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Abstract 

Increasing evidence indicates that specific genetic variants influence the severity of outcomes 

after infection with COVID-19. However, it is not clear whether the effect of these genetic 

factors is independent of the risk due to more established non-genetic demographic and 

metabolic risk factors such as male sex, poor cardiometabolic health, and low socioeconomic 

status. We sought to identify interactions between genetic variants and non-genetic risk factors 

influencing COVID-19 severity via a genome-wide interaction study in the UK Biobank. Of 

378,051 unrelated individuals of European ancestry, 2,402 were classified as having experienced 

severe COVID-19, defined as hospitalization or death due to COVID-19. Exposures included 

sex, cardiometabolic risk factors (obesity and type 2 diabetes [T2D], tested jointly), and multiple 

deprivation index. Multiplicative interaction was tested using a logistic regression model, 

conducting both an interaction test and a joint test of genetic main and interaction effects. Five 

independent variants reached genome-wide significance in the joint test, one of which also 

reached significance in the interaction test. One of these, rs2268616 in the PGF gene, showed 

stronger effects in males and in individuals with T2D. None of the five variants showed effects 

on a similarly-defined phenotype in a lookup in the COVID-19 Host Genetics Initiative. These 

results reveal potential additional genetic loci contributing to COVID-19 severity and 

demonstrate the value of including non-genetic risk factors in an interaction testing approach for 

genetic discovery. 
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Introduction 

 

Epidemiological research has uncovered multiple risk factors for COVID-19 severity, including 

sex, metabolic conditions such as type 2 diabetes and obesity, and socioeconomic status. Male 

sex is independently associated with higher mortality and worse COVID-19 outcomes 

(Palaiodimos et al., 2020; Park et al., 2020). Cardiometabolic conditions, such as Type 2 diabetes 

(T2D) and obesity, are also associated with increased COVID-19 susceptibility and severity 

(Barron et al., 2020; Zhu et al., 2020). Additionally, associated comorbidities of obesity, such as 

deregulated immune response, chronic inflammation, metabolic dysfunction, and compromised 

cilia on airway epithelial cells may put individuals at higher risk of severe COVID-19(Ritter et 

al., 2020). Minoritized communities are disproportionately impacted by of COVID-19 and may 

be predisposed to worse conditions due to environmental factors, limited healthcare access, and 

other societal factors (Tai et al., 2021). Furthermore, housing and neighborhood density and 

increased work-related exposure may put low-income groups at higher risk (Burström & Tao, 

2020). Additionally, the greater prevalence of underlying chronic conditions among individuals 

with lower socioeconomic status puts this group at greater risk of severe outcomes.  

Genetic investigations, such as that from the Host Genetics Initiative (HGI) consortium, have 

demonstrated that specific genomic regions are associated with COVID-19 severity. The HGI 

global meta-analysis identified 13 genome-wide significant loci, 9 of which were associated with 

increased risk of severe symptoms for hospitalized COVID (Ganna, 2021). Several loci were 

further associated with interstitial lung disease and autoimmune and inflammatory diseases, 

possibly predisposing individuals to greater immune response and worse outcomes.  

It is not clear whether genetic factors impact the relationship between these key risk factors and 

COVID-19 severity, or whether these interactions can uncover novel genetic loci impacting this 

outcome. We sought to understand the interactions between genetic variants and previously 

reported risk factors, in order to gain novel understanding of the underlying mechanisms 

impacting COVID-19 severity and add an important dimension to the current epidemiological 

literature on COVID-19. We undertook a series of three genome-wide gene-environment 

interaction studies in the UK Biobank, while conducting both interaction effect tests and joint 

tests of genetic main and interaction effects. The “environmental” exposures included sex, 

cardiometabolic health (obesity and type 2 diabetes status), and social determinants of health (as 

quantified by the multiple deprivation index). The binary outcome was severe COVID-19 (as 

defined by hospitalization or death due to COVID-19) while the rest of the population was used 

as a control group. Using GxE analyses and GWAS post-processing methods, we found 5 

genome-wide significant loci that provide insight into the biological mechanisms of severe 

