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and Xiangchun Li1,7,*
SUMMARY

Computational pathology for gigapixel whole-slide images (WSIs) at slide level is helpful in disease diag-
nosis and remains challenging. We propose a context-aware approach termed WSI inspection via trans-
former (WIT) for slide-level classification via holistically modeling dependencies among patches on WSI.
WIT automatically learns feature representation of WSI by aggregating features of all image patches.
We evaluate classification performance of WIT and state-of-the-art baseline method. WIT achieved an ac-
curacy of 82.1% (95% CI, 80.7%–83.3%) in the detection of 32 cancer types on the TCGA dataset, 0.918
(0.910–0.925) in diagnosis of cancer on the CPTAC dataset, and 0.882 (0.87–0.890) in the diagnosis of
prostate cancer from needle biopsy slide, outperforming the baseline by 31.6%, 5.4%, and 9.3%, respec-
tively. WIT can pinpoint the WSI regions that are most influential for its decision. WIT represents a new
paradigm for computational pathology, facilitating the development of digital pathology tools.

INTRODUCTION

The development of digital pathology leads to accumulation of large-scale whole-slide imaging data, laying the foundation of big data for

computational pathology. Rich morphological features buried in whole-slide image (WSI) provide diagnostic information of the disease and

offer guidance on the decision for treatment. Advances in deep learning algorithms enable the analyses of gigapixel WSIs at scale for disease

diagnosis,1–3 prognosis,4–7 and treatment selection.8,9

Deep learning approaches have achieved human-level performance in recognizing natural images in the ImageNet competition.10–13

However, automatic recognition of WSI remains challenging due to the super-high spatial resolution of WSI as compared with images

from ImageNet.10 To address this challenge, researchers divided WSI into small image patches and subsequently aggregated the features

of image patches to obtain slide-level features.5,14–17 For example, Campanella and colleagues used standard multiple-instance learning

(MIL) to diagnose prostate cancer, basal cell carcinoma, and auxiliary lymph node metastasis of breast cancer by first ranking image patches

with regard to slide-level labels and using the most relevant image patch for slide-level classification.1 Lu and colleagues developed a data-

efficient weakly supervised approach18 for slide-level classification using attention-based pooling19 of all image patches instead of the most

relevant patch used by standard MIL.1 Based on this approach, Lu and colleagues introduced tumor origin assessment via deep learning

(TOAD) to predict tissue-of-origins for cancer of unknown primary.20 Meanwhile, this attention-based MIL method has been utilized for ad-

dressing the diagnostic tasks for cardiac allograft rejection screening in WSIs8 and prognostic prediction by fusing WSIs with different mo-

dalities of genomic data.4 Apart from these diagnostic endeavors, analyses of large-scale WSIs have been proved to be feasible for the pre-

diction of genetic markers. Coudray and colleagues reported a deep-learning-based approach for predicting somatic mutations in canonical

driver genes for lung cancer via averaging the probabilities of image patches or counting the percentage of image patches classified as pos-

itive.15 In addition, multiple studies reported that micro-satellite instability can be predicted fromWSIs in gastrointestinal cancer,21 colorectal

cancer,22–24 and endometrial carcinoma.25

The transformer architecture designed for natural language understanding can capture long-range dependencies among different en-

tities.26 Transformer-based language architectures have achieved superior performance in various language understanding tasks.26–28 The

self-attention operation is the key module underlying the success of transformer in that it captures dependencies in the input.26 Although
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Figure 1. A flowchart illustrating the framework of WIT

(A) Illustration of the preprocessing steps: segmentation of tissue regions, patch tiling and flattening.

(B) The architecture of WIT.

(C) Evaluation of WIT for classification and model interpretability. WSI, Whole Slide Image; AbMIL, Attention-based Multiple Instance Learning.
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it was proposed for language understanding, transformer is inherently task-agnostic. It has been widely adopted or revised for image recog-

nition. Vision transformer (ViT) is a direct adoption of transformer for image classification by splitting image into multiple patches and taking

the flatten image patches as input.26 Thereafter, ViT-based architectures have been widely used in medical imaging analyses.29–31

Inspired by the success of transformer-based natural language understanding32,33 and image recognition,27 we present an approach

called WSI inspection via transformer (WIT) for slide-level classification via holistically modeling dependencies among patches on the WSI.

