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ABSTRACT

Small non-coding RNAs (sncRNAs) are highly abun-
dant molecules that regulate essential cellular pro-
cesses and are classified according to sequence
and structure. Here we argue that read profiles
from size-selected RNA sequencing capture the post-
transcriptional processing specific to each RNA fam-
ily, thereby providing functional information inde-
pendently of sequence and structure. We devel-
oped SeRPeNT, a new computational method that
exploits reproducibility across replicates and uses
dynamic time-warping and density-based cluster-
ing algorithms to identify, characterize and com-
pare sncRNAs by harnessing the power of read pro-
files. We applied SeRPeNT to: (i) generate an ex-
tended human annotation with 671 new sncRNAs
from known classes and 131 from new potential
classes, (ii) show pervasive differential processing
of sncRNAs between cell compartments and (iii)
predict new molecules with miRNA-like behaviour
from snoRNA, tRNA and long non-coding RNA pre-
cursors, potentially dependent on the miRNA bio-
genesis pathway. Furthermore, we validated exper-
imentally four predicted novel non-coding RNAs: a
miRNA, a snoRNA-derived miRNA, a processed tRNA
and a new uncharacterized sncRNA. SeRPeNT facil-
itates fast and accurate discovery and characteriza-
tion of sncRNAs at an unprecedented scale. SeR-
PeNT code is available under the MIT license at
https://github.com/comprna/SeRPeNT.

INTRODUCTION

Small non-coding RNAs (sncRNAs) are highly abundant
functional transcription products that regulate essential cel-
lular processes, from splicing or protein synthesis to the
catalysis of post-transcriptional modifications or gene ex-

pression regulation (1). Major classes include micro-RNAs
(miRNAs), small nucleolar RNAs (snoRNAs), small nu-
clear RNAs (snRNAs) and transfer RNAs (tRNAs). De-
velopments in high-throughput approaches have facilitated
their characterization in terms of sequence and structure (2–
4) and have led to the discovery of new molecules in diverse
physiological and pathological contexts. However, the func-
tion of many of them remains unknown (5,6); hence their
characterization is essential to understand multiple cellular
processes in health and disease.

Sequence and structure are traditionally used to identify
and characterize sncRNAs (7,8). Although sequence is a
direct product of the sequencing technology, structure de-
termination is still of limited accuracy and requires special-
ized protocols (3,4,9). On the other hand, extensive process-
ing is a general characteristic of non-coding RNAs (10–12).
The best-characterized cases are miRNAs, which are pro-
cessed from precursors and preferentially express one arm
over the other depending on the cellular conditions (13,14).
Furthermore, snoRNAs and tRNAs can be processed into
smaller RNAs, whose function is often independent of their
precursor (10,15–18). These findings suggest that a new
path to systematically characterize RNA molecules emerges
through the genome-wide analysis of their sequencing read
profiles.

Here we argue that sequencing profiles can be used to di-
rectly characterize the function of sncRNAs, in the same
way that sequence and structure have been used in the past.
We report here on SeRPeNT, a fast and memory efficient
software to facilitate the discovery and characterization of
known and novel classes of sncRNAs exploiting their pro-
cessing pattern from small RNA sequencing (sncRNA-seq)
experiments. As opposed to previous supervised methods
that necessarily rely on known annotations, SeRPeNT is
capable of grouping sncRNAs into families without the
need of previous annotation and therefore has the poten-
tial to discover new classes of sncRNAs. We applied SeR-
PeNT to generate an extended human annotation with 671
new RNAs from known classes and 131 from new potential
classes. We further showed these sncRNAs to have pervasive
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differential processing between cell compartments and pre-
dict new miRNA-like molecules potentially processed from
different RNA precursors, snoRNAs, tRNAs and long non-
coding RNAs. Finally, we validated experimentally four
novel non-coding RNAs predicted by SeRPeNT, highlight-
ing the power of SeRPeNT for the discovery and character-
ization of sncRNAs.

MATERIALS AND METHODS

Using multiple size-selected small (<200 nt) RNA sequenc-
ing (sncRNA-seq) experiments mapped to a genome refer-
ence, SeRPeNT enables the discovery and characterization
of known and novel sncRNAs through three operations:
profiler, annotator and diffproc, which can be used indepen-
dently or together in a pipeline (Figure 1). Initially, sncRNA
read profiles are calculated from the mapped sncRNA-seq
reads, and filtered according to the reproducibility between
replicates, and to the length and expression constraints
given as input (Figure 1A). Pairwise distances between pro-
files are calculated as a normalized cross-correlation of their
alignment calculated using a time-warping algorithm (Fig-
ure 1B). Profiles are clustered into families according to
pairwise distances using an improved density-based cluster-
ing algorithm (Figure 1B). Novel profiles are annotated us-
ing the class label from known profiles in the same cluster if
available by majority voting (Figure 1C). Additionally, SeR-
PeNT allows the identification of differential processing of
sncRNAs between two conditions, independently of their
expression change (Figure 1D).

