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Abstract

Lipodystrophy is a disease characterized by a partial or total absence of
adipose tissue leading to severe metabolic derangements including marked
insulin resistance, type 2 diabetes, hypertriglyceridemia, and
steatohepatitis. Lipodystrophy is also a source of major cardiovascular
disorders which, in addition to hepatic failure and infection, contribute to a
significant reduction in life expectancy. Metreleptin, the synthetic analog of
the adipocyte-derived hormone leptin and current therapy of choice for
patients with lipodystrophy, successfully improves metabolic function.
However, while leptin has been associated with hypertension, vascular
diseases, and inflammation in the context of obesity, it remains unknown
whether its daily administration could further impair cardiovascular function
in patients with lipodystrophy. The goal of this short review is to describe
the cardiovascular phenotype of patients with lipodystrophy, speculate on
the etiology of the disorders, and discuss how the use of murine models of
lipodystrophy could be beneficial to address the question of the contribution
of leptin to lipodystrophy-associated cardiovascular disease.
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Introduction

Lipodystrophy is a group of clinically heterogeneous diseases
characterized by either complete or partial absence of adipose
tissue which may occur in conjunction with adipose mass redis-
tribution and can be of either congenital or acquired origin'.
While inherited forms of generalized or partial lipodystro-
phies are exceedingly rare (1 in 10 million and 1 in 1 million,
respectively)” and mainly caused by autosomal recessive
mutations of the AGPAT2, Berardinelli-Seip congenital lipo-
dystrophy 2 (BSCL2), caveolin 1 (CAVI), PTRF genes”'” or
lamin A/C gene", acquired forms of lipodystrophy, on the other
hand, have a relatively higher prevalence with an estimated
number of 100,000 patients in the United States. Autoimmune
disorders and medications including highly active antiretrovi-
ral therapy in HIV-infected patients are the leading causes of
acquired generalized and partial lipodystrophy™'*-'°.

Regardless of the origin of the disease, patients with lipodys-
trophy share common metabolic abnormalities, which include
marked insulin resistance, diabetes mellitus, and hypertriglyc-
eridemia, the severity of which is typically related to the degree
of fat loss'. Metabolic derangements associated with lipodystro-
phy develop early in life and predispose patients to pancreatitis,
non-alcoholic steatohepatitis (NASH), and hepatic failure’*'"=,
the latter being the first cause of morbidity and mortality and of
substantial reduction in lifespan (of approximately 30 years)
in patients with lipodystrophy’'. Although less studied and
described, cardiovascular disorders including hypertrophic
cardiomyopathy, hypertension, and atherosclerosis are also
highly prevalent in lipodystrophic patients and additional
major contributors to their shortened lifespan’'.

A key feature of lipodystrophy is a drastic reduction in the levels
of adipocyte-derived hormones including leptin, which is a major
regulator of appetite, insulin sensitivity, and liver function’°.
Strong basic science and clinical evidence have demonstrated
that daily supplementation with leptin in rodent models of lipo-
dystrophy and patients with lipodystrophy restores appetite,
glycemia, and hepatic and renal function’'®'®>?7=3 Based on
these key findings, metreleptin, the recombinant human leptin
analog, has been adopted as the therapeutic of choice for the treat-
ment of lipodystrophy and approved by the US Food and Drug
Administration (FDA) in February 2014 for the treatment of
metabolic abnormalities in patients with congenital generalized
and acquired lipodystrophy*. However, leptin does more than
targeting the metabolic system. Leptin is a pleiotropic hormone
which controls numerous organ systems and has been positively
associated with hypertrophic cardiomyopathy, hypertension,
and vascular inflammation in the context of obesity***. Whether
restoring leptin levels in lipodystrophic patients with metreleptin
represents a cardiovascular risk remains unclear. The goal of the
present manuscript is to review the clinical and basic science
literature to provide a current description of the cardiovascular
diseases developed by lipodystrophy patients and rodent models
of lipodystrophy and discuss the potential cardiovascular con-
sequences of supplementing lipodystrophy patients chronically
with leptin.
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Cardiovascular diseases associated with
lipodystrophy