WIT takes as input the features of image patches that were extracted with an image model pretrained on ImageNet.34 We collected a total

number of 22,457WSIs fromTCGA, CPTAC, and PANDAprojects to develop and systematically evaluateWIT for detection of 32 cancer types

and diagnosis of cancer. The TCGA consists of 11,623 WSIs covering 32 cancer types. The CPTAC dataset includes 3,414 WSIs from cancer

patients and 1,638 WSIs from non-cancer controls. The PANDA dataset consists of 5,782 needle biopsy slides; 2,891 of them are prostate

cancers and rest are non-cancer controls. WIT achieved an accuracy of 82.1% in the detection of 32 cancer types on the TCGA dataset,

91.8% in diagnosis of cancer on the CPTAC dataset, and 88.2% on the PANDA dataset, outperforming the attention-based MIL baseline

by 31.6%, 5.4%, and 9.3%, respectively. WIT can pinpoint theWSI regions that are most influential for its decision.WIT represents a new para-

digm for computational pathology. It will facilitate the development of assistive tools for digital pathology.

RESULTS

An overview of WIT

The procedures to developWIT includes WSI segmentation and tiling, model development, and evaluation (Figure 1). Firstly, we segmented

the WSI to identify tissue regions and subsequently tiled WSI into patches of 256 3 256 pixels (Figure 1A). WIT takes these flattened image

patches as input. We used a pretrained model to extract a feature with 1,024 dimensions for each image patch (See STAR methods). Mean-

while, the position embeddings of image patches on that WSI along with their extracted feature were fed into a transformer block. The trans-

former block consists of a multi-headed self-attention module and point-wise feed-forward neural network. Residual connection is employed

around these two sub-modules, followed by layer normalization26 (Figure 1B). The multi-headed self-attention module learns the depen-

dencies among different image patches and the influence of each patch on the output, such as slide labels (Figure 1B). WIT was evaluated

for its capacity in slide classification and localization of image patches that exhibit significant association with slide labels (Figure 1C).

High performance of WIT in tissue-of-origin localization

We systematically evaluated the classification performance of WIT on The Cancer Genome Atlas (TCGA) dataset for tissue-of-origin locali-

zation via 5-fold cross-validation (See STAR methods). The TCGA dataset consists of 11,623 formalin-fixed paraffin-embedded WSIs from

9,565 individuals covering 32 cancer types (Table S1). We examined classification performance of WIT with varying parameters such as 1,

2, 5, and 17 megabytes (Table S2). We used the attention-based MIL model as the baseline model for comparison. The baseline possesses

model parameters of 1 megabyte.

The accuracy ofWITwas increasingwithmodel size. Its top-1 accuracy ranged from73.1% (95%confidence interval [CI], 72.5%–73.9%) forWIT-

1Mb to 82.1% (80.7%–83.3%) for WIT-17Mb, whereas the baseline had a top-1 accuracy of 64.2% (60.6%–66.0%) (Figure 2A). Top-2 and top-3

accuracies exhibited the same trend as top-1 accuracy (Figure 2A; Table S3). Meanwhile, the micro-average AUROC of four WIT models

were also higher than the baseline model (Figure 2B). WIT-17Mb achieved high performance in localization of 32 cancer types with respect

to precision and recall rate (Figure 2C). WIT-17M achieved an average precision of 77.3% and recall rate of 75.6%, outperforming the baseline

methodby 29.5%and 37.5%, respectively. The confusionmatrix of the baselinemethodwas shown in Figure S1D.WITof differentmodel size also

had higher performance as compared with the baseline method when stratified by cancer types (Figure 2D; Tables S4‒S6). In addition, the F1

scores achieved by different WIT models are higher than the baseline method (Figure 2E; Table S7). For example, WIT-1M had an average F1

score of 0.618 versus 0.554 as obtained by the baseline method, albeit WIT-1M and the baseline method had comparable model size.

High performance of WIT in cancer diagnosis

WIT achieved high classification performance in the diagnosis of cancer on theCPTACand PANDAdatasets (See STARmethods). TheCPTAC

dataset consists of 5,052 formalin-fixed paraffin-embeddedWSIs from 1,330 individuals (Table S8). The PANDAdataset consists of 5,782 pros-

tate WSIs subjected to needle biopsies.35

On the CPTAC dataset, WITmodels achieved AUROCs ranging from 0.941 (95% CI, 0.934–0.949) to 0.953 (0.946–0.960), whereas the base-

line model achieved an AUROC of 0.931 (0.931–0.969) (Figure 3A). WIT-17Mb achieved an accuracy of 0.918 (0.910–0.925) as compared with

WITmodels of smaller sizes as well as the baselinemodel. Similar trends were observedwith respect to other classificationmetrics (Figures 3B

and 3C; Table S9). On the PANDAdataset,WIT-17Mb achieved the significantly higher AUROCas comparedwithWIT of smaller sizes and the

baseline model (DeLong’s test, all adjusted p values <2.2e-16, Figure 3D). Classification metrics such as accuracy, sensitivity, specificity, pre-

cision, negative predictive value, and F1 score achieved byWIT-17Mbwere also significantly higher than the othermodels (Figures 3E and 3F;

Table S10).
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Figure 2. The classification performance of WIT in localization of tissue origins for 32 cancer types on TCGA dataset

(A) Top-K accuracy for localization of tumor origins, K ˛ f1; 2; 3g.
(B) Micro-average area under the receiver operating curve.

