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OPINION

Long‑lasting microbial larvicides 
for controlling insecticide resistant and outdoor 
transmitting vectors: a cost‑effective 
supplement for malaria interventions
Guofa Zhou1, Eugenia Lo1,2, Andrew K. Githeko3, Yaw A. Afrane4 and Guiyun Yan1* 

Abstract 

The issues of pyrethroid resistance and outdoor malaria parasite transmission have prompted the WHO to call for the 
development and adoption of viable alternative vector control methods. Larval source management is one of the 
core malaria vector interventions recommended by the Ministry of Health in many African countries, but it is rarely 
implemented due to concerns on its cost-effectiveness. New long-lasting microbial larvicide can be a promising 
cost-effective supplement to current vector control and elimination methods because microbial larvicide uses killing 
mechanisms different from pyrethroids and other chemical insecticides. It has been shown to be effective in reducing 
the overall vector abundance and thus both indoor and outdoor transmission. In our opinion, the long-lasting formu-
lation can potentially reduce the cost of larvicide field application, and should be evaluated for its cost-effectiveness, 
resistance development, and impact on non-target organisms when integrating with other malaria vector control 
measures. In this opinion, we highlight that long-lasting microbial larvicide can be a potential cost-effective product 
that complements current front-line long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) programs 
for malaria control and elimination. Microbial larviciding targets immature mosquitoes, reduces both indoor and out-
door transmission and is not affected by vector resistance to synthetic insecticides. This control method is a shift from 
the conventional LLINs and IRS programs that mainly target indoor-biting and resting adult mosquitoes.
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Background
There has been a massive scale-up of antimalarial inter-
ventions since 2000 including long-lasting insecticidal 
nets (LLINs), indoor residual spraying (IRS), and arte-
misinin-based combination therapy (ACT). These inter-
ventions have led to significant reductions in malaria 
morbidity and mortality [1]. However, resurgence in 
malaria morbidity has been observed in some African 
countries in the past few years despite a high LLINs 

coverage [1, 2]. It is apparent that the existing front-line 
vector control measures fail to break the transmission 
cycle of malaria parasites in many malaria-endemic areas 
[3–8]. Persistence and resurgence of the vector mos-
quito populations continues to be a challenging issue 
for malaria control and elimination. Resistance to syn-
thetic insecticides, particularly pyrethroids and outdoor 
parasite transmission have become a major hurdle to 
malaria control, prompting the World Health Organiza-
tion (WHO) to call for the development and adoption of 
viable alternative methods of malaria vector control that 
can reduce the reliance on synthetic insecticides.
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While pyrethroid and other chemical insecticides 
have been used for two decades for disease vector and/
or agricultural pest control in malaria endemic Africa, 
there is ample evidence of the emergence and spread of 
pyrethroid resistance in the major African malaria vec-
tors Anopheles gambiae, An. arabiensis, and An. funestus 
[9–12]. Unfortunately, pyrethroids are the only class of 
insecticides that the WHO recommends for the treat-
ment of insecticide-treated nets (ITNs). Outside Africa, 
chemical insecticide resistance has also been detected 
in other major malaria vectors such as An. minimus, An. 
dirus, An. sinensis, and An. maculatus in Asia, as well as 
An. darlingi in South America [12]. Resistance to mul-
tiple chemical insecticides in malaria vectors has been 
observed in different locations [7, 8]. The scale-up of 
LLINs and IRS programs has unequivocally selected for 
increased insecticide resistance [12].

Outdoor malaria transmission has become a very 
important challenge to malaria control [13–15]. The cur-
rent front-line malaria vector control programs such as 
LLINs and IRS target only indoor biting and resting mos-
quitoes. However, a number of recent studies have docu-
mented changes in the biting behaviour of An. gambiae 
and An. funestus, from biting exclusively indoors at night 
to biting both indoors and outdoors during early even-
ing and morning hours when people are not protected 
by IRS or LLINs, or biting indoors but resting outdoors 
[7, 8]. These behavioural changes in the mosquitoes have 
unquestionably challenged the effectiveness of existing 
control programs that primarily target indoor mosqui-
toes and urged the need of an expanded or alternative 
vector control toolkit.