Cardiomyopathy, demonstrated by echocardiography and
ECG, is a frequent finding in patients with both congenital and
acquired forms of lipodystrophy, who develop similar cardiac
abnormalities. A majority of patients with lipodystrophy presents
hypertrophic cardiomyopathy as early as 6 months of age, as
reported in a young girl with congenital generalized lipodystrophy
due to seipin (BSCL2) mutation’’. Minimal numbers of patients
with lipodystrophy have features of dilated cardiomyopathy.
Classically, it is believed that congenital lipodystrophy patients
with underlying BSCL2 mutation have the highest prevalence
of cardiomyopathy. Up to 80% of those affected have been
reported to develop left ventricular hypertrophy with frequent
abnormalities on ECGs resulting from long QT syndrome and a
predisposition to tachyarrhythmias, including catecholaminergic
polymorphic ventricular tachycardia and sudden cardiac death.
Patients with underlying AGPAT mutation present a lower, but
still high, prevalence (53%) of left ventricular hypertrophy. Lastly,
patients with acquired generalized lipodystrophy have been
reported to develop cardiac hypertrophy but of a significantly
milder nature**-".

Cardiomyopathies and sudden cardiac arrest contribute to the
high prevalence of death from cardiovascular causes and to the
very early mortality of patients with lipodystrophy. Owing to
the rarity of the disease and the paucity of patients, actual data
on the cause of death in lipodystrophy patients remain scarce.
Nevertheless, a recent study in 20 congenital lipodystrophy
patients with BSCL2 mutation reported a mean age of death of
27 years old, with death from cardiovascular causes represent-
ing the third cause of death after hepatic failure and respiratory
infection'*#!,

The underlying etiology of the cardiac abnormalities in lipo-
dystrophy remain unclear. Severe insulin resistance and
hyperlipidemia, which are characteristic of lipodystrophy patients,
may provide the context for the development of hypertrophic car-
diomyopathy. However, hypertrophic cardiomyopathy is more
frequently seen in patients with BSCL2 mutation, who have
overall milder metabolic abnormalities (including lower triglycer-
ide levels and glycated hemoglobin) than in the AGPAT or acquired
lipodystrophy groups®. Hypertension, another major contribu-
tor to cardiomyopathy, affects between 30 and 50% of patients
with lipodystrophy***. However, whether patients with BSCL2
mutation who have the highest prevalence of cardiomyopathy
are also more prone to hypertension remains unknown. One can
hope that future clinical studies investigating the effects of met-
releptin on cardiomyopathy will help address the question of the
respective contribution of insulin resistance and hyperlipidemia,
as well as hypertension, to lipodystrophy-associated cardiomy-
opathy. Indeed, metreleptin, the human recombinant leptin ana-
log recently approved for the treatment of metabolic disorders
associated with lipodystrophy, has proven to be efficacious at
restoring insulin sensitivity and lipids levels’ but failed to restore
blood pressure in patients with lipodystrophy™. An improved
cardiac function with metreleptin would support a role for
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metabolic disorders in lipodystrophy-associated cardiomyopa-
thy. Experimental studies in animal models of lipodystrophy rep-
resent an additional avenue for investigation of the underlying
mechanisms.

Dyslipidemia and diabetes are leading causes of vascular dis-
ease and atherosclerosis. However, despite high prevalence of
marked lipidemia and diabetes, only a few cases of atherosclerosis
have been reported in lipodystrophy patients with either
BSCL2 or AGAPT mutations®. The relatively young age of the
patients at the time of the study or death may explain the low
prevalence for an age-related disease. In opposition to patients
with other forms of lipodystrophy, patients with familial partial
lipodystrophy (FPLD) and notably females suffering from the
Dunnigan-type exhibit a high prevalence of coronary artery dis-
ease most likely caused by a very severe hypertriglyceridemia™.
Although metreleptin treatment has proven to markedly reduce
triglyceride levels in FPLD, it remains unknown whether it
could reduce the incidence of atherosclerosis in these patients*.