COVID-19 outcomes.  
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Results 

The UKB population is described in Table 1, with subjects categorized into those having 

experienced severe COVID-19 (hospitalization or death from COVID-19; see Methods) and the 

remaining population (regardless of infection status). While the overall population had a greater 

proportion of females, cases were more likely to be male (54% vs. 46% in controls, p = 2.310-

11). Cases also had a greater prevalence of T2D (p = 8.210-48), higher BMI (p = 6.710-62) and 

higher MDI (p = 9.710-45).    

We conducted a GWIS for each of the following exposures: sex, cardiometabolic traits (BMI and 

T2D, tested jointly), and MDI. Top index variants after pruning are displayed in Suppl. Tables 

S2-4. Across all scans, five variants (rs2268616, rs182113773, rs148793499, rs11115199, and 

chr2:218260234) passed a genome-wide significance (GWS) threshold (p < 510-8) in the joint 

test. One of these five (rs11115199) was additionally found to be GWS in the cardiometabolic 

(CM) interaction test (Figure 2; Table 2). Two of these variants (rs148793499, rs11115199) 

passed a study-wide significance threshold (p < 510-8/ 3 exposures = 1.610-8). No variants 

passed the GWS threshold in the MDI analysis. Of the five variants, a GWS marginal effect was 

identified for only rs2268616 (p=1.0810-8) and rs182113773 (p=1.3910-8). This result shows 

that the joint test discovered variants that would not have been found via a standard GWAS in 

this population. 

These five GWS variants were compared to genetic main effects from the HGI meta-analysis 

(with UKB omitted) testing the equivalent “B2” phenotype (hospitalized COVID-19 vs. 

population). A significant genetic main effect would constitute a partial replication of the joint 

test (genetic plus interaction effect) hypothesis. Neither of the two variants directly tested in the  

HGI meta-analysis showed nominal replication (both p > 0.05). For the remaining three, neither 

the variants nor close genetic proxies (r2 > 0.5 using European-based linkage disequilibrium 

patterns) were available in the HGI dataset. 

Next, we explored these top variants and interactions to understand their potential biological 

function. One variant of interest, rs2268616 (MAF=0.018), was genome-wide significant in the 

joint sex analyses (p=2.6710-8) and joint cardiometabolic diseases (p=3.8710-8). This variant 

sits in an intron of the placental growth factor (PGF) gene and is associated with testosterone in 

GWAS analyses. It is also a putative enhancer in lung and other tissues, and is an eQTL for 

EIF2B2 (a gene in a family of proteins that regulate viral mRNA translation) in whole blood. 

However, colocalization analysis using whole blood eQTL statistics from eQTLGen Consortium 

did not support the hypothesis of a shared causal variant with either PGF or EIF2B (posterior 

probabilities <0.1%). Sex-stratified analysis showed a stronger genetic effect in males (OR [95% 

CI] =1.79 [1.43-2.24]) compared to females (OR=1.45 [1.11-1.9]), as shown in Figure 3A. T2D-

stratified tests also showed a greater genetic effect on severe COVID-19 in individuals with T2D 

(OR=2.01 [1.22-3.32]) compared to those without T2D (OR=1.6 [1.33-1.9).  
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The additional GWS variants also indicated genetic effects on COVID-19 severity mediated 

through interaction effects. rs182113773 was found in the cardiometabolic joint test (p = 

2.7110-8) and found in the intron for MACC1. This variant sits in an enhancer within 

neutrophils, monocytes, and B cells and has a RegulomeDB score of 0.59, suggesting a 

regulatory role in transcription. Variant chr2:218260234 was found in the sex analysis joint test 

(p = 2.9910-8, MAF=0.025). Stratified analysis for this variant demonstrated a strong genetic 

effect in males (OR=1.8 [1.47-2.19]) that was not found in females (OR = 1.03 [0.779-1.35]). In 

addition, rs11115199 is an intergenic variant that was identified in both the cardiometabolic 

interaction and joint tests (respectively, p = 1.3710-8 & 4.8510-8, MAF = 0.02). rs11115199 is 

an eQTL for METTL25 based on the GTEx database and has modest associations with 

cardiometabolic traits (positive with weight and BMI-adjusted T2D, negative with obesity). 