Profile building from aligned short RNA-Seq reads

The tool profiler uses as input one or more sncRNA-seq
replicates in BAM format. Consensus read contigs are built
by pooling reads that overlap on a genomic region and that
are at a distance smaller than a user-defined threshold. Each
contig is scored per individual replicate by counting the
number of reads mapped within its boundaries and repro-
ducibility is measured across all the biological replicates us-
ing either a non-parametric irreproducibility detection rate
(NP-IDR) (19) or the simple error ratio estimate (SERE)
(20). NP-IDR determines the reproducibility of a contig in
one or more replicates with similar sequencing depths. On
the other hand, SERE compares the observed variation in
the raw number of reads of a contig to an expected value,
accounting for the variation in read depth across replicates.
For all analyses of reproducibility in this work we used NP-
IDR with cut-off of 0.01. Contigs that do not pass the user-
defined cutoff of reproducibility are discarded from further
analysis. For each of the remaining contigs, a profile is built
by counting the number of reads per nucleotide in the ge-
nomic region delimited by the contig boundaries (Figure
1A). SeRPeNT defines each sncRNA as a genomic region
and a vector of raw read counts, or heights, of length equal
to the number of nucleotides spanned by this genomic re-
gion. Profiles are additionally trimmed at the 3′-end posi-
tions when heights are either below 5 reads or below 10%
of the highest position, but not when having more than
20 reads. Only profiles of lengths between 50 and 200 nt,
and of minimum height 100 in pooled replicates, were con-

sidered. All these parameters can be configured on SeR-
PeNT command line. The consistency of sncRNA profiles
across multiple experiments is determined by calculating
the normalized entropy of the different labels for the same
sncRNA locus across experiments (Supplementary Materi-
als and Methods).

sncRNA profile clustering

SeRPeNT assigns a distance between each possible pair
of profiles resulting from the previous step. This distance
is computed with a novel algorithm (described in Supple-
mentary Figure S1) based on dynamic time-warping (21,22)
(Figure 1B). This algorithm finds the optimal alignment be-
tween two profiles by placing the heights of a pair of profiles
along the axes of a grid, representing alignments as paths
through the grid cells, and finding the path with maximum
normalized cross-correlation score across them. Given a
pair of profiles of the same length A = (a1, . . . , an) and B
= (b1, . . . , bn), where ai and bi are the heights of nucleotide
i in profile A and B, respectively, the cross-correlation score
between A and B is defined as:

A• B =
n∑

i=1

ai · bi (1)

and the normalized cross-correlation score as:

rA,B = A• B√
(A• A)(B • B)

(2)

The optimal alignment maximizes the normalized cross-
correlation score between the two profiles. Given two pro-
files S = (s1, . . . , sn) and Q = (q1, . . . , qm) of length n and m
nucleotides respectively, each position (i, j) in the dynamic
programming matrix D stores a vector of three values D(i,j)
= (x, y, z) such that they maximize the value x/

√
y · z in

formula 2 amongst all the possible partial alignments be-
tween Si and Qj, where Si = (s1, . . . , si) and Qj = (q1, . . . ,
qj) are the profiles spanning the first i and j nucleotides of
the profiles S and Q. The dynamic programming equation
is then defined as:

D (i, j ) = (x, y, z) among

D (i − 1, j ) + (
si · φ j,si · si,φ · φ

)

D (i − 1, j − 1) + (
si · q j,si · si,q j · q j

)

D (i, j − 1) + (
φ · q j,φ · φ, q j · q j

) that maximizes x/
√

y · z (3)

where, � represents a negative Gaussian white noise func-
tion used to penalize an expansion or contraction in the
alignment. When applied to a profile S, φ(S) returns a ran-
dom negative value taken from a uniform distribution with
mean and standard deviation defined by S.

Once all the pairwise distances are calculated, profiles are
clustered using a modified version of a density-based clus-
tering algorithm (23) (described in Supplementary Figure
S2A). The clustering algorithm is based on the assumption
that clusters are formed by points surrounded by a high den-
sity of data points of lower local density and lie at large dis-
tance from other profiles of high local density. For each pro-
file i we defined its local density ρ i as follows:

ρi =
∑

j

e−
(

di j
dc

)2

(4)
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Figure 1. Overview of SeRPeNT. Overview of the operations performed by the SeRPeNT: (A) Building of profiles from short RNA-Seq reads mapped to
the genome using reproducibility across replicates. A profile is a collection of reads overlapping over a given genomic locus and can be regarded as a vector
where each component contains the number of reads at each nucleotide. (B) Density-based clustering of profiles based on pairwise distances calculated
with a dynamic time-warping algorithm. (C) Annotation of novel profiles using majority vote in clusters. (D) Differential processing calculation. The
distribution of distances between a profile and its cluster sisters in one condition (C1) and across conditions (C2) are compared (panel below). Differential
processing is determined in terms of a Mann–Whitney U test and a fold-enrichment.

where, dij is the distance between profiles i and j, and dc is
an optimal distance that determines the size of the neigh-
borhood of a profile. The optimal distance dc is calculated
using a data field calculated from all profiles (24,25) (algo-
rithm described in Supplementary Figure S2B). Once the
optimal dc is obtained, the profile with the highest local den-
sity is identified and this profile and all the profiles that are
within distance dc are assigned to a cluster. We introduced a
novel step in the clustering in which all the profiles that have
already been clustered are removed before the next iteration
step. In the next step, a new dc value is then calculated with
the remaining clusters and new local densities are calculated
to identify the cluster with highest density, and so on. The
algorithm stops when only singletons are produced or when
the calculated optimal value for dc is higher than 0.02. This
value represents the maximum distance we allow to start
building a cluster from a profile with the highest local den-
sity.

