃(i+ r, j+ r, k, l) · L[k, l].

This is identical to the discrete variant except for the differences in their indicator functions.
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4.2.4 Post-processing of feature maps

In the post-processing step, local maxima analysis is performed on the pooled labels to identify spot center pixels with
values above a fixed global threshold. An appropriate value for this threshold was determined after model training. The
coordinates of these spot center pixels are then shifted by their corresponding displacement vectors to obtain predicted
spot coordinates with subpixel localization accuracy (Fig. 1g).

4.2.5 SmoothF1 loss function

The SmoothF1 loss function computes a differentiable approximation of the actual F1 score using the predicted pooled
labels L̂∗ and displacement vectors (V̂, Ĥ) (Fig. 2b). Under the assumption that the neural network can predict pooled
labels L̂∗with uniformly sharp peaks at each spot, the counts of true positives (TP), false positives (FP), and false negatives
(FN) are approximately proportional to the sums of label values near (LTP), distant from (LFP), and missing at (LFN)
ground truth spots respectively. To obtain these values, we first compute a proximity score SD for each pixel reflecting
the distance between the predicted displacement vectors (V̂, Ĥ) and the ground truth (V,H):

D =

√
(L⊙ V̂− V)2 + (L⊙ Ĥ−H)2

SD = max{1−D/Dmax, 0},

where ⊙ denotes an element-wise product and Dmax is a maximum distance threshold. We chose Dmax = 3 pixels, but
this parameter can be adjusted to either increase or decrease the loss function’s tolerance for localization errors. It is
important to note that predicted displacement vectors were “activated” only within spot pixels, specified by the ground
truth classification labels L, to promote sparsity in the predicted feature maps L̂ and L̂∗. Pixels where the predicted
and ground truth displacement vectors perfectly coincide will have a proximity score of 1, which decreases linearly to 0
with increasing distance untilDmax. The element-wise max function ensures that all pixels whereD > Dmax will have a
proximity score of 0. These proximity scores are used to compute LTP, LFP, and LFN:

LTP =
∑
i,j

(L̂∗ ⊙ SD)[i, j]

LFP =
∑
i,j

L̂∗[i, j]− LTP

LFN =
∑
i,j

L∗[i, j]− LTP.

Finally, define the SmoothF1 loss function as

LSmoothF1 = − LTP

LTP +
1
2(LFP + LFN)

≈ − TP
TP+ 1

2(FP+ FN)
= −F1,

where a negative sign was introduced as loss functions by convention decrease in value as model performance improves,
while the opposite is true for the F1 score.

4.2.6 Masked L2 loss function

ThemaskedL2 loss function computes the L2normof the difference between the predicted displacement vectors (V̂, Ĥ)
and the ground truth (V,H) but restricted to regions of interest defined by a binary mask. We chose the mask to be the
ground truth classification labels L, which effectively enforces the accuracy of the predicted displacement vectors over a
small region around each true spot center. The size of this region is determined by the number of morphological dilation
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iterations used to generate L. Define the masked L2 loss function as

LL2 =

∑
i,j

(
L⊙

√
(V̂− V)2 + (Ĥ−H)2

)
[i, j]∑

i,j

L[i, j]
,

where the L2 norm of the vector difference (V̂− V, Ĥ−H) is averaged over the spot pixels in L.

4.2.7 Composite SmoothF1-L2 loss function

For model training, define a composite SmoothF1-L2 loss function that combines the SmoothF1 and masked L2 losses:

LSmoothF1-L2 = LSmoothF1 + 0.25 · LL2.

While the SmoothF1 loss alone is sufficient for training, adding the masked L2 loss as a regularization term improves
training stability and model robustness. A small weighting factor of 0.25 for theLL2 term was chosen to ensure that the
LSmoothF1 term remains the primary optimization objective. Furthermore, one morphological dilation was applied when
generating the ground truth classification labels L to increase the loss function’s tolerance for small localization errors
within a 3× 3 region around each true spot center.

4.2.8 Composite Dice-L2 loss function

To compare the SmoothF1 loss to the Dice loss used in training deepBlink, define it as

LDice = −

2 ·
∑
i,j

(L⊙ L̂)[i, j]∑
i,j

L[i, j] +
∑
i,j

L̂[i, j]
.

Then, define a composite Dice-L2 loss function that combines the Dice and masked L2 losses:

LDice-L2 = LDice + 0.25 · LL2.

In contrast to Piscis, deepBlink adopted a grid cell strategy for spot detection, where the resolution of the network’s
output feature maps was inversely proportional to the grid cell size. No morphological dilation was applied when
generating the ground truth classification labels L to mimic the deepBlink variant using 1 × 1 pixel grid cells, which
makes pixel-wise predictions from feature maps with the same spatial resolution as the raw image.

