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ABSTRACT

DNA replication is a complex and remarkably robust
process: despite its inherent uncertainty, manifested
through stochastic replication timing at a single-cell
level, multiple control mechanisms ensure its ac-
curate and timely completion across a population.
Disruptions in these mechanisms lead to DNA re-
replication, closely connected to genomic instabil-
ity and oncogenesis. Here, we present a stochastic
hybrid model of DNA re-replication that accurately
portrays the interplay between discrete dynamics,
continuous dynamics and uncertainty. Using experi-
mental data on the fission yeast genome, model sim-
ulations show how different regions respond to re-
replication and permit insight into the key mecha-
nisms affecting re-replication dynamics. Simulated
and experimental population-level profiles exhibit a
good correlation along the genome, robust to model
parameters, validating our approach. At a single-cell
level, copy numbers of individual loci are affected by
intrinsic properties of each locus, in cis effects from
adjoining loci and in trans effects from distant loci.
In silico analysis and single-cell imaging reveal that
cell-to-cell heterogeneity is inherent in re-replication
and can lead to genome plasticity and a plethora of
genotypic variations.

INTRODUCTION

DNA replication ensures the maintenance of genetic in-
formation and constitutes the basis of biological inheri-
tance. In eukaryotes, DNA replication initiates at multi-

ple sites across the genome, known as origins of repli-
cation, and continues bidirectionally through replication
forks that move continuously until precisely two DNA
copies are produced (1,2). DNA replication is a complex
and uncertain process, as only a small fraction of all pu-
tative origins is selected to fire in each cell, resulting in
an individual progression along the genome at a single-
cell level (3,4). Despite this high degree of stochasticity,
DNA replication is also remarkably robust: it is tightly
regulated in time and space by multiple control mecha-
nisms that ensure its completion in an accurate and timely
manner (1,5–7).

To maintain genome stability, each part of the genome
must be replicated once and only once every time a cell di-
vides. At the beginning of each cell cycle, two licensing fac-
tors, Cdt1 and Cdc6/18, load the MCM2–7 replicative he-
licase onto DNA, thereby licensing origins for a new round
of DNA replication (8,9). In S phase, the replicative helicase
either becomes active and moves away from origins with
the replication fork or is removed by passive replication.
Cdt1 and Cdc6/18 are strictly controlled and are inacti-
vated as soon as replication starts, ensuring that the replica-
tive helicase cannot load again onto origins that have been
replicated, and therefore origins cannot fire a second time.
Disruption of this control mechanism leads to re-firing of
origins within the same cell cycle, a pathological process
known as DNA re-replication (10). Overexpression of the
licensing factors Cdt1 and Cdc6/18 has been shown to pro-
mote re-replication from yeast to humans. In fission yeast,
overexpression of Cdc18 leads to origin re-licensing within
the same cell cycle, origin re-firing and an uneven increase of
DNA copy number (11), resulting in local amplification of
the genome (12,13). Re-replication is enhanced by concomi-
tant expression of Cdt1 (14,15). In budding yeast, the simul-
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taneous inactivation of multiple control mechanisms leads
to local re-replication (16,17), which can be converted to a
local increase in gene copy number (18,19) and increased
nucleotide-level mutagenesis (20). In mammalian cells, ec-
topic expression of Cdt1 alone or in combination with Cdc6
is sufficient to drive re-replication at multiple loci (21). Both
Cdt1 and Cdc6 are often overexpressed in human tumors
(22), and have been linked to genomic instability early in the
tumorigenesis process (23), which drives oncogenesis (24–
30).

Fission yeast has been used as a model organism for re-
replication studies, as regulatable expression of a single fac-
tor (Cdc18) leads to genome-wide re-replication (11). Re-
replication levels can be experimentally manipulated by reg-
ulating Cdc18 expression levels or co-expression of cofac-
tors, and can range from a DNA content close to normal
(2C, the DNA content of a normal G2 cell but resulting
from uneven replication along the genome) to 32C (12–14).
At the population level, re-replication in fission yeast pro-
gresses relatively evenly across the genome (12,13), while a
small number of prominent loci are re-replicated above the
genome mean. Common features of the central origins un-
derlying these re-replicating ‘hotspots’ include AT-richness,
early firing in a normal S phase and localization in large
intergenic regions (13), features that also characterize effi-
cient origins (31). Re-replication and normal S-phase ori-
gins largely overlap; however, notable differences between
specific loci suggest that re-replication dynamics differ from
normal replication.

To date, a number of mathematical and computational
models of DNA replication in a number of organisms have
been developed (32–41). However, the properties and under-
lying mechanisms of DNA re-replication across the genome
remain unknown. Given the large number of origins along
the genome and the stochasticity of origin firing (42–44),
it is unclear how re-replication would progress along the
genome in each individual cell in a re-replicating popu-
lation and how local properties and genome-wide effects
would shape its progression and the resulting increases in
the number of copies of specific loci. While methods to an-
alyze re-replicating DNA at the population level are avail-
able (12–13,16–17,45–46), analysis of re-replication dynam-
ics at the single-cell level is currently lacking. Motivated
by this gap in the literature, in this work we present a re-
alistic, dynamic model of DNA re-replication exploiting
stochastic hybrid systems. Stochastic hybrid systems com-
bine discrete and continuous states and stochasticity (47)
and have been successfully used to capture complex bi-
ological processes (39,48–50). Using as input experimen-
tally determined origin measurements from fission yeast,
the model allows the simulation of DNA re-replication
genome-wide. Sensitivity analysis showed that the model
is robust and consistent with experimental data genome-
wide, allowing rules governing re-replication to be un-
veiled. In silico analysis combined with in-cell validation
showed that re-replication profiles at the single-cell level
are characterized by a high degree of heterogeneity. Re-
replication can, with varying probability, occur anywhere in
the genome and generate many diverse genotypes within a
population.

MATERIALS AND METHODS

DNA re-replication model and simulations

A complete mathematical description of the model states,
transitions and inputs is given in Supplementary Note 1.
A graphical overview of the model states and transitions is
given in Figure 1A-C, and model inputs and outputs are
shown in Supplementary Figure S1. The model was imple-
mented using MATLAB R2016b and the source code, gen-
erated data and extensively documented figure-generating
scripts are available under an open-source license at: https:
//github.com/rapsoman/DNA Rereplication. Monte Carlo
simulations were executed on the HPC cluster of ETH
Zurich.

Statistical methods and data analysis

Denoising of raw CGH data. For the denoising step, we
experimented with various methods (moving average filter,
linear polynomial filter, a quadratic polynomial filter and
a Savitzky–Golay filter) and a variety of parameter values
(e.g. span/window size, degree of the fitted polynomial).
From all combinations, a quadratic polynomial fit with a
span size of 80 units was chosen as the most appropriate, be-
cause of its ability to eliminate noise while fitting the shape
and preserving the height of the peaks (Figure 2, top in
black).

Peak finding. To locate the peaks, we implemented a sim-
ple peak finding method, which identifies as a peak all local
maxima, i.e. all locations where the gradient of the signal
changes sign. We also applied an intensity cutoff threshold
and set it to 1 to eliminate the peaks whose intensity was be-
low the genome mean. At the same time, a peak-matching
step with a threshold of 40 kb was applied, so that local
maxima in experimental and simulated data with a linear
distance <40 kb were assigned to the same peak location.
The algorithm identified 12 peaks on Chromosome I, 11
peaks on Chromosome II and 6 peaks on Chromosome III
in the denoised experimental data, marked as dotted verti-
cal lines in Figure 2 (Supplementary Table S2). These num-
bers were fairly robust with respect to the denoising method
but depended largely on the span size and intensity of the
cutoff value. The same process was followed for the simu-
lated data and resulted in the identification of 11 peaks in
Chromosome I, 5 peaks in Chromosome II and 6 in Chro-
mosome III (Figure 2, Supplementary Table S2).