Profile annotation

The annotator tool performs the sncRNA profile annota-
tion. Every detected profile that overlaps an annotated short
non-coding RNA is marked as known and labeled with the
corresponding class label (e.g. H/ACA snoRNA). The min-
imum overlap amount required between the sncRNA pro-
file and the annotated RNA can be defined by the user. Pro-

files that do not overlap with any annotation or do not sat-
isfy the overlapping requirements are marked as unknown.
For each cluster with two or more profiles, the different la-
bels from all the known profiles are counted, and all the
unknown profiles within the cluster are labeled by major-
ity vote with the most abundant label (Figure 1C). In case
of a tie, the label of the closest profile is assigned. All the
remaining profiles are denoted as unlabeled. Clustered un-
labeled profiles represent a coherent group of multiple pro-
files, and hence potentially indicate a novel sncRNA class.

Differential processing analysis

Differential processing is calculated for each sncRNA from
the pairwise distance distributions with sister sncRNAs
from the same cluster in either condition. Profiles are con-
sidered as differentially processed according to the fold-
change and significance of the change. The diffproc tool as-
sesses if a profile Pa in a particular condition C1 shows a dif-
ferent processing pattern Pb in another condition C2 (Fig-
ure 1D). A pair of profiles Pa and Pb from conditions C1 and
C2, respectively, such that their reference coordinates over-
lap as described above, are compared as follows. Given Ka
the cluster in condition C1 that contains the profile Pa and
Kb the cluster in condition C2 that contains the profile Pb,
diffproc calculates all the pairwise distances Dab between Pa
and all the profiles in Kb, and the pairwise distances Db be-
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tween profiles in Kb (Figure 1). These two distance distribu-
tions are then compared using a one-sided Mann-Whitney
U test and a fold-change is calculated as the ratio of the
medians between both distributions. The same method is
applied to profile Pb and cluster Ka. Pa and Pb are then re-
ported as differentially processed if both tests are significant
according to the P-value and fold-change cutoffs defined
by the user. When there are not enough cases to perform
a Mann-Whitney U test, only the fold-change is taken into
account.

Accuracy analysis and experimental validation

Details about the accuracy analysis and the experimental
validations are available in the Supplementary Material.

Software

SeRPeNT is written in C. The source code is available at
https://github.com/comprna/SeRPeNT.

Code and make files to reproduce the analyses de-
scribed in this manuscript are available at https://github.
com/comprna/SeRPeNT-analysis.

RESULTS

Fast and accurate discovery of small non-coding RNAs

We assessed the accuracy of SeRPeNT by perform-
ing a comparison against BlockClust (26), an unsuper-
vised method that predicts known sncRNA families from
sncRNA-seq data. We evaluated the accuracy to detect
known miRNAs, tRNAs and snoRNAs from the GEN-
CODE annotation (27) using the same procedure and
dataset used by Videm et al. (26) (Supplementary Materi-
als and Methods). SeRPeNT shows overall similar precision
for miRNAs (0.858) and tRNAs (0.855), and a dramatic
improvement of the precision for snoRNAs (0.922) (Sup-
plementary Table S1). Of note, although BlockClust was
benchmarked in (26) using only C/D-box snoRNAs only,
we benchmarked SeRPeNT using also H/ACA-box snoR-
NAs. Notably, SeRPeNT analysis took ∼3 min and <200
Mb of RAM in a single core AMD Opteron 64 with 4 Gb
of memory. In contrast, the same analysis with BlockClust,
which included the execution of Blockbuster (28), took ∼15
min and used nearly 30 Gb of memory. Additionally, we
compared the performance of SeRPeNT against the super-
vised version of BlockClust and against DARIO (29), us-
ing a cross-fold validation approach (Supplementary Fig-
ure S3). Using small RNA-Seq data from MCF-7 cells (8)
(GSM769510) for the three methods, SeRPeNT shows over-
all higher precision in all tested sncRNA families (Supple-
mentary Table S1). Importantly, as opposed to the super-
vised methods, SeRPeNT did not use the annotation to
group sncRNAs profiles.