Together, these reports highlight the severity of the cardiovascu-
lar disorders developed by lipodystrophy patients and our lack
of knowledge of their pathogenesis as well as stress our need
for additional studies investigating their underlying mechanisms.

Table 1 summarizes the metabolic and cardiovascular alterations
reported in patients with different forms of lipodystrophy.

Cardiovascular disease in mouse models of
lipodystrophy

The rare aspect of the disease, its difficult diagnosis, and its con-
sequent paucity in patients represent major limiting factors to
the study of the etiology and pathological manifestations of
lipodystrophy. Fortunately, several mouse models, which repro-
duce the metabolic and cardiovascular abnormalities observed in
humans with lipodystrophy, have been developed and employed
to better analyze the origins and consequences of this rare
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syndrome The following section and Table 2 describe

and discuss the phenotype of several of these models.

Constitutive deletion of BSCL2* and CavI~" or selective dele-
tion of peroxisome proliferator activated receptor y (PPARY)!
and pro-renin receptor’” in adipocytes has been shown to repro-
duce the human congenital generalized lipodystrophy syndrome
in mice. Each of these mouse models exhibit a near-complete
absence of adipose tissue associated with impaired glucose tol-
erance and hyperlipidemia. Similarly, overexpression of the
sterol regulatory element-binding protein-1c (SREBP-1c)*’** and
expression of the dominant negative A-ZIP/F-1 protein® in adipose
tissue reproduce well the human lipodystrophy phenotype in terms
of fat mass and distribution as well as metabolic alterations. This
close proximity between the metabolic phenotype of these mouse
models and of human patients makes these murine models the
ideal tool to investigate the etiology of cardiovascular disease in
lipodystrophy.

The seipin-deficient (BSCL27") mouse is the model that has
been the most extensively studied for its cardiovascular pheno-
type. Several groups have observed that BSCL2”~ mice, just like
lipodystrophy patients’’, exhibit cardiac hypertrophy very early
in life, as early as postnatal day 10°°. Cardiac hypertrophy per-
sists throughout adulthood and progresses to cardiomyopathy
with aging™. Results gathered with independent lines of BSCL2
knockout mice concur on the structural and hemodynamic
alterations induced by lipodystrophy but diverge on the patho-
genesis of the cardiac phenotype. Joubert et al.”® reported no
intramyocardial lipid accumulation or lipotoxic hallmarks but
detected increased myocardial glucose uptake and O-GlycNA-
cylated protein in BSCL2” hearts, in support of a cardiac glucose
overload. Additional arguments in furtherance of an impaired car-
diac glucose metabolism were provided by demonstrating that
treatment with the hypoglycemic sodium glucose cotransporter
2 (SGLT2) inhibitor dapagliflozin prevented the development
of hypertrophic cardiomyopathy in BSCL2”~ mice. Zhou et al.”,

Table 1. Human lipodystrophy and their characteristics.

Human disease Genetic changes Function of gene

Berardinelli- Mutation in Important for lipid
Seip congenital  AGPAT2 and droplet formation
lipodystrophy BSCL2 and adipocyte
maturation
Mutant PPARy Heterozygous Adipogenesis
mutations in the and adipocyte
ligand-binding differentiation

domain of PPARy

Mutations in LMNA
encoding nuclear
lamin A/C

Dunnigan type
(FPLD2)

Inhibits adipocyte
differentiation

Metabolic Phenotype CV phenotype Ref

Cardiac hypertrophy, 37,38,43
LV dysfunction,

calcific aortic valve,

and hypertension

Enlarged and fatty liver,
drastic reduction in fat
mass, hyperinsulinemia,
hyperglycemia, and

hypertriglyceridemia

Elevated glucose and Hypertension 57,58
insulin

Insulin resistance Hypertension 38,59,60

and moderate LV
dysfunction and
dilation

AGPAT2, 1-acyl-sn-glycerol 3-phosphate O-acyltransferase 2; Bscl2, Berardinelli-Seipin congenital lipodystrophy 2; C/EBP, CCAAT-
enhancer-binding proteins; CV, cardiovascular; FPLD2, familial partial lipodystrophy type 2; LV, left ventricle; PPARYy, peroxisome proliferator-
activated receptor gamma; SREBP-1c, sterol regulatory element-binding protein 1.
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Table 2. Mouse models of lipodystrophy and their characteristics.