Analysis of peak overlap. To assess the overlap between
peaks identified in experimental and simulated data, we re-
peated the same peak matching process using a null model;
instead of the simulated peaks, we used 22 randomly picked
genome coordinates and calculated how many coincide with
the peaks found in the experimental data using the same
window of 40 kb. The procedure was independently re-
peated 100 000 times; the median overlap score between the
null model and experimental data across all repetitions was
2 out of 22 and the maximal overlap score was 10 out of 22,
which occurred only once in all 100 000 repetitions. Very
similar results were obtained when the above analysis was
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Figure 1. A stochastic hybrid model of DNA re-replication. (A) Normal DNA replication versus DNA re-replication. Normal DNA replication (left) starts
from multiple replication origins (shown here as dots) and is tightly controlled, ensuring that during each cell cycle every origin fires once and precisely
two DNA copies are produced. During DNA re-replication (right), re-firing of the origins results in many DNA copies on multiple strands and uneven
amplification of the genome. (B) Abstract representation of the DNA re-replication model. Circles of different colors represent discrete origin states and
arrows represent allowed transitions (black: transitions in normal replication; blue: transitions allowed only in re-replication). When an origin fires or is
passively replicated, its offspring automatically fall into the PreR state and can thus fire or be passively replicated again. (C) Evolution of re-replication and
example transitions between states. Dots of different colors correspond to origins of different states (same as in B). Solid black lines represent synthesized
DNA and dotted gray horizontal lines correspond to different strands (strand index shown in gray on the right). Initially, all origins pictured are in the
PreR state and located on strand j . Then, Orii, j fires and its offspring, Orii,2 j and Orii,2 j+1 automatically fall into the PreR state. Next, the left fork
of Orii, j reaches the location of Orii−1, j , which leads to its passive replication and the birth of origins Orii−1,2 j and Orii−1,2 j+1 that automatically fall
into the PreR state. In the meantime, Orii,2 j also fires and creates Orii,4 j and Orii,4 j+1 which again fall into the PreR state. Note that the doubling
of the strand index (starting with the original strand j = 1) allows us to uniquely identify all strands. (D) DNA re-replication kinetics for 100 Monte
Carlo simulations. Total DNA content (C) over time. Different curves correspond to different simulations. (E) Total number of origins per state over time.
Different colors correspond to different origin states and different curves to different simulations. Highlighted curves correspond to the simulation closest
to the mean.

repeated with 22 randomly selected origins (out of the 839
origins). Consistently, we calculate that the genomic regions
assumed to be coinciding with an experimental peak have a
total length of 29 · 40 001 = 1 160 029 bases (29 experi-
mental peaks with a surrounding 40 kb window each), cor-
responding to 0.0923 of the total genome (genome length
= 12 571 820 bases). Randomly sampling 22 genome loca-
tions would lead to 22 · 0.0923 = 2.0306 ≈ 2 re-replication
peaks selected by chance alone, consistent with our numer-
ical analysis of the null model above. The identified over-
lap between experimental and simulated data (14 out of 22
peaks) is therefore much higher than expected by chance.

Comparison of origin locations and efficiencies across
datasets. A comparison between the origin locations and
efficiencies used as input in our model (31) and an indepen-
dent dataset by Daigaku et al. (51) was performed, to assess
if disagreements between the two datasets could explain ob-
served inconsistencies between experimental and predicted
re-replication peaks. It should be noted that Daigaku et
al. report efficiencies in the presence of passive replica-
tion, and not intrinsic efficiencies, and that reported effi-
ciencies are overall higher in Daigaku et al. in compari-
son to (31). Nonetheless, comparing the location and rel-
ative efficiencies of assigned origins across problematic re-
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gions in the two datasets can help pinpoint loci where in-
correct origin assignment in our input dataset may be the
cause of inconsistencies between simulated and experimen-
tal data. Out of the 15 experimental peaks missed by the
model, 12 could potentially be attributed to a discrepancy
in reported efficiencies; the model efficiencies used as in-
put in the peak proximal region were relatively low, but
the Daigaku et al. dataset includes at least one highly ef-
ficient proximal origin. Conversely, out of the eight peaks
predicted by the model that are absent from experimen-
tal data, two could potentially be attributed to the oppo-
site effect; the model input includes a highly efficient origin
that is not present in the Daigaku et al. dataset. In Sup-
plementary Table S3, a comparison across all experimen-
tal and simulated peaks together with the efficiencies of
proximal origins in both datasets is presented. In Supple-
mentary Figure S2, five representative examples are shown.
Peak III-1 is a highly amplified region, corresponding to
two overlapping re-replication hotspots from (13), which is
not predicted by the model. The Daigaku et al. dataset re-
ports two highly efficient origins, missing from our input
dataset, which could explain the inconsistency. In contrast,
in the same region our input dataset but not the Daigaku
et al. dataset contains an efficient, left-telomere proximal
origin, which underlies simulated peak SIII-1, missing from
the experimental re-replication data. Similarly, for Peak SI-
5, which is predicted by the model but not present in the
experimental dataset, an underlying highly efficient origin
from our input dataset was not validated by Daigaku et al.
Dataset inconsistencies can also explain discrepancies be-
tween simulated and experimental re-replication data in the
middle of Chromosome III, where the most pronounced
simulated peak is less strong in the experimental data and
vice-versa. Not all disagreements between experimental and
simulated re-replication data can be explained by dataset
discrepancies, however. For example, the underlying effi-
ciencies for experimental Peak II-8, which is not predicted
by the model, are low, whereas the underlying efficiencies
for simulated Peak SII-3, which is not present in exper-
imental data, are high for both datasets (Supplementary
Figure S2).

Kernel density estimation. The distribution plots were de-
rived using a kernel density estimate based on a normal ker-
nel and evaluated at 100 equally spaced points.

Shannon entropy. To estimate the value of Shannon en-
tropy H, we first discretized the data to 0 and 1, where 0
corresponds to copy numbers below the genome mean and
1 to simulations above the genome mean. Then, H is the
entropy of a Bernoulli process with probability p of two
possible and mutually exclusive outcomes, and is defined as
follows:

H = −plogp − (1 − p) log (1 − p) ,

where Pr(X = 1) = pand Pr(X = 0) = 1 − p. Entropy
will take its maximal value of 1 when p = 0.5, i.e. in the
case that an origin is amplified in half of the simulations.

Principal component analysis. To compute the principal
components of the data we used the MATLAB function im-

plementation of Principal Component Analysis (PCA) and
visualized the results (variable loadings and principal com-
ponents) using a biplot.

Clustering. To identify groups of similarly amplified pro-
files in the simulated data, we performed a clustering step
using the k-means algorithm with a squared Euclidean dis-
tance metric. We used the Gap statistic to identify the op-
timal k, a goodness-of-clustering approach that compares
the change in within-cluster dispersion with that expected
from a reference null distribution (52). We estimated the
Gap statistic for up to k = 50 clusters using 100 reference
data sets and selected as the optimal the smallest value of
k for which the value of the Gap statistic is not more than
1 standard error away from the first local maximum. To es-
timate the stability of the clustering we used the Adjusted
Rand Index (ARI), a pairwise metric of similarity between
two different clustering assignments. The simple Rand In-
dex (RI) is defined as the number of agreements over all
pairs of samples between two different clustering assign-
ments, divided by the total number of pairs, and reflects the
probability that a randomly picked pair of samples is con-
sistently found belonging to the same cluster. The ARI is
an extension of the RI that additionally corrects for chance
(53). To compute the ARI, we ran 100 repetitions of the
clustering for the optimal k identified as described above,
where each repetition was an independent run with a ran-
dom centroid initialization.

Implementation. All methods were implemented in the
Statistics and Signal Processing Toolboxes of MATLAB
2016b.

Experimental methods

Strain construction and cell growth. For the construc-
tion of the re-replicating strain with the lys1+ tag the
strain C2566 (h-, LacO::lys1+, LacI-GFP::his7+, ChrI
1.5Mb::TetO-hphMX, Z locus::TetR-tdTomato-natMX,
leu1–32, ura4-D18, ade6-M210) kindly provided by Chris-
tian Häring was employed (54). To promote re-replication
C2566 was crossed with a strain carrying a truncated
form of cdc18 under the nmt1 promoter (h-, nmt1-d55P6
(leu1+), ura4-D18, leu1–32) (55). The resulting strain un-
dergoes medium level of re-replication, which is adequate
for the manifestation of high cellular heterogeneity but does
not severely decrease the viability of the cells. Moreover,
medium level of re-replication does not affect the integrity
of the nucleus, thus it is possible to detect and quantify
Hoechst staining through imaging. This strain was used
for the quantification of the lys1+ locus. To induce re-
replication, cells were grown at 25◦C in Edinburgh Minimal
Medium (EMM) supplemented with uracil and adenine in
the presence of thiamine (5 �g/ml) up to an OD600∼0.5. At
this point cells were harvested, washed with EMM and di-
luted to an OD600∼0.01 in EMM supplemented with uracil
and adenine, both with and without thiamine and grown at
25◦C for 30 h. Cells were harvested after 30 h, fixed with 4%
paraformaldehyde for 5 min, washed with water and stained
with Hoechst for 5 min.
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Cell imaging and image analysis. Cell images were ob-
tained in an Olympus IX83 widefield microscope equipped
with a 100× lens (NA 1.46) and a LED light-source.
Z-stacks were acquired at a step size of 0.4 �m. Pre-
processing, segmentation and signal quantification for GFP
and Hoechst were conducted with ImageJ. The top-hat al-
gorithm was applied for background correction. Signals for
each channel individually were detected by manual thresh-
olding.