We also assessed the accuracy of SeRPeNT differen-
tial processing operation diffproc by analyzing the differen-
tial expression of miRNA arms and arm-switching events
in miRNAs between normal and tumor liver tissues (30).
From the 49 miRNAs tested, 41 passed our filters of repro-
ducibility and clustered with other sncRNAs. Imposing a
significance threshold of P-value < 0.01 and a fold-change

of at least 2.5 (Supplementary Figure S4), SeRPeNT iden-
tified as differentially processed 10 out of 24 miRNAs de-
scribed to exhibit different 5′-arm to 3′-arm expression ra-
tio (30), including 4 out of 5 arm-switching events (Supple-
mentary Figure S5). Moreover, only 1 out of the remain-
ing 17 miRNAs that did not exhibit a difference in 5′-arm
to 3′-arm expression ratio was identified as differentially
processed by SeRPeNT. We further compared SeRPeNT
against RPA (31), a recent method for differential process-
ing analysis, using sncRNA-seq data from nine cell lines
(32). SeRPeNT detected many more differentially processed
events, with a moderate overlap with RPA predictions (Sup-
plementary Figure S6). Notably, for this analysis SeRPeNT
took 2 h in a single core AMD Opteron 64 with 4 Gb of
memory, whereas RPA took about 10 h in a cluster of 32
cores each having 8 Gb of RAM.

An extended annotation of small non-coding RNAs in human

We decided to exploit SeRPeNT to produce an extended
annotation of sncRNAs in human. We applied SeRPeNT
profiler and annotator tools to sncRNA-seq data from nine
cell lines (32) (Supplementary Table S2 and Figure S7). We
observed a higher proportion of known compared to novel
sncRNAs, with an increase of novel sncRNAs in samples
sequenced at a higher depth: A549, IMR90, MCF-7 and
SK-N-SH (Figure 2A). We further measured the accuracy
of SeRPeNT in recovering known sncRNA classes using
cross-fold validation in these datasets and found an overall
high accuracy consistently across all cell lines (Supplemen-
tary Table S3), except for snRNAs, probably due to their
broad differences in structural features and processing pat-
terns (12). Additionally, in the cross-fold validation SeR-
PeNT did not annotate on average about 30% of all the pro-
files detected in known scnRNAs from GENCODE, as they
either were in clusters with only unlabeled profiles or be-
cause they were singletons. Importantly, the accuracy values
were robust when running SeRPeNT with different parame-
ters for minimum expression, reproducibility value between
replicates, minimum length of sncRNA profiles or spac-
ing between profiles, and using different sequencing depths
(Supplementary Table S4).

We annotated new sncRNAs with SeRPeNT and ob-
tained a total of 4673 non-unique sncRNAs across all tested
cell lines that were not in the GENCODE annotation (Sup-
plementary Table S5). We were able to assign a label to
2140 of them. From the remaining 2533 unlabeled sncR-
NAs, 323 formed 92 clusters with three or more unlabeled
profiles per cluster, suggesting possible new classes of non-
coding RNAs with a coherent processing pattern. We called
these clustered uncharacterized RNAs (cuRNAs) and kept
them for further study. Interestingly, some known and pre-
dicted sncRNAs with the same class labels were grouped
into different clusters, indicating subfamilies. For instance,
SeRPeNT separated C/D-box and H/ACA-box snoRNAs
according to their processing profiles (clusters 1 and 2 in
Figure 2B), and separated miRNAs into subtypes accord-
ing to their different arm-processing patterns (clusters 5 and
11 in Figure 2B). Thus SeRPeNT identifies functional fam-
ilies and subfamilies of non-coding RNAs in a scalable and

https://github.com/comprna/SeRPeNT
https://github.com/comprna/SeRPeNT-analysis
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Figure 2. Extended annotation derived from ENCODE cell lines. (A) Number of known and novel sncRNAs across 9 ENCODE cell lines. (B) Hierarchical
clustering representation of the clusters obtained for the NHEK cell line. Distance between clusters is calculated by averaging all the distances between
profiles from both clusters. Colored circles represent clusters of sncRNAs at the leaves of the tree labeled by class. Empty circles represent internal nodes
of the tree. The read profiles in clusters 5 and 11 are for one of its members, for which we plot the number of reads per nucleotide in the sncRNA. (C)
Genomic loci and graphical representation of the hairpins for four predicted novel miRNAs. The predicted mature miRNAs are highlighted in blue in
the corresponding gene locus: miRNA chr17:57228820–57228919:− (upper left) at the SKA2 locus, miRNA chr2:29352292–29352349:− (upper right)
at the CLIP4 locus, miRNA chr13:76258915–76258974:+ (lower left) at the LMO7 locus, and miRNA chr6:142308575–142308638:− (lower right) at an
intergenic region.

robust way, independently of the granularity of the available
annotation.

We established the consistency of the sncRNAs across the
multiple experiments using an entropy measure of the label
assignment across cell lines (Supplementary Materials and
Methods), producing a total of 929 unique novel sncRNAs
(Supplementary Table S6), 787 from the major classes (79
miRNAs, 475 snoRNAs, 82 snRNAs and 151 tRNAs) plus
142 cuRNAs, the majority of them being expressed in only
one cell line (Supplementary Figure S8). These, together
with the sncRNAs annotated in GENCODE, conformed an
extended catalog of small sncRNAs in the human genome
reference. The novel sncRNAs are available in (Supplemen-
tary Table S6) and in GTF format as Supplementary File.