Finally, rs148793499 was identified in the cardiometabolic joint test (p=1.810-10, MAF=0.01). 

Stratified genetic effects showed more pronounced associations in obesity (OR = 2.36 [1.7-3.27]) 

with a similar but weaker pattern for T2D (OR = 2.01 [1.03-3.93]). 

 

Discussion 

Exploring the interplay of genetics and sex offers novel understanding of the underlying 

mechanisms impacting COVID-19 severity and adds an important dimension to the current 

epidemiological literature on COVID-19. In this genome-wide gene-environment interaction 

analysis, we found five significant genomic regions (p<510-8) that interact with well-established 

risk factors to influence COVID-19 severity. 

Sex-dimorphic transcripts and hormones, as well as differences in environmental factors 

between the sexes, contribute to differential immune responses between sexes (Klein & 

Flanagan, 2016) and may mediate the established association of male sex with greater COVID-

19 severity. In our analysis, rs2268616 was statistically significant in the joint analyses for sex 

and cardiometabolic diseases (p<510-8). This variant has been associated with testosterone and 

placental growth factor gene in GWAS analyses, suggesting that this variant interacts with sex to 

mediate worse COVID-19 outcomes. Interestingly, this variant is also an eQTL for EIF2B2, a 

gene within a family of proteins that mediate viral mRNA translation. Moreover, prior studies 

have found an increased risk of death and significantly increased levels of inflammatory markers 

in male COVID-19 positive hospitalized patients compared with women (Lau et al., 2021). The 

EIF2B2 variant is linked to a strong transcription chromatin state in the cells of the lung, spleen, 

and B-cells, perhaps mediating the robust inflammatory response in males that is associated with 

worse COVID outcomes. Furthermore, rs2268616 sits within an enhancer in lung tissue, 

suggesting a role of this variant on transcription and respiratory complications after SARS-CoV-

2 infection. Rs2268616 also shows a modest positive association with coronary artery disease 

and negative association with HOMA-B based on lookups in the Type 2 Diabetes Knowledge 
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Portal (https://t2d.hugeamp.org/), indicating a potential influence on metabolic traits in general. 

Our findings suggest that this genetic variant may modify the relationship between biological 

differences and associated worse COVID-19 outcomes primarily through regulating viral RNA 

clearance immune response and lung cell transcription. 

Comorbidities associated with cardiometabolic health such as obesity and T2D have been 

implicated in mediating worse COVID-19 outcomes (Ritter et al., 2020). Our findings show four 

variants that were genome-wide significant in our cardiometabolic joint tests: rs182113773, 

rs11115199, rs148793499 and rs2268616. Located within the intron for MACC1, a gene 

associated with BMI-adjusted waist circumference and BMI-adjusted waist-hip ratio, 

rs182113773 is an enhancer within neutrophils, monocytes, and B cells. This variant also has 

high gene expression in EBV-transformed lymphocytes and is a likely regulatory variant 

(RegulomeDB score of 0.59), which further suggests that the interaction of this variant with 

cardiometabolic health has a regulatory role on immune response. Studies found that increased 

neutrophil count in T2D groups are associated with clinical severity and may mediate the 

positive association between T2D and COVID-19 severity (Zhu et al., 2020). Thus, this MACC1 

variant may be interacting with cardiometabolic health to mediate greater COVID-19 severity. 

Furthermore, obese adipose tissues overexpress receptors and proteases that enable the entry of 

SARS-CoV-2, possibly contributing to the severe inflammation and immune response of 

individuals with obesity (Ritter et al., 2020).  