RESULTS

Modeling DNA re-replication across a complete genome

DNA replication initiates from hundreds of origins along
the genome and results in the exact duplication of the ge-
netic material (Figure 1A). It is a complex process that in-
volves a combination of discrete dynamics (associated with
the switch-like activation of each origin), continuous dy-
namics (associated with the movement of the replication
forks along the DNA strands) and stochasticity (in the time
and space of origin firing). How often a putative origin is
observed to fire in a population of normally replicating cells
depends on how often it is licensed for replication, how of-
ten it is activated to fire when licensed, and how often it is
passively replicated. Here, we define as intrinsic firing effi-
ciency the fraction of cells where an origin would be ob-
served to fire in the absence of passive replication. Intrin-
sic firing efficiency thus encompasses both the ability of the
origin to become licensed and its ability to fire. We define as
firing propensity the probability that an origin fires in a unit
of time. Mathematical and computational models of DNA
replication have been proposed in the literature to capture
origin firing in time and space and the dynamics of DNA
replication (32,34–35,37,39,41,56). We developed an exten-
sion of a mathematical model of normal DNA replication
(39) to allow origin re-firing, resulting in a stochastic hybrid
model of DNA re-replication.

Contrary to normal DNA replication, where exactly two
DNA copies are produced, in re-replication origin re-firing
allows each origin to produce multiple copies (referred to
here as offspring) on multiple resulting strands (Figure 1A).
Each origin copy, whether ancestral or offspring, can be
identified by its genomic location and strand index and is
denoted as Orii, j , where i = 1, . . . , n denotes the origin
index and j = 1, . . . , m the strand index. Figure 1B picto-
rially summarizes the discrete dynamics of the model. Sim-
ilarly to the model of (39), at any point in time, each ori-
gin can be in one of the depicted six states: pre-replicative
(PreR), replicating in both directions (RB), replicating only
to the right or to the left (RR or RL), passively repli-
cated (Pass R) and post-replicative (PostR). The continu-
ous dynamics are deterministic and model the movement
of the replication forks. Uncertainty plays a vital role in re-
replication, and it is represented by modeling the time and
location of origin firing and re-firing as stochastic events.
Transitions between discrete states, depicted as arrows in
Figure 1B, depend on both the continuous and stochastic
dynamics of the system. In contrast to normal DNA repli-
cation, origins that have already fired or have been passively
replicated can re-fire multiple times. These transitions are
visualized in an example scenario in Figure 1C, when an

origin fires (transition PreR → RB) or is passively repli-
cated (transition PreR → Pass R), it generates two origins
on two new strands, which automatically fall back into the
PreR state and can thus fire again (blue arrows in Figure
1B). To assign firing propensities of these newly replicated
origins, we assume that the total firing propensity (the sum
of all firing propensities of every origin in the cell) remains
constant (see limiting factor hypothesis (39) and below for
alternative implementations). Each time an origin fires (or is
passively replicated), its firing propensity gets dynamically
redistributed to all pre-replicative origins across all strands,
in proportion to their current firing propensity.

The DNA re-replication model requires the following in-
puts (Supplementary Figure S1): (i) total genome length,
measured in base pairs, (ii) genomic locations of all ori-
gins, measured in base pairs, (iii) intrinsic firing efficien-
cies of all origins and (iv) fork speed, measured in kilobases
replicated per minute (kb/min). Provided that this informa-
tion is available, the model is applicable to any eukaryotic
genome. For the purposes of this work, the model was in-
stantiated for the case of fission yeast (Schizosaccharomyces
pombe). This organism has long served as a model system
for the study of DNA replication control, as it exhibits con-
served features, while its small genome (total genome length
≈ 14 × 106 bases and three chromosomes) simplifies anal-
ysis. Exact origin locations and their intrinsic firing efficien-
cies (fraction of origins that fire when fork movement is
blocked with hydroxyurea) have been measured experimen-
tally across the complete fission yeast genome during nor-
mal replication (31) by microarray analysis. Supplementary
Table S1 shows the locations and efficiencies of the 893 fis-
sion yeast origins used as input. Each origin (Ori) is named
for the chromosome on which it resides (I-III) and a sequen-
tial number along the chromosome.

We have assumed a constant fork speed. Though the
model can accommodate different fork speeds at different
chromosomal locations or across time, experimental data
for assigning a variable fork speed are currently lacking.
While initial estimations of mean fork speed during nor-
mal DNA replication were around 3 kb/min (31,57–58), re-
cent estimations of fork speed range from 0.5 to 1.5 kb/min
(59,60). Mean fork speed in re-replication is expected to be
slower than normal replication, due to limited nucleotide
pools and interference between forks. Therefore, in our
base-case model, we set fork speed equal to 0.5 kb/min and
assumed it is uniform across the genome. In contrast to
normal DNA replication, where the process is completed
when all genomic regions have doubled, in re-replication
there is no defined endpoint. The ploidy level C, i.e. the total
amount of genomic material synthesized with respect to the
initial amount, can be used to define discrete points along
the process. It should be noted that re-replication is not ex-
pected to progress evenly across the genome and therefore
different genomic regions will be amplified to different ex-
tents at a given time point.

Monte Carlo simulations of the model for the aforemen-
tioned inputs were used to study the re-replication process.
Since the model is stochastic, each simulation corresponds
to a sample path of the stochastic process, i.e. a distinct
sequence of random events; Monte Carlo simulations per-
mit the estimation of statistics over multiple such sequences.
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Due to the complexity of the process, the discrete and con-
tinuous state space quickly becomes very large. In a nor-
mal DNA replication cycle, the total number of origins dou-
bles and reaches 1786 as the total DNA content C increases
from 1 to 2, while the maximum number of active forks
will be up to double the number of origins. During the
course of re-replication, however, the number of origins and
forks, equivalent to the discrete and continuous states of
the model, increases drastically, in an example simulation,
already by the time that C reaches 2, 3861 origins at vari-
ous states and 2515 active forks are present. For C = 16,
the count of origins and forks escalates and increases al-
most 10-fold, with 35 259 origins and 18 827 active forks
present.

In Figure 1D, examples of the kinetics of DNA synthe-
sis over time are shown. Each curve corresponds to a single
simulation, and the spread between individual curves indi-
cates variability due to the stochastic nature of the model.
We observe that the increase in DNA content over time is
exponential, and a DNA content of 8C is reached within ∼3
h, in the same range as experimental observations (12,13).
The number of active (RB, RR, RL), passive (Pass R) and
pre-replicative origins (PreR) over time are shown in Fig-
ure 1E. During the course of re-replication, the number of
active and passive origins increases rapidly over time. Ini-
tially, passively replicated origins are fewer than the actively
replicated ones, but as re-replication progresses, the num-
ber of passively replicated origins increases faster and sur-
passes the number of origins that fired. This indicates that
the process gets eventually dominated by passive replication
instead of firing events. Pre-replicative origins increase ex-
ponentially, as all firing and passive replication events lead
to the birth of new PreR origins.

We have therefore developed a model which can capture
re-replication dynamics across an entire genome, account-
ing for transitions in origins states, fork movement and
stochasticity.

DNA re-replication at a population level

Simulation results from the re-replication model were com-
pared to experimental data from re-replicating fission yeast
cells. Specifically, we computed in silico mean amplification
profiles across the genome, referred to as signal ratios in
(13), by averaging the number of copies for each origin loca-
tion and normalizing it to the genome mean in 100 simula-
tions. In these profiles, peaks above 1 correspond to highly
re-replicated regions, and valleys below 1 correspond to re-
gions that are under-replicated with respect to the mean.
Mean profiles computed at 16C are shown in Figure 2, bot-
tom row. Note that re-replication levels are higher on Chro-
mosome III in comparison to the other two chromosomes,
consistent with a higher efficiency of origins on this chromo-
some (31). Simulated re-replication profiles were compared
to re-replication profiles defined experimentally at a sim-
ilar ploidy (13), where location-specific amplification was
assessed using array Comparative Genomic Hybridization
in fission yeast cells co-overexpressing the licensing factors
Cdc18 and Cdt1 (Figure 2, top row). Simulated data show
the actual number of copies generated and are thus expected
to be sharper than experimental data, which are subject to

background noise and represent averages of three probes
and two independent experiments. Still, in silico and exper-
imental profiles appear overall similar, with several peaks
coinciding. Indeed, our model predictions fit experimental
observations reasonably well, as the Spearman correlation
coefficient ρ between experimental and simulated whole-
genome re-replication profiles was statistically significant
for all three fission yeast chromosomes (ρ = 0.6 and P-value
= 3.6 · 10−41 for Chromosome I, ρ = 0.61 and P-value =
5.7 · 10−33 for Chromosome II, and ρ = 0.5 and P-value =
7.3 · 10−12 for Chromosome III). To better compare sim-
ulated and experimental profiles, a peak-calling algorithm
was used, which identified 29 and 22 peak locations in ex-
perimental and simulated profiles respectively (dotted ver-
tical lines), representing regions of amplification in a pop-
ulation of re-replicating cells. Details on the denoising and
peak finding processes are given in ‘Materials and Meth-
ods’ section, and indices and locations of both peak sets are
given in Supplementary Table S2.