Given that outdoor transmission and insecticide resist-
ance compromises the efficacy of LLINs and IRS [7], addi-
tional vector control tools that target outdoor biting and 
resting mosquitoes are urgently needed to further reduce 
malaria transmission. Developing alternative interven-
tions with a long-lasting impact will reduce interven-
tion operation cost, and thus enhancing sustainability 
[16]. Benelli and Beier have recently published a review 
on the development of further tools for effective mos-
quito vector control [7]. Killeen et  al. further discussed 
evidence-based development of new vector control strat-
egies from a programmatic point of view [8]. However, 
many of the proposed tools are still in development or in 
conceptual stage [7, 8]. Intervention measures targeting 
adult vectors such as topical or spatial repellents, attrac-
tive toxic sugar baits (ATSB) and outdoor mosquito traps 
are a few examples of tools that have been tested in the 
field for their effectiveness and applicability [7, 8]. Meta-
analysis and field trial results suggest that topical/spatial 
repellents or outdoor light traps are not very effective in 
reducing outdoor transmission [17–19]. ATSB methods 

have been reported as highly effective and target-specific, 
but more field tests are required to determine its efficacy 
and cost-effectiveness on malaria incidence reduction [7]. 
Larval source management, including larviciding target-
ing immature-stage vectors may reduce overall vector 
population both indoors and outdoors [20–26]. Bacil-
lus thuringiensis israelensis (Bti) and Bacillus sphaeri-
cus (Bs) based bacterial agents are considered as highly 
effective microbial mosquito larvicide, which targets 
aquatic stages and thus reduces both indoor and outdoor 
mosquitoes. They can be used either individually or as a 
mixture, and have been shown to be safe to non-target 
organisms cohabiting with the mosquito larvae in the 
natural environment [27]. Further investigations on their 
efficacy and cost-effectiveness are still underway.

Main text
Challenges in the role of larval mosquito control
Effectiveness of larviciding
Larval control and environmental management have 
played prominent roles in malaria elimination in the past 
[28, 29]. In the US and Europe, larval control especially 
larviciding has been the preferred vector control tool for 
many years and is still the primary tool in use today [29]. 
Larviciding has been shown to be effective in killing mos-
quito larvae and reducing adult abundance [24, 25].

Currently, United States Environment Protection 
Agency (US EPA) registered three major types of larval 
control agents, i.e., microbial larvicides, insect growth 
inhibitors, and chemical insecticide (mainly temephos). 
Microbial larvicides, Bti and Bs inhibit food digestion 
of the mosquito larvae and thus prevent larval develop-
ment. Insect growth inhibitors such as methoprene and 
hydroprene are structurally related to insect juvenile hor-
mone, preventing mosquito larvae from maturing into 
adults or delays egg maturation [12]. However, metho-
prene  and  S-methoprene show some toxicity to some 
fish and aquatic invertebrates in laboratory tests [30, 
31].  Temephos, an organophosphate insecticide, causes 
rapid neurotoxicity to mosquitoes. However, in areas 
with long-term applications, mosquitoes have developed 
high resistance to temephos [32–34]. Microbial larvicides 
so far are the preferred larvicides over chemical adulti-
cides for mosquito control.

Microbial larviciding has several advantages over chemi-
cal adulticides. First, microbial larvicides target mosquito 
larvae living in confined breeding habitats, so the effective-
ness is not influenced by the changing biting and resting 
behaviours of adult mosquitoes. Second, larval control 
provides the dual benefit of reducing the number of house-
entering mosquitoes as well as the number of mosquitoes 
that bite and rest outdoors. Third, when compared to pyre-
throid or other chemical insecticides, microbial larvicides 
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have different modes of action against mosquitoes. There 
is no cross-resistance between chemical insecticide and 
microbial larvicide [35, 36]. In addition, microbial larvi-
cides are currently considered the safest biological insec-
ticides for the health of humans and other non-target 
organisms. Fourth, larval control does not conflict with 
but complements the front-line LLINs and IRS malaria 
control programs, given that those methods target differ-
ent stages of vector development. Fifth, microbial larvi-
ciding provides great collateral benefits because it kills all 
species of mosquito larvae, including Anopheles, Culex 
and Aedes and other disease vectors [12].