From the 79 newly predicted miRNAs, 37 (46.8%) were
confirmed as potential miRNA precursors using FOMmiR
(33) (Supplementary Table S6). Moreover, 39 (49.3%) of
these novel miRNAs overlapped with AGO2-loaded small
RNAs from HEK293 cells (34). In contrast, from 3109 an-

notated miRNAs from GENCODE, 951 (30.59%) over-
lapped with AGO2-loaded small RNAs (Fisher’s exact test
P-value = 1.14e-3, odds-ratio = 2.01) (Supplementary Ta-
ble S6). To further characterize these miRNAs, we searched
for sequence and secondary structure similarities in Rfam
using Infernal (35,36), with threshold e-value < 0.01 (Sup-
plementary Materials and Methods). We found that 23 of
them had a hit to a known miRNA family (Supplementary
Table S6). Repeating these analyses for the other new sncR-
NAs we found 47 snoRNA and 15 tRNAs with a hit to an
Rfam family, from which 3 snoRNAs and 4 tRNAs had
a hit to a family of the same class predicted by SeRPeNT
(Supplementary Table S6). The rest of predicted sncRNAs
did not have any hit to Rfam. We further compared the
predicted sncRNAs from our extended annotation with
DASHR (6), the most recently published database of hu-
man sncRNAs, and with a compendium of human miRNAs
from a recent study using multiple samples (37). We found
that 802 out of the 929 predicted sncRNAs (51 miRNAs,
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430 snoRNAs, 69 snRNAs, 121 tRNAs and 131 cuRNAs)
(Supplementary Table S6) were not present in those cata-
logs. In particular, four of the newly predicted miRNAs that
had a hit to an Rfam miRNA family and were confirmed
as potential miRNA precursors with FOMmiR were not
present in these previous catalogs (6,37) (Figure 2C). We
further checked the overlap of cuRNAs with CAGE data
from The FANTOM5 project (38) (‘Materials and Meth-
ods’ section). From the 142 cuRNAs in the extended an-
notation, 32 of them overlapped with CAGE profiles in the
same strand. Moreover, for 27 of these 32 (84.3%) the 5′ end
of the cuRNA overlaps with the CAGE profile (Supplemen-
tary Table S7).

SeRPeNT uncovers new RNAs with potential miRNA-like
function

SeRPeNT analysis on individual cell lines identified a clus-
ter that grouped together snoRNA SCARNA15 (ACA45)
with two miRNAs in NHEK, and a cluster that grouped
snoRNA SCARNA3 with several miRNAs and a tRNA
in A549 (Supplementary Table S8) in agreement with a
previous study showing that these snoRNAs can function
as miRNAs (15). The clusters obtained with SeRPeNT in
cell lines provided additional evidence of six other snoR-
NAs that grouped with miRNAs: SNORD116, SNORA57,
SNORD14C, SNORD26, SNORD60 and SNORA3 (Sup-
plementary Table S8), suggesting new snoRNAs with
miRNA-like function. Interestingly, we also found seven
clusters with a majority of miRNAs that included anno-
tated tRNAs: tRNA-Ile-GAT, tRNA-Glu-GAA, tRNA-
Gly-CCC, tRNA-Ala-AGC and tRNA-Leu-AAG, with
tRNA-Ile-GAT clustering with miRNAs in three different
cell lines, MCF-7, A549 and SK-N-SH. This suggests new
tRNAs with miRNA-like function (10,39). These results
support the notion that sncRNA read-profiles facilitate the
direct identification of functional similarities without the
need to analyze sequence or structure.

To search for new cases of miRNA-like non-coding
RNAs in the extended annotation, we tested their potential
association with components of the canonical miRNA bio-
genesis pathway, using sncRNA-seq data from controls and
individual knockouts of DICER1, DROSHA and XPO5
(40) (Supplementary Materials and Methods). We validated
the dependence of a number of known and predicted miR-
NAs on these three factors (Figure 3A; Supplementary Fig-
ures S9 and 10) and recovered the previously described de-
pendence of ACA45 and SCARNA3 with DICER1 (15).
Additionally, we found 18 sncRNAs predicted as snoR-
NAs with similar behaviour upon DICER1 knockout (Fig-
ure 3B). Interestingly, 14 out of 20 DICER1-dependent
snoRNAs did not show dependence on DROSHA, in-
cluding ACA45 and SCARNA3, in agreement with previ-
ous findings (15,40) (Supplementary Figure S9). We also
found a strong dependence on DICER1 for 128 tRNAs, 82
of which changed expression in the direction opposite to
most miRNAs, suggesting that they may be repressed by
DICER (Figure 3C). Further, four cuRNAs showed sim-
ilar results to miRNAs, suggesting some association with
the miRNA biogenesis machinery (Supplementary Figure
S11 and Table S6). Although they were not confirmed as

potential miRNA precursors using FOMmiR, two of these
miRNA-like cuRNAs overlapped with the protein-coding
genes SEC24C and DHFR (Supplementary Figure S11).