Mouse model

Caveolin 1

AGPAT2

Bscl2/Seipin

Bscl2/Seipin

PPARY

Pro-renin

receptor

SREBP-1c

A-ZIP/F-1

Genetic
manipulation

Global deficiency

Global deficiency

Global

Adipocyte-specific
deficiency

Adipocyte-specific
deficiency

Adipocyte-specific
deficiency

Adipocyte-specific
overexpression

Adipocyte-specific
deficiency

Function of gene

Role in lipid droplet
formation by
regulating lipids
and phospholipid
translocation across
the plasma

Catalyzes the
acylation of
lysophosphatidic acid
to phosphatidic acid

Important for lipid
droplet formation and
adipocyte maturation

Important for lipid
droplet formation and
adipocyte maturation

Adipogenesis
and adipocyte
differentiation

Receptor for pro-renin
or renin

Lipid biosynthesis in
animal cells

ZIP/F prevents the
DNA binding of B-ZIP
transcription factors
of both the C/EBP
and Jun families

Metabolic CVv Ref
phenotype phenotype
Elevated TG and Vascular dysfunction, 49,62-64
reduced leptin plasma  right ventricular
levels hypertrophy,

cardiomyopathy,
and protected from
atherosclerosis®

Hyperglycemia, Not described 65-67
elevated HbA1c,

hyperinsulinemia,

enlarged livers, and

very low adiponectin

and leptin levels

Enlarged and fatty liver, Cardiac hypertrophy, 45,48,56,68
drastic reduction in fat  cardiac dysfunction,

mass, plasma leptin, and endothelial

and adiponectin levels, = dysfunction

hyperinsulinemia, and

hyperglycemia

Enlarged and fatty liver, Not described 48
drastic reduction in fat

mass, plasma leptin,

and adiponectin levels,

hyperinsulinemia, and

hyperglycemia

Enlarged and fatty Not described 50,51
liver, reduced leptin,

diabetes, and elevated

TG

Hyperinsulinemia, Hypertension 52,69
enlarged liver and

pancreas, and reduced

leptin plasma levels

Hyperinsulinemia, Not described 47,53
hyperglycemia, insulin

resistance, fatty liver,

and reduced leptin

Hyperinsulinemia, Vascular dysfunction  54,70,71
hyperglycemia, and remodeling and

elevated TG, and hypertension

reduced leptin plasma

levels

AGPAT2, 1-acyl-sn-glycerol 3-phosphate O-acyltransferase 2; Bscl2, Berardinelli-Seipin congenital lipodystrophy 2; C/EBP, CCAAT-enhancer-
binding proteins; CV, cardiovascular; PPARYy, peroxisome proliferator-activated receptor gamma; SREBP-1c, Sterol regulatory element-binding
protein 1; TG, triglycerides.

on the other hand, identified an important link between hyper-
insulinemia and organomegaly in lipodystrophic mice. They
showed that activation of prohypertrophic insulin-like growth
factor 1 receptor (IGF1R)-mediated PI3K/AKT signaling con-
tributes to cardiac hypertrophy in BSCL2”~ mice. They also iden-
tified a unique pattern of cardiac lipid remodeling with reduced