Key limitation of current larvicide formulations
While larval control may be one of the solutions to 
reduce outdoor as well as overall malaria transmis-
sion, microbial larviciding has several limitations as it 
is practiced today [26, 27]. First, the available microbial 
larvicide formulations have a short effective period and 
require re-treatment of aquatic habitats every 7–10 days 
[22–27]. Apart from logistic concerns, repeated larvicide 
applications are usually associated with high material and 
operational costs, so the current formulations may not be 
affordable for large-scale use in malaria endemic areas, 
especially in many African countries [37].

Development of long‑lasting larvicide formulation
Slow-release briquet formulations of Bti/Bs have been 
developed and tested since the 1980s [12, 27]. The ear-
lier granular formulation of Bti/Bs controlled Aedes 
aegypti in abandoned tires for 2–4 weeks, and Bti/Bs bri-
quets exhibited larvicidal activity in large containers for 
4–11 weeks. Since then, different formulations have been 
developed, with effective periods ranging from two weeks 
to six months. However, all of these tests were focused 
on Aedes larvae, and the vast majority of the tests were 
conducted in container environments. The few field tri-
als conducted in urban areas yielded an effective period 
of 4–6 weeks, far better than the conventional 7-day for-
mulation, but this is not sufficient for large-scale appli-
cations. Furthermore, the potential effectiveness of these 
long-lasting formulations of Bti/Bs against Anopheles 
larvae is unclear. The small confined environment where 
Aedes mosquitoes inhabit is very different from open 
field habitats where Anopheles mosquitoes breed.

Prospects of long‑lasting larvicide in malaria control 
and elimination
Recent advancements in microbial larvicide formulation, 
a better understanding of larval habitat productivity, and 
the ability to predict productive larval habitats may help 
strengthen the role of microbial larvicides in malaria 
control. First, the new formulation of EPA-approved 

long-lasting microbial larvicides (LLML) allow a slow 
release of larvicide and increase the effective period by 
4–6  months and can reduce both indoor and outdoor 
vector density in small cluster randomized controlled tri-
als (Box 1) [26]. Large-scale intervention (32 clusters with 
16 intervention clusters) in western Kenya shows that one 
application of LLML could reduce 60–80% of the pupae 
production for ten weeks. In addition, it shows no impact 
on non-targeted organisms (Box 2) [38, 39]. Compared to 
the weekly habitat re-treatment required by conventional 
microbial larvicides, the 4–6-month or even 10-week re-
treatment interval of LLML is a significant improvement. 
Although the material cost of LLML is more expen-
sive than the conventional formulation, its long-lasting 
effects and infrequent re-treatment requirements may 
reduce the overall material and operational costs. Sec-
ond, based on topographic features and satellite images, 
larval habitats are found to be spatially clustered [40–45]. 
The clustering pattern of habitats greatly facilitates the 
field operation of larval control through application of 
larvicides in targeted hotspots. New microbial larvicide 
formulations that can last for one to three months across 
different types of habitats have been field-tested [26, 38, 
39]. Large-scale clustered-randomized field trial is ongo-
ing in western Kenya [46]. Field cohort study indicated 
that LLML significantly reduced immature malaria vec-
tor population density and did not have detectable effect 
on non-targeted organisms (Box 2) [38].

Box 1. Tests of LLML efficacy and effective duration
The microcosm and field tests were conducted from 
2009 to 2012 to determine the impact of LLML on 
vector abundance [26]. The formulation the research-
ers tested is an EPA-approved FourStar 180-day 
briquettes manufactured by Central Life Sciences, 
Schaumburg, Illinois. The active ingredients of 
FourStar 180-day briquettes are Bacillus thuring-
iensis israelensis (Bti) strain BMP 144 (1% in weight) 
and Bacillus sphaericus (Bs) strain AML614 (6% in 
weight). This product is being marketed in the US for 
mosquito vector control.