Alongside decreased immune response mediated by testosterone, rs2268616 may also 

play a role in the deflated immune response seen in cases with cardiometabolic disease status. 

This variant has a positive association with coronary artery disease and a negative association 

with HOMA-B (a method that assesses β-cell function from basal fasting glucose and insulin). 

For cardiometabolic diseases, well controlled blood glucose and smaller glycemic variability 

have been associated with lower mortality during hospitalization due to COVID-19 (Zhu et al., 

2020). Therefore, this variant may help explain the COVID-19 biology that increases the risk for 

individuals with T2D. Interactions between these genetic factors and deregulated immune 

response, chronic inflammation, metabolic dysfunction, and other comorbidities of obesity and 

T2D may be placing individuals at greater risk for worse outcomes of COVID-19.  

Beyond rs2268616, other genome-wide significant variants identified in the 

cardiometabolic analysis are of potential biological interest. The rs11115199 variant is an eQTL 

for METTL25, a gene that has known genetic links to BMI but which has minimal transcription 

in memory T cells and B cells. Thus, this locus may instead modify immune response via 

interactions with obesity. Meanwhile, the genetic effect of rs148793499 appears to be most 

directly modulated by metabolic status; in stratified cardiometabolic tests, the variant showed 

strong effects in individuals with T2D but no major differences in effect in individuals with 

obesity.   
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Our analysis focusing on social determinants of health did not identify any significant 

variants. This may be a function of the noise associated with the MDI measurement and the 

difficulty in using this measurement to represent social determinants of health in a large diverse 

population. One study leveraged an Index of Multiple Deprivation and Income Deprivation 

Affecting Older People Index to show higher incidence of COVID-19 related deaths in the most 

deprived quartiles (Bach-Mortensen & Degli Esposti, 2021).We subsetted our sample to 

participants from England to reduce heterogeneity, but this reduced the sample size (by 16.5%; 

2,007 vs. 2,402 cases) and thus statistical power available for the MDI analysis. Additionally, 

there may simply be little signal to uncover: the effects of genetics and social determinants of 

health on COVID-19 severity may be approximately independent.  

The results of this study may be limited due to linkage disequilibrium and heterogeneity 

caused by geographic location within our sample population. The case definition allows us to 

identify variants associated with severity, however these results need to be taken with caution 

given the possibility of collider bias. Analyzing UK Biobank data, the participants tested for 

COVID-19 were highly selected for a range of genetic, behavioral, cardiovascular, demographic, 

and anthropometric traits (Griffith et al., 2020). By subsetting our dataset to individuals of 

European ancestry, we reduce the heterogeneity but face a limited sample size. Nonetheless, the 

use of interaction analysis allowed us to uncover novel variants: the GEM marginal p-value did 

not pass the genome-wide significance threshold for three of the five variants, meaning that these 

variants would not have been detected via a standard GWAS in this population.  

Our findings suggest that gene-environment interaction effects contribute to the 

differences in COVID-19 severity. Sex-associated differences in immune response and 

cardiometabolic disease comorbidities that deregulate immune response may interact with the 

identified genetic variants and put individuals at higher risk for worse outcomes of COVID-19. 

Future studies investigating the stratified effects of sex, T2D and BMI, and social determinants 

of health on COVID-19 susceptibility, as well as similar analysis with a wider array of 

ancestries, may further reveal underlying the genetic interaction effects that place individuals at 

higher risk. 