We observed that most peaks predicted from simulations
correspond to major amplification peaks in the experimen-
tal data; out of the 22 re-replication peaks in the simulated
data, 14 also exist in the experimental data (precision ≈
0.64). To further assess the agreement between experimen-
tal and simulated peaks and examine whether it could be
attributed to chance or our peak-matching algorithm pa-
rameters, we repeated the analysis 100 000 times using a null
model of 22 randomly picked genome locations (‘Materials
and Methods’ section). We found that there was no case out
of the 100 000 random repetitions, with 14 peaks overlap-
ping in experimental and randomly picked locations, indi-
cating that the probability of the model’s prediction being
attributed to chance is less than 1 in 100 000. The maximal
overlap, occurring only once in all 100 000 random repeti-
tions, was 10 peaks, while the median overlap between ex-
perimental and random peaks was 2 peaks. Moreover, out
of the nine amplification regions identified in (13), six are
also present in the simulated profiles.

Some inconsistencies do exist between the two datasets;
out of 29 peaks in the experimental data, 15 are not pre-
dicted (false negative rate ≈ 0.52). Most of these false neg-
atives however are attributed to peaks that are present but
appear less sharp in the simulations (e.g. peaks in the mid-
dle part of Chromosome II) or to minor disagreements due
to linear shifts in peak locations (e.g. the first and third true
peaks of Chromosome III (31)). To assess if some of these
discrepancies could be due to incorrect assignment of origin
locations or efficiencies in the input dataset, we compared
the input data with a different origin dataset, estimated us-
ing a polymerase usage sequencing (Pu-seq) strategy during
an unperturbed cell cycle in S. pombe (51). In this dataset,
passive replication is not inhibited, and efficiencies therefore
do not correspond to intrinsic firing efficiencies, as required
for model input. It can nevertheless be used to pinpoint re-
gions where inconsistencies could be explained by the input
data. Indeed, minor disagreements across datasets could ac-
count for observed inconsistencies in several cases (Supple-
mentary Table S3 and Figure S2; ‘Materials and Methods’
section). For example, the linear shift of the first peak on
chromosome III in experimental and simulated data men-
tioned above can be explained by such a disagreement in
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Figure 2. Analysis of in silico data at a population level. Comparison between experimental (top row) and simulated (bottom row) mean amplification
profiles for 100 Monte Carlo runs for 16C along the three chromosomes of the fission yeast genome. Identified peaks, representing re-replication hotspots,
are marked in dotted vertical lines. Common peaks between simulated and experimental data are marked in red dashed vertical lines. Peaks corresponding
to the nine amplification regions identified by Kiang et al. (13) are marked in vertical arrows (red: identified also in simulated data, black: identified only
in experimental data).

efficiency datasets (Supplementary Figure S2). Striking in-
consistencies which cannot be accounted for by discrepan-
cies in the input dataset are relatively few and can point to
regions along the genome which are specifically regulated
under re-replication conditions. For example, the third peak
on chromosome II in the simulated data (Peak SII-3) is sup-
ported by both efficiency datasets (Supplementary Figure
S2) but is not detected in experimental re-replication data,
suggesting that re-replication of this locus may be inhibited
in cells. Similarly, the eighth peak on chromosome II (Peak
II-8) identified in experimental data and absent in simulated
data resides in a low efficiency region in both origin datasets
available (Supplementary Figure S2) and could indicate a
region particularly prone to re-replication. Notably, sub-
telomeres are also highly amplified in experimental data but
not in the simulations, pointing to location-specific effects,
not explicitly specified in our model, as previously suggested
(12). Such isolated events however do not significantly affect
the overall re-replication dynamics.

We conclude that simulated population data fit experi-
mental data genome-wide reasonably well, validating our
approach.

Sensitivity analysis

We next sought to investigate the effects of different model
parameters and assumptions. We first varied fork speed: 0.5
kb/min (base case) was compared to 1 and 3 kb/min (Sup-
plementary Figure S3). As expected, the increase in DNA
content progresses faster at higher fork speeds: C = 16 is
reached at 251.5, 187 and 114 min as fork speed increases
from 0.5 to 1 and 3 kb/min (Supplementary Figure S3A and
B). Experimental observations show that under high levels
of re-replication, DNA content reaches 16C 4–6 h follow-
ing accumulation of Cdc18 (14). Estimates for 0.5 kb/min
are therefore closer to experimental observations. Passive
replication becomes more dominant as fork speed increases
(Supplementary Figure S3C).

A second variant of the model was tested, that differs on
how the firing propensities of newly replicated origins are
assigned. In this variant (referred to as Unlimited Factor
or UF) we assume that when an origin fires or is passively
replicated, the offspring inherit the same firing propensity as
the parent. This implies that firing propensities depend only
on the genomic location and hence remain the same for the
same origin across all strands. Under this assumption the
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total firing propensity (i.e. the sum of the propensities of all
the origins) will increase during re-replication (Supplemen-
tary Figure S3D). By contrast, in the base-case (referred to
hereafter as Limiting Factor or LF), the total system firing
propensity remains constant during re-replication while the
firing propensities of individual origins decrease, as more
origins are born (Supplementary Figure S3E). The two vari-
ants of the model reflect different biological hypotheses. The
UF variant represents a situation where all factors needed
to license and activate an origin are available in virtually
unlimited quantities. The LF variant represents a situation
where one or more of these factors exists in limited quan-
tities and binds to origins proportionally to their intrinsic
efficiencies (39,61).

Simulation kinetics for the UF variant at a fork speed of
3 kb/min are shown in Supplementary Figure S3E. When
unlimited copies of an activation factor (UF variant) are as-
sumed, the process is fast, as DNA content doubles approx-
imately every 12 min and reaches 16C in <1 h. For the LF
variant, on the other hand, each doubling needs gradually
more time to complete, and re-replication requires roughly
twice as much time to reach the same C levels as in the UF
case. In the UF model, the number of passive and active
origins increases rapidly with a comparable count (Supple-
mentary Figure S3C), in contrast to the LF model where
active origins increase at a slower rate and are eventually
outnumbered by the passive ones. The re-replication pro-
cess predicted by the UF model is much faster than experi-
mentally observed (Supplementary Figure S3B), suggesting
that unlimited re-replication is unlikely to take place within
cells.

Mean amplification profiles across the genome for differ-
ent values of fork speed and the LF model variant are shown
in Supplementary Figure S4 at 16C. Profiles appear flatter
as fork speed increases, consistent with increased passive
replication. The sites of over-amplification however appear
at similar locations along the genome, suggesting that re-
replication dynamics along the genome are robust to vary-
ing fork speeds. In Supplementary Figure S4, amplification
profiles genome-wide are also compared between the base-
case model (LF variant, fork speed of 0.5 kb/min) and the
UF variant (fork speed of 3 kb/min). We observe that both
profiles follow a very similar pattern, with the UF profiles
characterized by somewhat sharper peaks, indicating more
firing from the underlying origins. Importantly, all amplifi-
cation peaks shown in Supplementary Figure S4 are consis-
tently present in both model variants and parameter values.

We conclude that the base-case model is robust to model
assumptions.

Single-cell analysis: heterogeneity across the genome

Re-replication across the genome has only been studied
so far at the population level. Although population-based
methods enable the exploration of global characteristics,
they mask the underlying variability at a single-cell level, as
only the most prominent regions ‘survive’ in the mean am-
plification profiles. The model described here permits anal-
ysis of cell-to-cell heterogeneity of the amplification levels
across the genome, as each simulation corresponds to a dis-
tinct sequence of events taking place within one cell.

To assess variability at the single-cell level, we compared
amplification plots from single simulations, generated by
the base-case model. To assess the outcome at different
ploidy levels, we compared simulations at 2C and 16C. In
both cases, single-cell profiles are characterized by a high
degree of variability and can deviate significantly from the
mean behavior (examples of four random simulations at
16C in Supplementary Figure S5). To quantify the variabil-
ity in the simulations genome-wide, we used the Shannon
entropy, an information-theoretic metric (‘Materials and
Methods’ section) on discretized data from 100 simulations,
where 0 and 1 correspond to copy number levels less and
more than the genome mean, respectively. As shown in Sup-
plementary Figure S6, this analysis indicates that whether
an origin is amplified or not is highly unpredictable at 2C,
while at 16C the entropy becomes bimodal, with half of the
origins consistently over- or under-replicated and the other
half showing a highly variable behavior.