Microcosm test of effective duration
In this experiment, a Bti/Bs briquette was placed in 
a 200 L water tank filled with rainwater and the tank 
was covered with fine mesh. The water was tested 
monthly for a period of 6  months to determine the 
effective duration [26]. The result indicated that LLML 
totally inhibited mosquito pupal production in the 
first three months, and then reduced pupal productiv-
ity by 87.2%–98.0% for 4–6  months after application 
(Fig. 1a).
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Field test of efficacy and effective duration
To test the efficacy and effective duration of the larvicide 
under field conditions, based on five months monitor-
ing, 79 stable (defined as covered with water for at least 
2  weeks) and productive (defined as containing larvae 
and pupae) habitats were selected for Bti/Bs treatment 
experiments, with 41 treatment and 38 control habitats 
in western Kenya. Results indicated that LLML reduced 
malaria vector pupal productivity by 100% in the first 
two months and then by 63.4%–90.2% for 3–5 months 
after application (Fig. 1b).

Small‑scale cluster‑randomized trial
To test if LLML reduces indoor and outdoor Anopheles 
adult densities, a clustered-randomized six cluster trial 
was undertaken in three areas of western Kenya. The 
briquettes were applied in all larval breeding sites. Mos-
quito abundance indoor and outdoor was monitored 
weekly using the CDC miniature light traps. The appli-
cation of LLML caused a 66–88% (average 80%) relative 
reduction in the indoor Anopheles density (Fig. 2a) and a 
41–79% (average 65%) relative reduction in the outdoor 
Anopheles density (Fig.  2b) from week 2 to week 16. 
These data suggest that LLML was effective in control-
ling malaria vectors both indoors and outdoors in the 
field for several months in western Kenya.

Bti: Bacillus thuringiensis israelensis
Bs: Bacillus sphaericus
CDC: Centers for Disease Control and Prevention
LLML: Long-lasting microbial larvicide

Box 2. Impact of LLML on non‑targeted organisms 
and vector larval populations
As part of the ongoing large-scale clustered-rand-
omized field trial conducted in western Kenya [46], 
field cohort study of LLML treated and control habi-
tats were randomly selected from intervention and 
control clusters. The LLML was the same as described 
in Box  1. Larval habitat surveys were conducted 
weekly started 5  weeks before intervention and con-
tinued for 21 weeks after LLML intervention [38, 39]. 
The collected non-target organisms were classified to 
order and common names, malaria Anopheles vectors 
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was pooled in treatment and control clusters. The 
study was conducted from December 2015 to Decem-
ber 2016.

Impact of LLML application on non‑targeted organisms
Application of LLML had no impact on the abun-
dances of all non-targeted organisms collected during 
the entire study period (Fig.  3). In addition to abun-
dance, diversity of taxa of non-target organisms was 
also not significantly different in the treated and con-
trol larval habitats. Likewise, taxa richness before and 
after application of LLML, and between treated and 
control larval habitats were not significantly different 
[38]. These results indicated that application of LLML 
had no impact on both abundances and species diver-
sities of non-targeted organisms.

Large‑scale cluster‑randomized trial
Significant reduction in vector larval population den-
sity has been observed by week two of post-interven-
tion (Fig. 4). There was about 70% reduction in pooled 
immature vector density by week four, 50% by week 12 