cardiac steatosis associated with adipose triglyceride lipase
(ATGL) overexpression in hearts of BSCL2”~ mice and showed
that ATGL haploinsufficiency could reverse lipodystrophy, insu-
lin resistance, and cardiac derangements. While these two studies
depart on the underlying pathological mechanisms of hypertrophic
cardiomyopathy in BSCL2”~ mice, they strongly support a role for
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metabolic alterations. Interestingly, using the exact same mouse
as the mouse employed by Chen ef al.*® and Zhou et al.™,
our group recently reported that lipodystrophy impairs aortic
endothelium-dependent relaxation by mechanisms independent of
metabolic function. Indeed, we showed that restoration of glyc-
emia via SGLT2 inhibition failed to restore endothelial function.
However, we demonstrated that the absence of adipose tissue
characteristic of lipodystrophy induced a reduction in systemic
leptin levels which diminished endothelial leptin signaling and
caused endothelial dysfunction via an overproduction of reac-
tive oxygen species by endothelial NADPH oxidase 1 (NoxI)*.
Together, these observations further highlight the complexity
of the disease and suggest that metabolic alterations are not
the only cause of cardiovascular disease in lipodystrophy.

The Cavi”~ mouse is another model that has been used to
study lipodystrophy and also present cardiomyopathy*"*=+"2
Differently from BSCL2”" mice, Cavl”" mice exhibit concen-
tric left ventricular hypertrophy and dilated right ventricular
hypertrophy. The discrepancy in the cardiac phenotype between
BSCL27 and Cavl”~ might find its origin in the etiology of
the cardiomyopathy. Indeed, as described above, metabolic
disorders, notably insulin resistance and hyperglycemia, appear
as the primary causes of cardiomyopathy in BSCL2” mice. In
opposition, in Cavl”~ mice, cardiomyopathy was shown to be
secondary to Cavl deletion and pulmonary hypertension. Indeed,
selective restoration of Cavl expression in endothelial cells
completely rescued pulmonary hypertension and cardiac
hypertrophy in Cavl” mice”. Remarkably, Cavl”~ mice are
protected from atherosclerosis, again through mechanisms inde-
pendent of lipodystrophy likely involving reduction in LDL
infiltration into the artery wall, increased nitric oxide produc-
tion, and reduction in the expression of leukocyte adhesion
molecules'. Therefore, the Cavl”~ mouse may be less relevant
to the study of lipodystrophy and its cardiovascular consequences.

A key feature of lipodystrophy is dyslipidemia, notably
hyperlipidemia which, added to insulin resistance and diabetes,
places patients with lipodystrophy at a high risk for atherosclerotic
cardiovascular disease’". To investigate whether lipodystrophy
predisposes to atherosclerosis, Wang et al.”* crossed BSCL27-
with low-density lipoprotein receptor (LDLr-) knockout mice,
a mouse model of atherosclerosis. As observed in lipodystrophic
patients™, LDLr”~ BSCL2”~ mice present with accelerated athero-
sclerosis, as reflected by spontaneous plaque formation on chow
diet and exacerbation of atherosclerotic lesions on atherogenic
diet”. The absence of adipocytes, which decreases the potential
for adipose cholesterol clearance, most likely explains the
extremely high rise in plasma cholesterol levels in LDLr”
BSCL27~ mice which itself predisposed lipodystrophic mice to
atherosclerosis’™.

Lastly, mouse models of lipodystrophy, as do patients, present
with hypertension”’**. Experiments conducted in transgenic

F1000Research 2019, 8(F1000 Faculty Rev):1756 Last updated: 16 OCT 2019

A-ZIP/F-1 mice’® and adipose tissue pro-renin receptor-deficient
mice’® revealed elevated systolic blood pressure associated
with hyperactivation of the renin angiotensin system (RAS).
Angiotensin-converting enzyme inhibition®’ and angiotensin
type 1 receptor blockade™ restored blood pressure in these two
mouse models of lipodystrophy, which further supports the con-
tribution of RAS to the development of hypertension in mouse
models of lipodystrophy and presents RAS blockade as a potential
avenue for the treatment of cardiovascular disease associated
with lipodystrophy. However, whether RAS overactivation is
consecutive to metabolic alterations remains to be determined.