In Figure 3, a zoom in on 1 Mb of Chromosome I is
shown at 2C (Figure 3A) and at 16C (Figure 3B) for the
same four randomly selected individual simulations as in
Supplementary Figure S5. We observe that amplification
levels along the genome vary across the simulations, point-
ing to a high degree of heterogeneity. This variability is espe-
cially prominent early on in the process (2C), where certain
origins have been amplified to a high degree, while most of
the genome remains normal. We analyzed the copy number
levels at 16C of an individual origin in this region (red dot in
Figure 3A and B), for which a high degree of heterogeneity
was not apparent in the particular simulations selected. We
observed that, when looking at all simulations, the distribu-
tion (Figure 3C) is right-skewed with a heavy tail, showing
that high variability in copy number levels is indeed present.

To determine whether every region along the genome
is amenable to amplification upon re-replication, we com-
puted the number of times each origin was amplified more
than the genome mean (16C). This analysis showed that
739 out of the total 893 origins are amplified above the
mean at least once in the set of 100 simulations analyzed.
This suggests that even regions of low efficiency can poten-
tially be amplified. A striking example is given in Figure 3D
and E for origins Ori II-132 and Ori II-153. As seen from
their copy number distributions (Figure 3D) and the mean
re-replication profile (Figure 3E), both origins are under-
represented in the population and reside in a region of al-
most no re-replication. However, as seen in the single-cell
profile, they can potentially re-replicate, and yield copies
high above the population mean. This suggests that un-
der re-replication, multiple combinations of co-amplified
regions will appear, even for low efficiency regions.

We conclude that re-replication can drive different ge-
nomic regions to be amplified in different cells, leading to
heterogeneity at the single cell level.

Single-cell heterogeneity observed in vivo

To experimentally explore the cell-to-cell copy number vari-
ability under re-replication in vivo, the relative amplifica-
tion level at a specific genomic region was assessed us-
ing the LacO/LacI system. Specifically, high affinity bind-
ing of an ectopically expressed, fluorescent-tagged lactose
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Figure 3. Analysis of in silico data at a single-cell level exposes heterogeneity. (A and B) Model simulations expose heterogeneous patterns of re-replication
at a single-cell level. Individual simulations of the stochastic model lead to markedly different amplification levels. Shown here are number of copies for all
origins (marked in circles) on a random region of Chromosome I, resulting from four random simulations of the model at a total DNA level of 2C (A) and
16C (B). (C) Copy number distribution of one individual origin of Chromosome I (Ori I-272), highlighted in red in (A and B), from the 100 simulations
at 16C. (D) Distributions of copy number levels of weak origins Ori II-132 and Ori II-153. Outliers of the distributions are marked in circles. (E) Mean
amplification profile of Chromosome II from all 100 simulations (blue) versus single-cell amplification profile corresponding to one individual simulation
for which Ori II-132 and Ori II-153 are amplified.

inhibitor (lacI-GFP) onto stably integrated lac operator
(lacO) arrays allows the visualization of a targeted genomic
region as a fluorescent dot, the intensity of which reflects
the copy number of the lacO-targeted region (62). To in-
duce re-replication in a controllable manner, a fission yeast
cell strain stably expressing the licensing factor Cdc18 un-
der the repressible promoter nmt1 was employed. Absence
of the vitamin B1, thiamine, activates the promoter and
leads to Cdc18 overexpression. Different promoter con-
structs and different Cdc18 mutants have been described
which can induce re-replication to varying degrees (from a
2C to 32C DNA content (14,63)). To avoid artifacts due
to cell death and disrupted nuclear morphology under high
levels of re-replication, we have employed a truncated form
of Cdc18 (d55P6-cdc18, (55)) which induces medium-level
re-replication, as confirmed by flow cytometry analysis in
Supplementary Figure S7A. Under these conditions, the
vast majority of the cells (>90%) undergo re-replication, al-
beit at medium to low levels (Supplementary Figure S7A
and data not shown). Additionally, the same strain carries

the lys1+ locus marked by the lacO-lacI system (Figure 4A)
(54). The lys1+ gene is located between Ori I-272 and Ori I-
273, which present 60 and 39% efficiency, respectively. Copy
number levels for Ori I-272 in individual simulations and
across the whole population were shown in Figure 3A–C.

Re-replication was induced by removing thiamine for 30
h at 25◦C, or not as a control, and the cells were fixed,
stained with the DNA dye Hoechst and imaged in a wide-
field epifluorescence microscope (Figure 4B). Image analy-
sis revealed an increase in DNA nuclear staining in the re-
replicating cells (Figure 4C), as well as an increase in the
intensity of the lacI-GFP dot (Figure 4D), each of them in-
dicating increased genomic content and increased copies of
the lys1+ locus under re-replication, respectively. As shown
in Supplementary Figure S7B, in control cells the distribu-
tion of DNA nuclear staining is consistent with the presence
of G1, S and G2 phase cells, with G2 cells having approx-
imately double the DNA content of G1 cells, while lacI-
GFP foci intensities correlate with the DNA content. On
the contrary, re-replicating cells do not present a clear sep-
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Figure 4. Quantification of lys1+ region in normal and re-replicating conditions. (A) A region proximal to the lys1+ gene (ChrI: 373492) was labeled by
integration of 128 LacO repeats in fission yeast cells expressing LacI-GFP. (B) Visualization of the GFP labeled region in cells growing under normal
replication and re-replication conditions. Cells were grown for 30 h at 25◦C in the absence of thiamine to induce overexpression of d55P6-cdc18 and re-
replication (lower panels) or were grown in the presence of thiamine as a control (upper panels). GFP (green) and DNA stained by Hoechst (blue) were
visualized by epifluorescence microscopy. Scale bar: 5 �m. (C–E) Distributions (probability density plots) of total nuclear Hoechst intensity (C), GFP
intensity at the lacO locus (D) and GFP focus intensity normalized to the total nuclear Hoechst intensity in each cell (E) is shown in cells undergoing
normal replication (n = 1632, blue) or re-replication (n = 1234, orange), as in B. A representative experiment out of three biological replicates is shown.

aration of populations and varying levels of re-replication
are observed in different cells, consistent with flow cytom-
etry data (Supplementary Figure S7A). Foci intensities ap-
pear to vary independently of the DNA content. To esti-
mate the relative copy number of the lys1+ region with re-
spect to the DNA content at the single cell level, the inten-
sity of each GFP dot was normalized with the total DNA
nuclear intensity in each individual cell (Figure 4E). We ob-
serve that under re-replication the distribution of the nor-
malized GFP intensity is positively skewed with a long tail
and an increased coefficient of variation compared to the
normal replicating sample (41.18% for normal and 57.54%
for re-replication), in agreement with the simulated data at
this region (Figure 3C). We conclude that cell-to-cell het-
erogeneity in the number of copies of the lys1+ genomic lo-
cus is evident in fission yeast cells undergoing re-replication,
consistent with in silico analysis.

Rules governing DNA re-replication across the genome

Intrinsic origin properties. To unveil the rules which dic-
tate which regions will become amplified along the genome,
we first assessed the dependence of amplification levels of
individual origins on their intrinsic efficiencies, as deter-

mined experimentally (31). Figure 5A shows histograms of
the copy number distributions from simulations of the LF
model at 0.5 kb/min at 16C of two origins (Ori II-45 and
Ori II-54), with high and low efficiencies (62 and 9%, re-
spectively (31)). The median number of copies of each ori-
gin is consistent with its efficiency (notice again the posi-
tively skewed distribution with long tails discussed above).
The scatterplot of Figure 5B shows a strong correlation
between mean number of fires at 16C and efficiency for
all origins (Spearman correlation coefficient −ρ = 0.96).
The coefficient of variation (ratio of standard deviation
over the mean) is inversely correlated to the efficiency (ρ
= −0.89), with weak origins showing much higher varia-
tion than strong ones. Mean number of copies of each origin
show a weaker correlation to firing efficiency (Figure 5C, ρ
= 0.4) and a coefficient of variation weakly linked with effi-
ciency (ρ = 0.12). Interestingly, a higher spread at low effi-
ciencies is observed, with origins considered dormant (ef-
ficiencies <10%) occasionally significantly amplified with
respect to the population mean. Last, a scatterplot of the
mean number of passive replications versus the efficiency
(Figure 5D) indicates a much weaker correlation (ρ = 0.17)
and a weak efficiency-related variability (ρ = 0.13). This
analysis shows that re-firing of a given origin is strongly af-
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Figure 5. Analysis of in silico data at a single-cell level linked with intrinsic properties and points to in cis effects. Simulation results from 100 Monte Carlo
simulations of the LF model at 0.5 kb/min at 16C. (A–D) Amplification levels of individual loci with respect to their intrinsic properties. (A) Distributions
of copy number levels for two origins of high (purple) and low (yellow) efficiency (origin indices, efficiencies and median number of copies given in the
legend). (B) Scatterplot of mean number of fires versus firing efficiency for all origins shows a strong correlation between firing events and firing efficiency
(Spearman correlation coefficient value −ρ = 0.96). Color indicates coefficient of variation (standard deviation/mean), and points to higher variability in
firing for the weak origins. (C) Scatterplot of number of copies of individual origins versus their firing efficiencies shows a weaker correlation (ρ = 0.4)
and variation less dependent of efficiency. (D) Scatterplot of mean number of passive replications versus firing efficiency shows a very low correlation (ρ
= 0.17). (E–G) Amplification levels of individual loci with respect to local effects. (E) Distribution of copy number levels of weak origin I-287, residing
next to strong origin I-288, shows elevated levels due to passive replication. (F) Heatmap of correlations of copy number levels between different origins
exposes strong in cis effects, as shown here for a zoomed in region in the end of Chromosome III. Color indicates Spearman correlation coefficients. G
Correlation coefficients between copy number levels of the 10 origins with the highest intensity (different lines) and their neighboring origins, centered and
zoomed in the origin locations. Different color indicates varying values of the fork speed. (H–J) Firing activity of individual origins with respect to local
effects. (H) Distributions of firing events for two origins of low efficiency, with efficient (purple) and inefficient (yellow) neighbors, shows that weak origins
fire more often when residing next to strong ones. (I) Same as in (F) but showing correlations between number of fires across the genome. (J) Same as in
(G) but showing correlations between number of fires of prominent origins and their neighbors.