4.2.9 Composite Weighted Cross Entropy-L2 loss function

To compare the SmoothF1 loss to the weighted cross entropy loss, define it as

LCE = − 1
n
∑
i,j

(
αL[i, j] · log L̂[i, j] + (1− L[i, j]) · log(1− L̂[i, j])

)
,

where n is the total number of pixels in L and L̂ and α is the positive class weight. To ensure that each class contributes
equally to the loss, we set

α =

∑
i,j(1− L[i, j])∑

i,j L[i, j]
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as the ratio of the negative class size to the positive class size. We expect α ≫ 1 in a class-imbalanced image with
significantly more negative than positive pixels. Then, define a composite Weighted Cross Entropy-L2 loss function
that combines the weighted cross entropy and masked L2 losses:

LCE-L2 = LCE + 0.25 · LL2.

4.2.10 Composite Weighted Focal-L2 loss function

To compare the SmoothF1 loss to the weighted focal loss, define it as

LFocal = − 1
n
∑
i,j

(
α(1− L̂[i, j])γ · L[i, j] · log L̂[i, j] + L̂[i, j]γ · (1− L[i, j]) · log(1− L̂[i, j])

)
,

where n is the total number of pixels in L and L̂, α is the positive class weight, and γ ≥ 0 is the focusing parameter. We
used the same α as in our definition of the weighted cross entropy loss, where α is the ratio of the negative class size to the
positive class size. We also used the default γ = 2 as in the focal loss paper. Then, define a composite Weighted Focal-L2
loss function that combines the weighted focal and masked L2 losses:

LFocal-L2 = LFocal + 0.25 · LL2.

4.3 Training
4.3.1 Data augmentation

During each training epoch, images and their corresponding ground truth annotations were randomly transformed to
increase the size of the dataset artificially and prevent overfitting. First, images were standardized to zero mean and unit
variance. Subsequently, each image and its annotations were randomly flipped along the horizontal and vertical axes. A
random affine transformation was then applied, generated by uniformly sampling a scale from 0.75 to 1.25, a rotation
angle from 0 to 2π, and translations in both the horizontal and vertical directions within the range −(ℓs − ℓf)/2 to
−(ℓs − ℓf)/2, where ℓs is the scaled image size and ℓf is the model’s input size. A ℓf × ℓf pixel crop was then extracted
from the center of the affine transformed image and annotations. Finally, each image was adjusted by a random intensity
scaling factor, sampled from a log-uniform distribution supported between 0.2 and 5. This step was crucial to enhance
the model’s robustness to images with skewed intensity profiles, particularly those with aberrant high-intensity pixels.
The resulting augmented images and annotations containing at least one true spot were then randomly split into training
batches and used to generate the ground truth classification labelsL and displacement vectors (V,H).

4.3.2 Optimizer and learning rate schedule

Piscis was trained using a stochastic gradient descent optimizer with Nesterov acceleration35,36, a momentum of 0.9, and
a weight decay of 0.0001. This optimizer was paired with a learning rate schedule, which included warmup and decay
phases. During the warmup phase, accounting for the first 5% of epochs, the learning rate was linearly increased from 0
to 0.2. This rate was then held constant for the subsequent 45% of epochs. During the decay phase, accounting for the
final 50% of epochs, the learning rate was halved every 5% of the epochs for a total of 10 step decays.

4.3.3 Piscis models

We trained four Piscis models on our combined dataset of experimental and synthetic images using the composite
SmoothF1-L2, Dice-L2, Weighted Cross Entropy-L2, and Weighted Focal-L2 loss functions. Each model was trained
for 400 epochs using a batch size of four images, with every image sized at 256× 256 pixels. Additionally, we trained six
more Piscis models, each on one of the six datasets from the deepBlink paper, using the composite SmoothF1-L2 loss
function. Mirroring deepBlink’s training specifications, each Piscis model was trained for 200 epochs with images sized
at 512× 512 pixels. However, unlike the deepBlink models, we used a batch size of four images instead of two to ensure
stable convergence, given the increased complexity of the SmoothF1 loss function.
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4.3.4 deepBlink models

We retrained deepBlink on our combined dataset. Three deepBlink models were trained using 1 × 1, 2 × 2, and 4 × 4
pixel grid cells, each for 400 epochs, with all other training parameters set at their default values. Additionally, the six
pre-trained models, each trained on one of the six deepBlink datasets, were downloaded and used as-is without further
modifications.

4.4 Benchmarking
4.4.1 F1 integral score

Spot detection and localization performance were evaluated using the F1 integral score20, referred to elsewhere as simply
the F1 score. Briefly, 50 evenly-spaced numbers from 0 to 3 pixels were generated as distance thresholds. For each
threshold, predicted and ground truth spots with an L2 distance below the given threshold were matched by solving a
linear sum assignment problem using the Jonker–Volgenant algorithm37, which provided counts of true positives (TP),
false positives (FP), and false negatives (FN). These counts were used to calculate the per-threshold F1 score:

F1 =
TP

TP+ 1
2(FP+ FN)

.