Metreleptin and lipodystrophy-associated
cardiovascular disease

Following many successful trials, the FDA has approved
leptin (metreleptin) for the treatment of non-HIV-related forms
of generalized lipodystrophy. Leptin replacement therapy with
metreleptin has, in many cases, reversed the metabolic complica-
tions, with improvements in glucose-insulin-lipid homeostasis and
regression of fatty liver disease”'*'®'**=* An aspect of the treat-
ment that remains ill-defined is whether metreleptin improves
or alters cardiovascular function in lipodystrophic patients.
Compelling basic science and clinical evidence indicate that excess
leptin elevates blood pressure and impairs vascular function via
sympatho-activation in males**® and aldosterone production in
females®*"**. Therefore, concerns have been raised regarding
the potential deleterious cardiovascular consequences of daily
leptin injections. Recent results by Brown er al. partially dissi-
pated these concerns by reporting that metreleptin did not elevate
blood pressure in a relatively large population of lipodystrophic
patients (107 patients)*. Based on their results, the authors con-
cluded that there was a lack of contribution of leptin to the
development of hypertension and a lack of translatability of
the results obtained in murine models. However, the signifi-
cant improvements in glycemia, insulin resistance, and liver and
renal function associated with metreleptin treatment'® were
not considered by the authors to reach their conclusions. Indeed,
insulin resistance has been presented as a major risk factor for
hypertension®”’. Therefore, the significant improvement in the
metabolic profile of the lipodystrophy patients on metreleptin
most certainly compensated for the indisputable effects of leptin
on sympathetic tone’’. This may explain the lack of significant
decreases in pressure in lipodystrophy patients on metrelep-
tin. In addition, besides increasing sympathetic activity, leptin
exerts vascular actions which could provide additional explana-
tions for the lack of increase in blood pressure. Early work by the
group of Lembo er al., and supported by others, demonstrated
that leptin not only relaxes blood vessels via NO-dependent
mechanisms’*** but also controls vascular integrity by protecting
vessels from neointima formation, excess endothelin 1 produc-
tion, and increasing PPARY activity”. Furthermore, recent results
by our group show that leptin replacement therapy restores
endothelium-dependent relaxation via direct activation of
endothelial leptin receptor and reduction in Nox1-derived ROS
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production, likely via PPARY-dependent mechanisms, in BSCL27~
mice”’. Taken together, these results further support the direct
vascular effects of leptin and indicate that metreleptin treatment
should improve vascular function in lipodystrophy patients.

Other potential concerns are the chronic effects of metreleptin
on cardiac function and remodeling. Indeed, while compelling
in vitro studies have shown that leptin promotes human and rodent
cardiomyocyte hyperplasia”, several clinical studies have estab-
lished a positive correlation between leptin and left ventricular
hypertrophy after adjustment for body mass index and present
leptin as an independent predictor of incident heart failure”.
Conversely, elegant rescue experiments involving either selec-
tive restoration of leptin receptor expression in cardiomyocytes of
leptin receptor-deficient mice (db/db) or restoration of leptin
levels in leptin-deficient (0b/ob) mice report a decreased heart
mass and reduction in left ventricular wall thickness in response
to leptin, supportive of the cardiac protective effects of leptin.
In addition, selective cardiac leptin receptor deficiency resulted
in transient left ventricular dysfunction and dramatic reduction
in ejection fraction, while cardiac-specific overexpression of lep-
tin receptors normalized cardiac triglyceride levels and diastolic
function in db/db’’. All together, these data derived from murine
models support a beneficial role for leptin in cardiac function
and metabolism (protection from lipotoxicity) but drastically
contrast with the clinical studies. This further raises the question
of the potential contribution of leptin deficiency to the cardiac
disorders associated with lipodystrophy and of the effects of
daily metreleptin injections on the severely impaired heart func-
tion of lipodystrophic patients. Additional studies are warranted
to address these concerns.