fected by its efficiency, while additional properties govern
levels of amplification of individual loci, which are espe-
cially prominent for low-efficiency origins.

In cis effects. Next, we investigated origins whose amplifi-
cation levels could not be explained merely by their intrin-
sic efficiency. A relevant example is given in Figure 5E; from
the distribution it is clear that, although Ori I-287 has a very
low efficiency, its amplification levels are much higher than
expected. A closer examination of the neighboring origins
reveals that its left-flanking origin (Ori I-288, at a genomic
distance of 17424 bp) is one of the most efficient in the
genome, with a firing efficiency of 73%; their copy number
levels are strongly correlated (ρ = 0.98). To further investi-
gate this, we computed correlation coefficients across copy

number levels of all origins in the genome (whole genome in
Supplementary Figure S8 A and B, zoom in Chromosome
III––end in Figure 5F). This analysis indicated strong cor-
relations between adjacent origins, pointing to in cis effects.
To better understand the extent of this effect, we computed
correlations between copy number levels of the 10 peaks
with the highest amplification and their neighborhood (Fig-
ure 5G). Since our previous analysis showed that fork speed
affects the extent of passive re-replication, we also com-
puted correlations using the simulations with a fork speed of
1 kb/min and 3 kb/min. The results reveal that copy num-
bers of each central amplification origin are significantly
positively correlated with the ones of its right and left flank-
ing up to a distance of 0.1 megabases; it is also clear that as
speed increases, the extent of positive correlation increases
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as well and for fork speed equal to 3 kb/min it reaches a
distance of 0.5 megabases.

We then asked how the firing activity of individual origins
is affected by the activity of its neighbors. We focused our
analysis on Ori I-287 and Ori I-40, two origins that share the
same low efficiency (9%), but Ori I-287 has an immediate
neighbor with high efficiency (73%) whereas Ori I-40 does
not. We observed that Ori I-40 does not fire the majority
of times, whereas Ori I-287 appears more active and occa-
sionally fires even more than five times (Figure 5H). We then
followed the same methodology as above and computed the
correlation coefficient between the number of fires of dif-
ferent origins across the genome (Figure 5I). This analysis
indicated that indeed local effects exist, suggesting that the
more times an origin fires, the more will its neighbors fire as
well. We notice that the firing events of each central amplifi-
cation origin are significantly positively correlated with the
ones of its immediate right and left flanking neighbors, how-
ever, this time the correlation spans a smaller region, drops
sharply with distance from the central origin and does not
appear affected by fork speed (Figure 5J). These findings
indicate that, in addition to passive re-replication, in cis ef-
fects between adjacent origin locations are also implicitly
attributed to increased total firing activity of weak origins
located close to strong origins. Early firing of a strong origin
will increase the newly born copies of a nearby weak origin,
facilitating its re-firing.

In trans effects. To explore the variability of the re-
replication process genome-wide, we performed a principal
component analysis of the genome-wide amplification pro-
files of 100 simulations at 16C and visualized the results as
a biplot of the first two principal components (Figure 6A),
where dots correspond to simulations and vectors indicate
the PCA loadings, i.e. the correlation of each origin to the
unit-scaled first two principal components. From this it be-
comes clear that a large amount of the variability in the sim-
ulations is dominated by two different origins of Chromo-
some III (Ori III-11 and Ori III-118). Specifically, the first
and second principal component correlate strongly with Ori
III-118 and Ori III-11, respectively, while Ori III-11 addi-
tionally appears to correlate negatively with principal com-
ponent 1.

To further explore how specific origins may affect
genome-wide amplification profiles, we clustered profiles
using k-means clustering, estimated the optimal k using the
Gap statistic (52) and the stability of the clustering using
the Adjusted Rand Index (ARI) (53) (details in ‘Materials
and Methods’ section). For 100 simulations at 16C an op-
timal number of k = 3 clusters was identified, and the clus-
ter assignments were very consistent across 100 random ini-
tializations, with a mean ARI of 0.95 (standard deviation
= 0.05). These clusters correspond to 3 groups of simula-
tions characterized by different patterns of re-replication at
a genome level (Figure 6B). The clusters appear to be domi-
nated by the amplification of origins Ori III-11 and Ori III-
118 in a mutually exclusive manner: either one of the two
origins is amplified (clusters 1 and 3) or they are both rel-
atively low (cluster 2). Indeed, as shown in Figure 6C, lev-
els of amplification of Ori III-11 and Ori III-118 are neg-
atively correlated in individual simulations (ρ = −0.3, P-

value = 0.0025) and characterize the three clusters. Though
re-replication at OriIII-118 may be overestimated in simu-
lations in comparison to experimental re-replication data
(Figure 2), our analysis indicates that highly efficient ori-
gins can interfere with each other during re-replication even
when far apart. Taken together, these findings indicate in
trans effects within the genome.

We next examined the same simulations at a DNA con-
tent of 2C (Figure 6D, same ordering as in Figure 6B). We
observe that while specific amplification regions are start-
ing to emerge, the re-replication levels for the majority of
the genome are around the genome mean, amplification oc-
curs in random regions along the genome and the process
is governed by a high degree of variability. At the same time
the difference between single-cell profiles of the previously
identified clusters is not noticeable. To validate this, we went
on to independently cluster the data and estimated an op-
timal k of only 1 cluster. Forcing k equal to 3 and estimat-
ing the stability across 100 random initializations indicated
close to random cluster assignment between different runs
(ARI = 0.36 ± 0.15). Comparing the clusters found for 2C
and 16C also indicated very low agreement (ARI = 0.34
± 0.10). Last, the correlation coefficient between Ori III-11
and Ori III-118 for 2C is now non-significant (ρ = −0.09,
P-value = 0.36).

We conclude that re-replication is initially characterized
by a high degree of randomness, while in trans effects be-
come evident as the re-replication process progresses, lead-
ing to preferred genome-wide patterns of re-replication at
high DNA content. These are dominated by a small number
of high activity origins, whose amplification to high levels is
mutually exclusive.

DISCUSSION

A stochastic hybrid model of DNA re-replication

In this work a stochastic hybrid model of DNA re-
replication was presented, developed by refining existing
work of normal DNA replication so that it allows for ori-
gin re-firing. The model accurately portrays the interplay
between discrete dynamics, associated with different origin
states, continuous dynamics, associated with the movement
of the replication forks, and stochasticity, associated with
random firing and re-firing events. Transitions between dis-
crete states depend on both the continuous and stochas-
tic dynamics of the system, such as firing events or merg-
ing of neighboring forks. In addition, two automatic transi-
tions, specific to the re-replication case, are incorporated in
the model; when an origin fires or is passively replicated its
descendants automatically fall into the pre-replicative state
and can potentially fire or be passively replicated again.