Certain long non-coding RNAs (lncRNAs) are known
to act as precursors of miRNAs (41,42) and tRNAs (43).
We thus analyzed whether the new sncRNAs could origi-
nate from lncRNAs. We found that 8 miRNAs, 16 snoR-
NAs, 7 tRNAs and 4 cuRNAs overlapped annotated lncR-
NAs (Supplementary Table S6). These lncRNAs included
MALAT1, which we predicted to produce 2 miRNAs, 2
tRNAs and 1 cuRNA. Additionally, three of the miR-
NAs predicted and confirmed with FOMmiR were found
on the lncRNAs MIR100HG, CTD-23C24–1 and RP11–
141B14.1. From these, the new miRNA in RP11–141B14.1
is not present in recent miRNA catalogs (Figure 3D and E).
As the processing from lncRNAs is a recognized biogenesis
mechanism for certain sncRNAs, these results provide fur-
ther support for the relevance of the newly predicted sncR-
NAs in our extended annotation.

Pervasive differential processing of non-coding RNAs be-
tween cell compartments

To further characterize the extended sncRNA annotation
defined above, we studied their differential processing be-
tween four different cell compartments: chromatin, nucle-
oplasm, nucleolus and cytosol for the cell line K562 using
replicated data (32) (Supplementary Table S2). The major-
ity of sncRNAs from the extended annotation showed ex-
pression in one or more cell compartments: 599 in chro-
matin, 763 in cytosol, 554 in nucleolus and 651 in nucle-
oplasm. The majority of sncRNAs in cytosol are tRNAs
(45%), followed by miRNAs (15%). Although tRNAs were
enriched in the cytosol (Fisher’s one-sided test P-value <
0.001), they were abundant in all four cell compartments
(Supplementary Table S9). This is compatible with tRNA
biogenesis, which comprises early processing in the nucleo-
lus and later processing in the nucleoplasm before export to
the cytoplasm (44). In contrast, miRNA clusters appeared
almost exclusively in the cytosol (Fisher’s one-sided test P-
value < 0.001) and were coherently grouped into large clus-
ters (Figure 4A and Supplementary Table S9). On the other
hand, snoRNAs were enriched in the nucleolus (Fisher’s
one-sided test P-value < 0.01), accounting for 38% of the
found profiles. Interestingly, snoRNAs were also enriched
in the chromatin compartment (Fisher’s one-sided test P-
value <0.001) accounting for 23% of the sncRNAs found
there, suggesting new candidates for their recognized role
on establishing open chromatin domains (45). Finally, snR-
NAs and cuRNAs appeared at low frequency in most com-
partments (Supplementary Table S9). We applied SeRPeNT
diffproc operation for each pair of compartments, using
fold-change ≥ 2.5 and P-value < 0.01. A large proportion
of snoRNAs showed differential processing from the nu-
cleus and nucleolus, where they exert their function, to the
rest of cellular compartments (Figure 4B). On the other
hand, only four of the cuRNAs identified showed expres-
sion in at least two compartments, nucleolus and cytosol,
and three of them showed differential processing. Overall,
tRNAs showed the largest proportion of differentially pro-
cessed profiles between the cytosol and the different nuclear
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Figure 3. Detection of miRNA-like sncRNAs. Differentially expressed sncRNAs (blue) from the extended annotation in the comparison between DICER1
knockout and control experiments in human HCT116 cell lines for (A) miRNAs, (B) snoRNAs and (C) tRNAs. The analyses for the knockout of DROSHA
and XPO5 are available as Supplementary Figures. (D) Representation of a novel miRNA detected by SeRPeNT (depicted as a read profile) whose precursor
is the lncRNA RP11–141B14.1 (depicted as a green line). Profiles for both replicates are included. (E) Secondary structure prediction of the predicted
miRNA precursor by FOMmiR.

compartments (Figure 4B and Supplementary Table S10).
Many of these tRNAs showed a more prominent processing
in the cytosol from the 30–35 nt part of their 3′ part (Fig-
ure 4C and Supplementary Figure S12), also called tRNA
halves (46,47).

Experimental validation of novel short non-coding RNAs

To validate our findings, we decided to test experimen-
tally two of the newly predicted sncRNAs, and two known
sncRNAs with new predicted processing patterns. From
the 79 predicted miRNAs not present in GENCODE, 51
of them were not present in previous sncRNA compen-
dia (6,37); and from these, 5 had a hit to an Rfam fam-
ily, with 4 confirmed as potential miRNA precursors using
FOMmiR (Figure 2 and Supplementary Table S6). From
these four predicted miRNAs, there were three intronic (see
Figure 2), and only one of them was near an annotated
miRNA (MIR301A). Since miRNAs often appear in tan-
dem, we considered this new miRNA to be a good candi-
date for testing. The predicted miRNA, chr17:57228820–
57228919:-, had a match to the Rfam family RF00906 and
was located in an intron of SKA2, a gene relevant for chro-
mosome segregation during mitosis (48). We used four dif-
ferent cell lines for validation: SH-SY5Y, MCF-7, MCF-
10A and HeLa-S3 (Supplementary Tables S11 and 12; Sup-
plementary Methods). Using sequence specific primers we
detected expression of this miRNA by qPCR in HeLa-S3
and SH-SY5Y cells (Figure 5 and Supplementary Figure
S13). Additionally, we detected this miRNA with SeRPeNT
using sncRNA-seq from the same SH-SY5Y and MCF-7

cells used for experimental validation (49), as well as using
sncRNA-seq from ENCODE for HeLa-S3 (Figure 5).