and reduction in immature vector density was still sig-
nificant by 20 weeks post-intervention (Fig. 4) [38, 39]. 
The reduction in old larvae (3rd–4th instar) was more 
pronounced than that in young larval [39].
LLML: Long-lasting microbial larvicide.
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Issues related to field implementations
Before LLML can be implemented on a large scale, 
improvements must be made on both the LLML formu-
lation and the field implementation techniques. Anto-
nio-Nkondjio et  al. has outlined some of the important 
guidelines for the implementation of larval control inter-
ventions [27]. Several outstanding issues with long-last-
ing microbial larvicides need investigations. First, what 
is the effective duration of the long-lasting formulation 
in the field? This is obviously related to the formulation, 
local larval ecology, habitat types, rainfall, and other 
ecological and environmental factors [47]. For example, 
fluctuating rainfall can dilute the active ingredient in lar-
val habitats and thus may reduce the killing effect of the 
LLML briquettes. Second, what is the optimal application 
strategy and subsequent cost-effectiveness of the appli-
cation strategy? Optimized application can save both 
cost and time. Optimal timing of applications is crucial 
to maximize the effectiveness of the intervention. Third, 
how to seamlessly integrate LLML into the national 
malaria intervention strategy? Some malaria endemic 
African countries such as Ethiopia have already incor-
porated larviciding into their malaria control policy [48], 
but how to best integrate larviciding with other inter-
vention methods and maximize the benefit of integrated 
intervention remains unclear.

The cost-effectiveness of LLML should also be evalu-
ated in other places than African countries. So far, LLML 
has only been evaluated in Kenya, although the conven-
tional formulation of the same microbial larvicides has 
been tested/used and cost has been evaluated in other 
African [22–29, 35–40, 46] as well as Asian countries 
[49–52]. The results have been shown to be promising 
across different ecological settings, which is especially 
relevant in low transmission areas that are targeting the 
goal of malaria elimination [53].

Resistance is another concern for LLML. So far, Bti/Bs 
resistance has not been documented in laboratory or in 
field Anopheles mosquitoes although it has been tested 
widely for controlling malaria vectors [27, 39, 40, 54]. 
The decade long use of conventional Bti/Bs formula-
tion with a short effective duration for mosquito control 
in the USA and Europe has not led to high resistance in 
mosquitoes [35, 55]. However, LLML can be effective up 
to 4–6 months, this chronic selection pressure may help 
selecting Bti/Bs resistance. On the other hand, Bti/Bs has 
multiple toxin components, rendering resistance diffi-
cult to evolve [12]. Nevertheless, chronic exposure and 
imperfect killing of LLML presents a real risk for mos-
quitoes to evolve resistance.

Lastly, safety is a major concern regarding field appli-
cation of any insecticides regardless of chemical or 

biological [56]. It is generally agreed that Bti/Bs is not 
harmful to human and other non-targeted organisms. 
However, previous evaluations are mainly based on con-
ventional formulations with a short effective duration. As 
mentioned earlier, LLML may pose acute chronic selec-
tion pressure on mosquitoes and other non-targeted 
organisms in the aquatic habitats. Recent field study 
showed that LLML has no impact on population abun-
dances and biodiversity of non-targeted organisms in 
Kenya [38]. Additional monitoring and evaluation on the 
long-term effects on non-targeted organisms is needed. 
This is especially important in field applications.

Conclusions and future directions
Long-lasting microbial larviciding represents a promis-
ing new tool that complements the currently front-line 
LLIN and IRS programs. It targets both indoor and out-
door transmission and alleviates the problem of insec-
ticide resistance. Given the progress made in microbial 
larvicide formulation in conjunction with our improved 
understanding of mosquito ecology, in our opinion, long-
lasting microbial larviciding may be a cost-effective sup-
plemental malaria control method.

Before we can scale-up the LLML program, we need 
better understanding on some outstanding questions as 
described below:

1	 Are LLML suitable for different ecological settings? 
In other words, how does environmental factor 
impact the effectiveness of LLML? The effectiveness 
of LLML may depend on local larval ecology, i.e., is it 
possible that LLML is more effective in some habitat 
types than the others?

2	 Conventional formulation of microbial larvicide has 
been shown effective in some settings, but it is costly. 
Is LLML cost-effectiveness for scale-ups?

3	 So far, no Bti/Bs resistance in Anopheles mosqui-
toes has been reported after decades of application, 
potentially due to its multiple toxin components. 
However, with the persistent and chronic selec-
tion pressure from LLML exposure, will mosquitoes 
develop rapid resistance to Bti/Bs?

4	 It is generally believe that Bti/Bs has no toxicity to 
people, various tests revealed no detectable harm to 
non-target organisms. Will persistent exposure to 
LLML cause harm to other organisms in the aquatic 
habitats?
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