Lastly, although not tested yet, one can reasonably speculate
that metreleptin exerts protective effects against atherosclerosis.
While insulin resistance, diabetes, and, more specifically,
hyperlipidemia are leading risk factors for atherosclerosis, com-
pelling evidence from relatively large (66 patients) studies have
demonstrated that long-term treatment with metreleptin resulted
in sustained improvements in hypertriglyceridemia, glycemic
control, and liver volume which led to discontinuation of
insulin, oral anti-diabetics, and lipid-lowering medications in
more than 25% of patients on metreleptin'®. Therefore, one can
soundly anticipate that metreleptin will significantly reduce the
risk for atherosclerosis in lipodystrophy patients through centrally
orchestrated mechanisms reducing food intake but also through
direct and local effects of leptin activating [-oxidation of
fatty acids and preventing lipogenesis in the liver and skeletal
muscles”™. Remarkably, another recent study reported that
metreleptin treatment for 1 year reduced plasma levels of the
proprotein convertase subtilisin/kexin type 9 (PCSK9), a key
regulator of cholesterol metabolism, in humans with congenital
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lipodystrophy”. This provides an additional potential mechanism

whereby metreleptin might prevent atherogenesis in lipodystro-
phy patients. However, the hypothesis that metreleptin protects
from atherosclerosis remains to be tested. Less promising and
beneficial evidence from animal studies further support this
need for additional studies. Indeed, while leptin deficiency has
been shown to protect apolipoprotein-E-deficient mice fed an
atherogenic diet from the development of atherosclerosis lesions,
exogenous leptin significantly increases atherosclerotic areas
in apoE-deficient mice. In addition, leptin has been shown to
promote the differentiation of macrophages towards a proin-
flammatory phenotype'”, which is another major contributor to
atherosclerosis. It is therefore crucial to determine whether
metreleptin prevents or exacerbates atherosclerogenesis in
lipodystrophy patients.

Recent studies following patients for up to 3 years have
reported that metreleptin is well tolerated in patients with
lipodystrophy'®. However, as with any other drug, metrelep-
tin has been associated with a few side effects. Antimetreleptin
antibodies with in vitro neutralizing activity, which could poten-
tially reduce the drug’s efficacy or even inhibit endogenous lep-
tin activity'", have been shown to develop in most patients within
4-6 months but to decrease with continuous therapy. In addition,
few patients under metreleptin treatment have been shown to
develop T-cell lymphoma. However, whether metreleptin is
truly a contributor requires further investigation, as patients with
lipodystrophy appear to be at a higher risk for lymphoma
than the general population, likely because of underlying
autoimmunity'?”>. Therefore, metreleptin-associated side effects
may still deserve some attention.

Conclusion

In summary, while the current literature on lipodystrophy
focuses mostly on the metabolic disorders associated with the
syndrome, cardiovascular diseases, notably hypertension and
cardiomyopathy (Figure 1), also represent a major health con-
cern in patients with lipodystrophy and contribute to their very
early mortality. Here, we speculated that the metreleptin regimen
provided to lipodystrophy patients may improve cardiovascu-
lar function through its beneficial effects on glycemia, lipidemia,
and liver function. We also stressed that metreleptin may affect
cardiac and vascular function through direct control of cardio-
myocyte and endothelial cell function and highlighted the need for
studies investigating whether metreleptin improves or impairs
the function of these two types of cells. We presented several
mouse models of lipodystrophy which reproduce well the meta-
bolic and cardiovascular phenotype of patients with lipodystro-
phy and represent the perfect avenue to investigate the direct
effects of leptin on the cardiovascular system and dissipate
any potential harmful effect.
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Lipodystrophy and Cardiovascular Disease
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Figure 1. Potential Mechanisms leading to cardiovascular disease in lipodystrophy. Lipodystrophy is associated with a drastic reduction
in adiposity and leptin plasma levels, which lead to hyperglycemia, lipotoxicity, and decreased cellular leptin signaling. These changes have
been associated with non-alcoholic fatty liver disease (NAFLD) endothelial dysfunction, hypertension, and cardiac diseases.
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