We also tested experimentally a clustered-
uncharacterized RNA (cuRNA). We predicted 142
cuRNAs based on clusters with 3 or more uncharacter-
ized sncRNAs, expressed in at least one ENCODE cell
line and not clustering with any labeled profile (Supple-
mentary Table S6). From these 142 cuRNAs, only one
(chr10:75526203–75526253:+), which we had detected in
SK-N-SH and IMR90 cells, showed significant decrease in
expression upon the independent knock-outs of DROSHA,
DICER and XPO5. We thus decided to test this one exper-
imentally. This cuRNA was predicted by SeRPeNT to be
lowly expressed in HeLa-S3 and SH-SY5Y, but it was only
detected by qPCR in HeLa-S3 (Figure 5; Supplementary
Figure S13 and Tables S11 and 12).

Furthermore, we wanted to validate SeRPeNT’s abil-
ity to discover new processing patterns of known sncR-
NAs. Using SeRPeNT clustering method we were able
to detect eight snoRNAs annotated by GENCODE with
miRNA-like processing profiles (Supplementary Table S8).
From these snoRNAs, six were not reported before
in the literature: SNORD116, SNORA57, SNORD14C,
SNORD26, SNORD60 and SNORA3, and only SNORA3
had a precursor confirmed with FOMmiR. We chose the
miRNA-like profile from this H/ACA snoRNA SNORA3
(chr16:2846409–2846473:-) (sno-miRNA in Figure 5) for
experimental validation. Using sequence specific primers,
we detected expression of this miRNA by qPCR in HeLa-
S3 and SH-SY5Y cell lines (Figure 5; Supplementary Fig-
ure S13 and Tables S11 and 12). This miRNA was also de-
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Figure 4. Differential processing across ENCODE cell compartments. (A) Representation of clusters containing five or more sncRNAs across all four
ENCODE cell compartments. The size of the points represents the number of sncRNAs from the extended annotation contained in the cluster. The
normalized entropy (y-axis) represents the purity of a cluster (Supplementary Materials and Methods), the lower the entropy, the higher the purity of the
cluster. (B) Proportion of profiles from the extended annotation that are differentially processed between cellular compartments separated by non-coding
RNA family (y-axis). Numbers at the top of the bars represent the total number of profiles detected in both compartments. (C) Representation of the read
profiles for the tRNA-Leu-AAG transfer RNA showing abundant processing of the 3′-half in the cytosol compared to the chromatin compartment. The
plot represents the number of reads per nucleotide in the same scale for each compartment.

tected with SeRPeNT using sncRNA-seq data for the same
SH-SY5Y cells and from ENCODE HeLa-S3 cells (Figure
5).

Finally, we decided to test the ability of SeRPeNT to iden-
tify known sncRNAs with differential processing. Our anal-
ysis across cell compartments showed pervasive differential
processing for sncRNAs, and especially for tRNAs between
cytosol and nuclear compartments (Supplementary Tables
S9 and 10). Moreover, we identified 3′ end differential pro-
cessing in multiple tRNAs, including tRNA-Lys tRNA-His
and tRNA-Leu across all compartments (Supplementary
Figure S12). Since processed tRNA, also known as tRNA
fragments, are potentially relevant for disease (10,50), we
decided to validate one of these cases. We chose tRNA-His
(chr1:145396847–145396952:-) (p-tRNA), which was pre-
dicted to be cytosol-specific in K562 cells and had differ-
ential processing with respect to the nucleolus and chro-
matin compartments (Supplementary Table S10 and Fig-
ure S12). We validated this p-tRNA in all cell lines used for
testing. Moreover, we detected the p-tRNA with SeRPeNT
using sncRNA-seq from the same SH-SY5Y, MCF-7 and
MCF-10 cells used for experimental testing (49) and from
ENCODE HeLa-S3 cells (Figure 5; Supplementary Figures
S13 and 14).