The F1 integral score was then computed by integrating per-threshold F1 scores using the trapezoidal rule and
subsequently normalizing by a factor of 3 to produce a final value between a minimum of 0 (worst performance) and a
maximum of 1 (best performance).

4.4.2 Piscis model benchmarking

Before benchmarking the Piscismodels trained using the SmoothF1 loss function, we needed to choose a global threshold
for thepost-processing step. To this end, themeanF1 scorewas computedon the validation set of eachof the six deepBlink
datasets using their corresponding Piscismodels. A searchwas subsequently performed across 18 evenly-spaced threshold
values from0.5 to 9 to find the threshold thatmaximized the sumof the sixmean F1 scores. The optimal global threshold,
determined to be 1, was set as the default and used for all benchmarking and visualization purposes. With this global
threshold, Piscis models trained on our combined dataset and the six deepBlink datasets were then benchmarked on their
corresponding testing sets by the F1 score. Only images in the testing set containing at least one true spot were included
in the final benchmarking results.

Additional Piscis models were trained using the Dice loss, weighted cross entropy loss, and weighted focal loss. A global
threshold of 0.5 was set as the default for the Dice and weighted focal losses. Without a mechanism to down-weight the
loss contribution of easily detected spots, the weighted cross entropy loss generally yields much higher classification label
values and, in practice, requires a higher threshold to avoid false positives. Following the implementation of Polaris, we
set a global threshold of 0.95 as the default for the weighted cross entropy loss.

The SmoothF1 and Dice losses were further compared to explain the differences in their performance. Piscis models
trained with each loss function were applied to the training set of our combined dataset, the result of which was used to
compute the true F1 scores and the corresponding loss values. For each Piscis model, negative loss values were taken as
the predicted F1 scores and plotted against the true F1 scores. Linear regression was performed on the data in these two
scatter plots to determine the ability of the SmoothF1 and Dice losses to approximate the true F1 score.

The tolerance of each loss function to minor mistakes, particularly for small offsets of spot pixels between the predicted
and ground truth classification labels, was also tested by first shifting spots in each image of our training set by random
vectors. These vectors were sampled from a two-dimensional isotropic Gaussian distribution with covariance Σ = σ2I.
The randomly shifted spotswere then used to generate classification labels with spot pixels slightly offset from the ground
truth, meant tomimic a hypothetical model output. Under the assumption that a hypothetical model can still accurately
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predict the displacement vectors, the SmoothF1 andDice losses were recomputed using the newly generated classification
labels. This procedure was repeated for 101 evenly-spaced values of σ from 0 to 1.

4.4.3 deepBlink model benchmarking

deepBlink models were evaluated in the same way as the Piscis models. It is important to note that our results for the six
pre-trained deepBlink models deviate slightly from the original deepBlink benchmarks, which included all images in the
testing set, even those containing no spots. Among the three deepBlink models trained on our combined dataset using
different grid cell sizes, the model with 2 × 2 pixel grid cells significantly outperformed the other two and was selected
for all comparisons with other algorithms (Supplementary Fig. 3).

4.4.4 TrackMate and RS-FISH benchmarking

TrackMate andRS-FISHwere eachbenchmarkedon the testing set of our combineddataset using 100differentparameter
combinations. For TrackMate, a grid search was performed across 5 evenly-spaced radius values from 1 to 3 pixels and
20 evenly-spaced threshold values from 0.02 to 0.4. Likewise, for RS-FISH, a grid search was performed across 5 evenly-
spaced sigma values from 1 to 3 and 20 evenly-spaced threshold values from 0.002 to 0.04.

4.4.5 Statistical analysis

The statistical significance of differences in the benchmarking results between algorithms was determined by the one-
sidedWilcoxon signed-rank test, with the hypothesis that Piscis yielded higher F1 scores.

4.5 Software implementation
The Piscis code library was written in Python 338 and leverages numerous open-source Python packages, including
DeepTile39, Flax40, JAX41, Numba42, NumPy43, OpenCV44, Optax45, pandas46,47, scikit-image48, SciPy34, and
Xarray49,50. The custom deformable pooling operation and loss functions were implemented using JAX, a
high-performance numerical computing library from Google Research. The model architecture was implemented
using Flax, a neural network library for JAX. The stochastic gradient descent optimizer used for model training was
implemented using Optax, an optimization library for JAX. During model inference, DeepTile facilitates the
processing of large image inputs by splitting them into smaller tiles. These tiles are processed in parallel, and their
outputs are subsequently stitched back together, allowing Piscis to scale effectively to images of arbitrary sizes.

5 Data availability
Our combined dataset for model training and testing can be found at https://huggingface.co/datasets/wniu/
Piscis/tree/main/20230905.

6 Code availability
The Piscis code library can be found at the GitHub repository https://github.com/zjniu/Piscis. Within the
same repository, all code for generating the figures in this manuscript can be found at https://github.com/zjniu/
Piscis/tree/main/paper. All pre-trained Piscis models can be found at the HuggingFace repository https://
huggingface.co/wniu/Piscis.
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