Using input data from experimentally determined origin
locations and intrinsic firing efficiencies from fission yeast,
the model allows the simulation of re-replication along the
complete fission yeast genome and thus the exploration of
re-replication kinetics genome-wide. Two alternative varia-
tions of the model have been implemented, depending on
how the firing propensities of the newly born origins are as-
signed. In the base-case model variation (LF model), the
total system propensity is kept constant and continuously
redistributed to all existing and newly born origins. The
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Figure 6. Analysis of in silico data at a whole genome level points to in trans effects within the genome. (A) Variability of copy number levels genome-wide
is governed by prominent origins. Results of a PCA analysis of the in silico copy number data, shown as a biplot of the first two principal components.
Dots correspond to simulations and black vectors expose each origin’s contribution to the first two components, both in terms of magnitude and direction
(marked here for the two most prominent ones). (B) Heatmap of DNA content (rows: simulations, columns: origins) for 100 simulations at 16C after
clustering with a k-means algorithm and k = 3. Color indicates DNA amplification levels, expressed as the log ratio of individual versus genome mean
number of copies. Identified clusters are marked with different colors. (C) Scatterplot of number of copies for origins Ori III-11 and Ori III-118 shows a
negative correlation (ρ = −0.4). Colors correspond to simulations belonging to each of the three clusters identified in B. (D) Evolution of re-replication over
time. Heatmap of DNA content for simulations of (B) at an earlier DNA content of 2C shows no cluster-specific patterns at a low-re-replication context.
(E) Underlying characteristics of DNA re-replication. In cis effects between adjacent loci. Passive re-replication of inactive origins from their efficient
neighbors leads to increased copy numbers and implicitly increases their firing activity. (F) In trans effects between distant loci. Increased amplification
of one locus leads to in trans suppression of a distant locus. (G) Emerging properties of DNA re-replication, depending on the level of analysis. (H) In
silico re-replication profiles. Simulation results reveal many possible genotypes within a population, shown here in a schematic view for three hypothetical
origins. Although the total DNA content is the same in all four single cells, individual copy number levels vary greatly.



14 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1

base-case model therefore assumes the presence of a limit-
ing factor, which restrains origins firing system-wide. In (39)
it was shown that, for normal replication, redistribution of
a limiting factor increases the efficiency of remaining ori-
gins and may help explain away the so-called random gap
problem (64). During re-replication, such a limiting factor
could act at the licensing step (for example limited ORC,
Cdt1, Cdc6/18 or MCM levels), at the firing level (for ex-
ample limiting Cdc45 or DDK kinase levels) (44,65–67), or
both. The model in its current instantiation does not dis-
criminate between these two possibilities, it could however
be easily modified to explicitly model the licensing and firing
events separately. In the alternative variation (UF model),
offspring origins inherit the same firing propensity as the
parent, and, as the total number of origins increases ex-
ponentially, the total system firing propensity will also in-
crease. This variation simulates unlimited re-replication.

Parameters affecting re-replication dynamics

Comparison of in silico data for both model variations and
experimentation with different values of the model inputs
has permitted insight into the model parameters affect-
ing re-replication dynamics. Our analysis indicated that the
simulated re-replication completion times were consistent
with experimental observations when using the model vari-
ation with limiting factor and a fork speed of 0.5 kb/min.
This indicates that, as expected, fork speed is slower in
re-replication that in normal S-phase, where experimental
estimates in yeast vary between 1.6 and 3 kb/min. Since
re-replication is a non-physiological process, differences in
fork speed could be attributed to various mechanisms, such
as activation of checkpoint proteins that stall the forks, im-
pediments caused by fork collisions (68) and limitations in
the amounts of various necessary substrates like dNTPs
(DNA building blocks), activation factors etc. In the cur-
rent instantiation, we have modeled fork progression as a
deterministic event, and we have assumed a constant fork
speed across the genome and through time. All these as-
sumptions can be relaxed. Our model can accommodate dif-
ferent fork speeds at different locations or different points
in time as re-replication progresses, to simulate for example
difficult to replicate regions or scarcity of dNTPs. In addi-
tion, fork movement can be modeled as a stochastic pro-
cess (69), permitting stochastic fork slowing or arrest. Such
an instantiation would be highly relevant for re-replication,
where fork slowing or arrest would lead to head to tail fork
collisions resulting in double strand breaks––an event ob-
served experimentally (70).

Further exploration using different model variants indi-
cated that when no limiting factor is assumed, the rate of
increase in DNA content far exceeds experimental observa-
tions. At the same time, in the model variation with limit-
ing factor, re-replication dynamics are dominated by passive
replication instead of firing events, whereas in the variation
without limiting factor, firing and passive replication con-
tribute equally to the increase in DNA content. Sensitivity
analysis using different values of fork speed showed that,
when fork speed is decreased, more time is needed to reach
the desired DNA content. At the same time an apparent
trade-off between fork speed and firing events was noticed,

since faster forks resulted in less firing and allowed passive
replication to dominate the increase in DNA content.

Genome-wide profile of re-replication

Analyzing the simulated data at a population level, it is clear
that re-replication is non-homogeneous along the genome,
as specific regions are preferably amplified and appear as
emerging peaks above the genome mean, whereas others ap-
pear dormant and under-represented, an observation that
is in accordance with existing experimental findings (12,13).
Although the model is stochastic, the most highly amplified
regions appear to be highly robust with respect to differ-
ent model variations or different values of the fork speed.
By comparing the simulated versus the experimental am-
plification profiles, we observe that overall the simulated
data reproduce the experimental re-replication pattern on
a whole-genome scale, validating our approach. The best-
fitting parameter set proved to be when using the model
variation that assumes the existence of limiting factor and
a fork speed of 0.5 kb/min, reconfirming the previous find-
ings.

Our analysis showed that most highly amplified regions
in experimental data are predicted when using the simu-
lations, with some inconsistencies attributed to minor lin-
ear shifts or differences in intensity. Striking differences re-
gard specific regions, with the most prominent ones being
the subtelomeres, regions highly amplified in experimental
data. This difference could be attributed to location-specific
mechanisms, such as the suppression of the telomeric ori-
gins in normal DNA replication by telomere-associated
proteins Rif1 and Taz1. Distorted nuclear architecture dur-
ing re-replication or limiting abundance of Rif1/Taz1 could
lead to the subtelomeric origins escaping their normal con-
trol mechanism and getting amplified above the levels that
are expected from their experimentally determined mitotic
efficiencies (31).

Factors that affect amplification levels of individual loci

Analysis of simulated data at a single-cell level permits a
more detailed insight into DNA re-replication. Amplifica-
tion levels of individual loci are primarily affected by in-
trinsic properties, since copy numbers were found to be
highly correlated with firing efficiencies. At the same time,
we found that individual origins are able to act in cis and
amplify the copy numbers of their neighbors. Positive cor-
relation between amplification levels of adjacent loci is pri-
marily attributed to passive re-replication, as forks emanat-
ing from the firing origins to both directions passively repli-
cate the left and right flanking origins. At the same time, as
the forks create new copies of the passively replicated ori-
gins, these newly born copies can potentially fire again, thus
increasing the overall probability of firing events from the
neighboring origins. This means that in cis elements con-
tribute to amplified copy numbers not only directly by pas-
sive re-replication, but also implicitly through increasing the
probability that their neighbors will fire, due to their in-
creased copy number (Figure 6E). This type of positive cor-
relation between adjoining regions is a key characteristic of
re-replication and serves as a mechanism for indirect ampli-
fication of individual loci.
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At the same time genome-wide analysis of the single-cell
re-replication profiles revealed groups of similarly ampli-
fied simulations, characterized by different patterns of re-
replication. These patterns were characterized by amplifica-
tion of specific regions, residing in non-proximal locations
across the genome that appeared to exist in opposition. The
amplification levels of these loci were found to be negatively
correlated and allowed for a clear separation of the clus-
ters. These findings point to in trans interactions between
distant regions within the genome, suggesting a mechanism
for the suppression of the amplification levels of individual
loci (Figure 6F). Such in trans negative regulation of distant
origins could be explained by competition for the same lim-
iting factor; high-level amplification of a given locus recruits
high levels of the limiting factor, indirectly inhibiting firing
of other genomic regions.

Emerging properties of re-replication, revealed by different
levels of analysis

Depending on the level of analysis (from the single-cell
toward the population level), different properties of re-
replication are revealed. At the single-cell level a large de-
gree of heterogeneity is observed, not only in the varia-
tions of individual loci among the population, but also in
the variability of single-cell profiles. When clustered, dif-
ferent amplification patterns are recognized in these pro-
files, corresponding to dominant genotypes within the pop-
ulation. Last, at a population level, re-replication appears
highly robust and amplification hotspots appear indepen-
dent of changes in parameters (Figure 6G). In conclusion,
heterogeneity and robustness appear as key players in the
re-replicating process that co-exist and act in parallel. This
implies that experimental observations of re-replication,
based on population-level data, possibly mask the underly-
ing variability in the behavior of single-cells in a population.