DISCUSSION

SeRPeNT provides a fast and accurate method to iden-
tify known and novel sncRNAs exploiting read profiles
from stranded size-selected RNA sequencing data. SeR-
PeNT does not depend on the annotation granularity of
databases and avoids many drawbacks inherent to sequence
and secondary structure based methods, which may be af-
fected by post-transcriptional modifications or limited by
the reliability of structure determination. Here we have
shown that by capturing the post-transcriptional process-
ing that is specific to each sncRNA family, read profiles
provide functional information independently of sequence
or structure. In particular, a number of known snoRNAs
and tRNAs clustered with miRNAs according to their pro-
files. Beyond the known cases, we detected new candidates
of this dual behaviour. It remains to be determined whether
these new sncRNAs can indeed function as miRNAs and
associate with AGO2 (51). It is possible that they compete
with more abundant miRNAs to be loaded on the RNA-
induced silencing complex; hence they might become more
prominent in specific cellular conditions. Incidentally, many
sncRNAs increase expression measured from the sequenc-
ing of AGO2-associated reads in DICER1 knocked-down
cells (data not shown), suggesting a repression by DICER1
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Figure 5. Experimental validation of novel sncRNAs. Experimental val-
idation of four predicted sncRNAs in the cell lines HeLa-S3, MCF-7,
MCF-10A and SH-SY5Y. We tested a predicted miRNA (miRNA), a
miRNA predicted to derive from the H/ACA snoRNA SNORA3 (sno-
miRNA), a clustered uncharacterized RNA (cuRNA) and a processed
tRNA (p-tRNA). For each sncRNA and each cell line, we indicate whether
it was detected by SeRPeNT (black circle), whether its measured expres-
sion was RPM (reads per million) >1 (black square), and whether it was
validated by qPCR (black star), or in gray color otherwise. RPM values
were calculated as the average of two small RNA-seq replicates from for
the same SH-SY5Y, MCF-10A and MCF-7 cells, and from an ENCODE
HeLa-S3 cells. RPM values and qPCR values in �Ct scale are given in
Supplementary Tables S11 and 12. The qPCR experiment was evaluated
by comparing each RNA expression with respect to the expression of the
endogenous control U6 snRNA in each sample.

(34) or an association to alternative biogenesis pathways
(40). We also expect that our dynamic-time warping algo-
rithm can account for the heterogeneity in the processing
miRNAs (52) and other sncRNAs. Although we have used
known sncRNAs to label the clustered profiles, SeRPeNT
does not need any annotation to cluster profiles and there-
fore is capable to derive sncRNA families from newly se-
quenced organisms for which no phylogenetically close an-
notation exists.

We have generated an extended annotation for human
that includes hundreds of previously unannotated sncR-
NAs from known classes. These included new miRNAs,
which we validated comparing to known families, confirm-
ing the structure of the precursor, and by measuring their
expression dependence with the miRNA biogenesis ma-
chinery. We further observed the frequent differential pro-
cessing of sncRNAs across cell compartments, especially for
tRNAs. As differential processing of tRNAs has been as-
sociated to disease (53–55), the observed patterns may be
indicative of relevant cellular processes that are worth in-
vestigating further.

We also detected 131 new sncRNAs that could not be
labeled, which we named clustered uncharacterized RNAs
(cuRNAs), and which are not present in current sncRNA
catalogs, hence could correspond to novel sncRNA species.
Although cuRNAs did not show frequent differential pro-
cessing across cell compartments, they showed dependen-
cies on the miRNA processing machinery and overlapped
with CAGE tags or lncRNAs; suggesting similar mecha-
nisms of biogenesis. The role of lncRNAs as possible gen-
eral precursors of multiple types of sncRNAs in fact sug-
gests new possible ways to classify lncRNAs beyond the cur-
rent proposed frameworks (56). A subset of lncRNAs may
act as precursors of a wide variety of sncRNAs, including
those from known families. Another possibility is that cuR-
NAs, and perhaps some of the known sncRNAs, are pro-
cessed through other mechanisms like back-splicing to give

rise to circular RNAs (57). In any case, cuRNAs conform a
small fraction from all the known classes of sncRNAs, in-
dicating that there might be a very limited number of new
sncRNA species.

We validated our approach by obtaining experimental ev-
idence for the expression of four predicted sncRNAs from
four different classes: one intronic miRNA, a snoRNA-
derived miRNA, a processed tRNA and a cuRNA. Al-
though we could experimentally validate the specific expres-
sion of these sncRNAs, we did not always find an agree-
ment between the experimental validation and the detection
by SeRPNT in the same cells. Some of the filters used for
SeRPeNT might have been too strict, thereby limiting our
level of detection. Nonetheless, the validation of these new
sncRNAs demonstrates SeRPeNT’s ability to detect RNA
species that are experimentally reproducible. Further anal-
yses and validations will be required to capture the extent
and variability of the processing of these RNAs across mul-
tiple conditions.

We envision a wide variety of future applications of
SeRPeNT, including the fast identification and differential
processing of non-coding RNAs from size-selected RNA-
sequencing from tumor biopsies, circulating tumor cells,
or exosomes, as well as the rapid discovery and charac-
terization of non-coding RNAs families in multiple or-
ganisms. SeRPeNT differential processing operation can
also be powerful at, for instance, discovering RNAs that
are differentially processed in tumor cells, thus generating
biomarkers and potential drug targets. In summary, SeR-
PeNT provides a fast, easy to use and memory efficient soft-
ware for the discovery and characterization of known and
novel classes of sncRNAs.
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