 

Methods 

UK Biobank Dataset 

The UK Biobank (UKB) is a population-based cohort including over 500,000 individuals living 

in England, Wales, and Scotland. The sub-population of interest for this study included unrelated 

individuals of European ancestry in order to minimize genetic heterogeneity. Sample sizes varied 

depending on available phenotypes across these populations. COVID-19 test results were 

downloaded from the UKBB data portal on January 1, 2020. The severe COVID-19 phenotype 

for was defined as laboratory confirmed SARS-CoV-2 infection plus hospitalized COVID-19, 
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with the rest of the population serving as controls versus the rest of the population. This 

definition was designed to mirror that of the “B2” phenotype used by the COVID-19 Host 

Genetics Initiative team (Ganna, 2021) (COVID-19 Host Genetics Initiative, 2020) and is 

outlined in Supp. Fig. 1. Genotype preprocessing was primarily performed centrally by the UKB 

with filters at the marker and sample level (Bycroft et al., 2018). Genotypes were further 

subsetted to common variants (minor allele frequency > 0.05) for analysis.  

Exposures of Interest 

Risk factors used as exposures were measures of genetically-determined sex, cardiometabolic 

health, and social determinants of health (SDH). For cardiometabolic measures, BMI was used as 

a measure of obesity and T2D status was determined based on self-reported medical history and 

medication use (“probable” or “possible” algorithmic definitions described by Eastwood an 

colleagues (Eastwood et al., 2016). BMI and T2D were tested jointly, and then individually as a 

sensitivity analysis. The multiple deprivation index (MDI) was used as a measure of social 

determinants of health (SDH). The MDI is composed of metrics including economic stability, 

physical environment, and education; details can be found at 

https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=76. For the MDI analyses only, only the subset of 

the population living in England was used in order to reduce heterogeneity. 

Statistical analysis 

A genome-wide scan was performed based on a logistic regression model including gene-

environment interaction terms: 

𝑙𝑜𝑔𝑖𝑡(𝑦) 〜 𝑔 +  𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 +  𝑔 ∗ 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 +  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 

Y was the binary severe COVID-19 indicator (defined above). The three genome-wide scans 

used the following exposures: sex, cardiometabolic conditions (BMI and T2D), and MDI. For the 

cardiometabolic conditions, two environmental terms and two interaction terms were tested 

jointly. To test T2D exposure effect, GxT2D interaction obese and non-obese stratified analyses 

were run. Covariates included age, five genetic principal components, and sex. Genome-wide 

analysis was conducted using GEM v1.2 (Westerman et al., 2020) with robust standard errors. 

For each variant, two statistical tests were derived: an interaction test and a joint test of the 

interaction term(s) plus the genetic main effect.  

 

Interaction and joint analyses were conducted on the Terra cloud platform. Phenotype definitions 

and population summaries were created in interactive Jupyter notebooks with an R 3.6 kernel. 

GWIS analyses were submitted as workflows using a Workflow Description Language (WDL) 

script implementing GEM. Post-GWIS summarization and visualizations were created in a 

separate Jupyter notebook. These notebooks can be viewed on GitHub 

(https://github.com/manning-lab/ukb-covid-gxe). 
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Variant Biology Investigation 

Top variants were further investigated for trait associations, eQTLs, and linkage disequilibrium 

using dbSNP (NCBI), PhenoScanner (Kamat et al., 2019; Staley et al., 2016), RegulomeDB 

(Boyle et al., 2012), Type 2 Diabetes Knowledge portal (https://t2d.hugeamp.org/), and LDlink 

(Myers et al., 2020). Colocalization between interactions and eQTLs was performed using the 

coloc package (Giambartolomei et al., 2014) along with blood-based eQTL summary statistics 

from the eQTLGen Consortium (Võsa et al., 2018)  
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Figure Legends  

Figure 1: Plots of sex, cardiometabolic, and MDI joint and interaction tests. The upper plot 

shows negative logarithm of joint p-values in a test of main and interaction effects, while the 

lower plot shows negative logarithm of the interaction test p-values. X-axis corresponds to 

genomic position. Genome-wide significant loci are labeled with the most significant variant at 

the locus and the annotated to genes based on proximity (DIRC, MACC1, PGF, LOC105372156) 

or eQTL relationships (METTL25). 