Cell-to-cell heterogeneity leads to genome plasticity

Stochasticity lies at the heart of re-replication: it gives rise
to heterogeneous single-cell profiles that correspond to di-
verse genotypes within the population. Although amplifi-
cation levels of individual loci within the population are
affected by intrinsic properties, cis- and trans-acting ele-
ments as mentioned above, great variations in copy num-
bers of individual loci within a population are revealed, ev-
ident by skewed distributions with long tails. As each simu-
lation of the stochastic model corresponds to a single cell in
a population, each simulated re-replication profile portrays
a unique sequence of firing and re-firing events and corre-
sponds to different genotypes within the population (Figure
6H). By exploiting this property of the model, our analysis
showed that, although re-replication profiles at the popula-
tion level are robust, at the single-cell level they are hetero-
geneous and can deviate significantly from the mean. Early
firing of an origin in a given cell will increase the probability
of a second firing event in the same locus (as more strands
are born), leading to a positive feedback loop that will am-
plify different loci in different cells.

At the same time, using a population size of 100 simu-
lations, the majority of the genome was found to be ampli-
fied above the genome mean at least once. This suggests that

even regions of low efficiency can potentially be amplified,
and that re-replication can, with varying probability, occur
anywhere in the genome and generate many diverse geno-
types within a population. If we consider that a small colony
of yeast cells contains millions of individual cells, it becomes
apparent that re-replication can lead to the appearance of
amplification events in a variety of chromosomal regions or
combinations of regions. These observations indicate that
cell-to-cell variability is inherent in re-replication and can
lead to a high degree of genome plasticity. By tracking the
evolution of single-cell profiles from a low to a high re-
replication context, we found that cell-to-cell variability is
more prominent at the onset of re-replication, when single-
cell profiles appear highly stochastic in nature. As DNA
content increases, cell-to-cell variability is less apparent and
specific amplification regions dominate the process. At the
same time, distinct patterns gradually emerge, representing
dominant genotypes within the population that appear to
act antagonistically.

Genome plasticity and possible implications for oncogenesis

Variations in the number of copies of specific genomic loci
have long been implicated in the initiation and progression
of cancer. For example, oncogenes and genes conferring re-
sistance to drugs have been shown to be frequently am-
plified in various cancers (26,71–74). Re-replication, and
the resulting increase in the copies of specific genomic loci,
could be a mechanism leading to gene amplification (18,75).
Studies using cancer genome data correlate replication tim-
ing with mutation rates during cancer and suggest that early
replication is correlated with gene amplifications whereas
late replication with copy number losses (76–78). An over-
whelming amount of experimental evidence supports a high
level of heterogeneity in cancer cell populations (79–82).
Recent studies using next-generation sequencing have re-
vealed that cancer genomes evolve dynamically through dif-
ferent trajectories even within the same tumor (83–86). In
our work, we have demonstrated in silico that re-replication
can promote genome plasticity, by generating many diverse
genotypes within a population. In cells, incorporation of re-
replicating regions into the genome could create site-specific
copy gains leading to heterogeneous phenotypes, with po-
tentially desired properties. In a context of natural selection,
re-replication may offer a great evolutionary advantage in
cells that have lost their normal replication controls, by en-
abling them to dynamically obtain desired phenotypes and
adapt to their environment. Future work will allow such
mechanisms to be investigated in vivo.

In summary, we have developed the first mathematical
model of DNA re-replication, and extensively simulated
it for different hypotheses and model parameters across
the complete fission yeast genome. Our in silico analysis
has elucidated the basic principles that govern DNA re-
replication, and indicated how these are manifested depend-
ing on the level of analysis: although at the single-cell level
re-replication is stochastic and any genomic region is sus-
ceptible to amplification, genome-wide patterns of ampli-
fication at the population level are robust to different hy-
potheses and model parameters. These observations high-
light that heterogeneity and robustness are emerging and



16 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1

non-contradictory characteristics of DNA re-replication.
Importantly, by demonstrating the link between DNA re-
replication and genome plasticity, our work may have broad
implications for better understanding the onset of genomic
instability and cancer evolution.
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59. Sekedat,M.D., Fenyö,D., Rogers,R.S., Tackett,A.J., Aitchison,J.D.
and Chait,B.T. (2010) GINS motion reveals replication fork
progression is remarkably uniform throughout the yeast genome.
Mol. Syst. Biol., 6, 353.

60. Duzdevich,D., Warner,M.D., Ticau,S., Ivica,N.A., Bell,S.P. and
Greene,E.C. (2015) The dynamics of eukaryotic replication initiation:
origin specificity, licensing, and firing at the single-molecule level.
Mol. Cell, 58, 483–494.

61. Rhind,N. (2006) DNA replication timing: random thoughts about
origin firing. Nat. Cell Biol., 8, 1313–1316.

62. Kitamura,E., Blow,J.J. and Tanaka,T.U. (2006) Live-cell imaging
reveals replication of individual replicons in eukaryotic replication
factories. Cell, 125, 1297–1308.

63. Greenwood,E., Nishitani,H. and Nurse,P. (1998) Cdc18p can block
mitosis by two independent mechanisms. J. Cell Sci., 20, 3101–3108.

64. Mantiero,D., Mackenzie,A., Donaldson,A. and Zegerman,P. (2011)
Limiting replication initiation factors execute the temporal
programme of origin firing in budding yeast. EMBO J., 30,
4805–4814.

65. Aparicio,O.M. (2013) Location, location, location: it’s all in the
timing for replication origins. Genes Dev., 27, 117–128.

66. Wu,P.Y.J. and Nurse,P. (2009) Establishing the program of origin
firing during S phase in fission yeast. Cell, 136, 852–864.

67. Hyrien,O., Marheineke,K. and Goldar,A. (2003) Paradoxes of
eukaryotic DNA replication: MCM proteins and the random
completion problem. Bioessays, 25, 116–125.

68. Alexander,J.L. and Orr-Weaver,T.L. (2016) Replication fork
instability and the consequences of fork collisions from rereplication.
Genes Dev., 30, 2241–2252.

69. Boemo,M.A., Cardelli,L. and Nieduszynski,C.A. (2020) The Beacon
Calculus: a formal method for the flexible and concise modelling of
biological systems. PLoS Comput. Biol., 16, e1007651.

70. Davidson,I.F., Li,A. and Blow,J.J. (2006) Deregulated replication
licensing causes DNA fragmentation consistent with Head-to-Tail
fork collision. Mol. Cell, 24, 433–443.

71. Masood,S. and Bui,M.M. (2002) Prognostic and predictive value of
HER2/neu oncogene in breast cancer. Microsc. Res. Tech., 59,
102–108.

72. Ross,J.S., Fletcher,J.A., Bloom,K.J., Linette,G.P., Stec,J.,
Symmans,W.F., Pusztai,L. and Hortobagyi,G.N. (2004) Targeted
therapy in breast cancer: the HER-2/neu gene and protein. Mol. Cell
Proteomics, 3, 379–398.

73. Santarius,T., Shipley,J., Brewer,D., Stratton,M.R. and Cooper,C.S.
(2010) A census of amplified and overexpressed human cancer genes.
Nat. Rev. Cancer, 10, 59–64.

74. Schmitt,M.W., Loeb,L.A. and Salk,J.J. (2016) The influence of
subclonal resistance mutations on targeted cancer therapy. Nat. Rev.
Clin. Oncol., 13, 335–347.

75. Black,J.C., Manning,A.L., Van Rechem,C., Kim,J., Ladd,B., Cho,J.,
Pineda,C.M., Murphy,N., Daniels,D.L., Montagna,C. et al. (2013)



18 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1

KDM4A lysine demethylase induces site-specific copy gain and
rereplication of regions amplified in tumors. Cell, 154, 541–555.

76. De,S. and Michor,F. (2011) DNA replication timing and long-range
DNA interactions predict mutational landscapes of cancer genomes.
Nat. Biotech., 29, 1103–1108.

77. Sima,J. and Gilbert,D.M. (2014) Complex correlations: replication
timing and mutational landscapes during cancer and genome
evolution. Curr. Opin. Genet. Dev., 25, 93–100.

78. Miotto,B., Ji,Z. and Struhl,K. (2016) Selectivity of ORC binding sites
and the relation to replication timing, fragile sites, and deletions in
cancers. Proc. Natl Acad. Sci. U.S.A., 113, E4810–E4819.

79. Greaves,M. and Maley,C.C. (2012) Clonal evolution in cancer.
Nature, 481, 306–313.

80. Marusyk,A., Almendro,V. and Polyak,K. (2012) Intra-tumour
heterogeneity: a looking glass for cancer? Nat. Rev. Cancer, 12,
323–334.

81. Burrell,R.A. and Swanton,C. (2014) The evolution of the unstable
cancer genome. Curr. Opin. Gen. Dev., 24, 61–67.

82. Zhang,C.Z. and Pellman,D. (2016) From mutational mechanisms in
single cells to mutational patterns in cancer genomes. Cold Spring
Harb. Symp. Quant. Biol., 11, 027623.

83. Almendro,V., Cheng,Y.K., Randles,A., Itzkovitz,S., Marusyk,A.,
Ametller,E., Gonzalez-Farre,X., Muñoz,M., Russnes,H.G.,
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