 

Figure 2: Inspection of the sex-rs2268616 interaction effect. (A) Stratified genetic effects on 

severe COVID-19 after adjustment for the primary set of covariates. Y-axis indicates the 

estimated odds ratio for severe COVID-19 per alternate allele. Strata are defined by (left to 

right): sex (male or female), T2D status, and obesity (BMI less than or greater than 30).  (B) 

Regional association plots showing association signals from this analysis (sex joint test, top 

panel) and HGI B2 phenotype meta-analysis (genetic main effects with UKB omitted, bottom 

panel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 23, 2021. ; https://doi.org/10.1101/2021.08.13.21261910doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.13.21261910
http://creativecommons.org/licenses/by/4.0/


 

 

Tables 

Table 1: Characteristics of European ancestry samples from the UK Biobank cohort. We present 

the mean and standard deviation for continuous covariates, percentage of the sample for 

dichotomous covariates, and p-value for association with severe COVID-19 (t-test or Chi-square 

test for continuous and binary traits, respectively).  

 

 

Table 1. Population characteristics stratified by COVID severity 

 (Total N=378,051) 

 

 Overall Control 

(N=375,649) 

Severe COVID 

(N=2,402) 

P value 

Age 

(years) 

56.73 (8.02 56.7 (8) 57.9 (8.6) 2.310-11 

Sex 

(Male) 

46% 46% 54% 
9.410-17 

Body 

Mass 

Index 

(kg/m2) 

27.37 (4.76)  27.4 (4.8) 29.3 (5.4) 6.710-62 

Type 2 

Diabetes 

4% 4% 10% 
8.210-48 

Multiple 

Deprivat

ion 

Index 

16.9 (13.5) 16.8 (13.5) 22.1 (16.5) 9.710-45 
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Table 2: Genome-wide significant associations from interaction and joint tests. A. Sex 

interaction and joint tests. B. Cardiometabolic interaction and joint tests.  

 

A.  

RSID location 

Effect 

Allele 

Non-Effect 

Allele 

Eff_Allel

e_Freq 

 

Interactio

n p-value 

Joint p-

value 

OR 

interactio

n 

OR 

combined 

OR in 

males 

OR in 

females 

rs2268616 14:75419444 G A 0.018 0.14 2.710-8 
1.2 [0.87-

1.7] 

1.6 [1.4-

1.9] 

1.8 [1.4-

2.2] 

1.4 [1.1-

1.9] 

2:21826023

4_AC_A 2:218260234 A AC 0.026 0.00013 3.010-8 
1.7 [1.2-

2.4] 

1.4 [1.2-

1.7] 

1.8 [1.5-

2.2] 

1.0 [0.78-

1.3] 

 

 

B.  

RSID location 

Effec

t 

Allel

e 

Non-

Effec

t 

Allel

e 

Eff_Alle

le_Freq 

 

Interactio

n p-value 

Joint p-

value 

OR 

combined 

OR in 

no_t2d OR in T2D 

OR in 

no_obesity 

OR in 

obesity 

rs148793499 

18:58314

588 C T 0.010 8.410-6 1.310-8 
1.6 [1.3-

2.03] 1.6 [1.2-2.0] 2.0[1.0-3.9] 1.2[0.83-1.7] 2.4[1.7-3.3] 

rs11115199 

12:82510

665 T G 0.020 1.410-8 4.810-8 
0.91 [0.74-

1.1] 

0.72 [0.56-

0.92] 

2.6 [1.7-

3.9] 

1.0 [0.74-

1.3] 

0.85 [0.59-

1.2] 

rs182113773 

7:202398

37 A C 0.015 0.053 2.710-8 
1.7 

[1.4-2.1] 1.6 [1.3-2.0] 

2.6 [1.6-

4.3] 1.6[1.3-2.1] 1.9[1.4-2.6] 

rs2268616 

14:75419

444 G A 0.018 0.26 3.910-8 
1.6 [1.4-

1.9] 1.6 [1.3-1.9] 

2.0 [1.2-

3.3] 1.8[1.5-2.2] 1.4 [1.0-1.9] 
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