(C) Patient-level performance from 5-fold cross-validation. Per origin count, precision, and recall rate are plotted next to the confusion matrix. The columns

represent the true origin of the tumor, and rows represent the prediction by the WIT model.

(D) Area under the precision-recall curve (PRAUC) stratified by cancer types.

(E) Scatterplots of F1 scores between different models. AbMIL, attention-based multiple instance learning.
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Figure 3. The classification performance of WIT in the diagnosis of cancer on CPTAC and PANDA datasets

(A and D) The receiver operating curves and area under the curves.

(B and E) Confusion matrices.

(C and F) Classification metrics of accuracy, sensitivity, specificity, precision, negative predictive value (NPV), and F1-score. AbMIL, attention-based multiple

instance learning.

ll
OPEN ACCESS

iScience
Article
Model interpretability

The multi-headed self-attention modules in WIT measure the association between the classification representation and each image patch.

Therefore, the attention scores can be interpreted as the association between each image patch and the classification output. We converted

attention scores derived fromWIT into human-interpretable heatmaps, which highlights importance of WSI regions for prediction (See STAR

methods). In localization of 32 cancer types, WIT captures tumor regions that are considered to be morphology of different cancer types by

pathologists in lung adenocarcinoma (LUAD, Figure 4A), rectum adenocarcinoma (Figure 4B), pancreatic adenocarcinoma (Figure 4C), and

uterine corpus endometrial carcinoma (Figure 4D). For example, WIT identifies micropapillary tufts forming florets structure as strong evi-

dence in detection of LUAD (Figure 4A). In the diagnosis of cancer, WIT pinpoints the tumor regions of non-keratinizing squamous cells

with solid pattern in lung squamous cell carcinoma (Figure 4E) and confluent glandular and cribriform structure in UCEC (Figure 4F). In addi-

tion, WIT is able to identify prostate adenocarcinoma (Figure 4G and 4H) and a cluster of small poorly formed glands (Figure 4G) from needle

biopsy. We provided visualization of attention maps for a number of slides for exploration purpose in our interactive website (https://

deeplearningplus.github.io/WIT-attention-maps/).
DISCUSSION

In our study, we proposed a context-aware deep learning approach WIT for slide-level localization of tumor origins and diagnosis of cancer

fromWSIs. WIT outperformed the attention-based MIL20 baseline by significant marginals across all classification tasks evaluated, especially

in the detection of 32 cancer types where WIT achieved a micro-average area under the receiver operating curve (AUROC) of 0.991 (0.991–

0.992) versus 0.968 (0.966–0.969) as obtained by the baseline method.

The high performance of WIT can be attributed to its context-aware ability to learn the potential nonlinear associations among

image patches, whereas the baseline method treats different image patches as independent instances. As WIT was built upon trans-

former,36 the multi-headed self-attention module in transformer enables WIT to learn interrelation of patches in different subspaces,

whereas attention-based multiple-instance learning (MIL) is designed to aggregate multiple instances independently. Attention-

based MIL methods have been widely and successfully adopted in addressing the challenges of computational pathology such as

CLAM,18 TOAD,20 and CRANE.8 WIT has the advantage of CLAM and TOAD in that it uses only the slide-level labels without any

manual annotation. However, both CLAM and TOAD share the common limitations of MIL-based approaches37 in that they are

context-independent but not context-aware.
iScience 26, 108175, December 15, 2023 5
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Figure 4. Attention maps of WIT for interpretability in localization of tissue origins and diagnosis of cancer from FFPE WSIs and biopsy

Boxes highlight the typical morphologic features corresponding to the textual description. The interactive visualization is available at https://deeplearningplus.

github.io/WIT-attention-maps/.
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As compared with TOAD developed in the previous study, our method has fine-grainer classification. Our method performs classification

for 32 cancer types, whereas TOAD performs classification for 18 cancer types. TOAD did not include MESO and DLBCL and did not distin-

guish between READ andCOAD; LUSC and LUAD; and KICH, KIRC, and KIRP. In contrast, ourmethod treats each of these cancer subtypes as

different classes.

Better performance for UVM, THCA, and PRAD when compared with DLBC, MESO, and READ is related to their morphological features.

For example, UVM is characterized by well distinctive features such as ciliary body location, diffuse-type tumor, ring melanoma of the iris,

presence of vascular mimickers, and extraocular extension.38 THCA presents with a papillary pattern or a follicular pattern with or without

thyroid colloid.39 PRAD is characterized with perineural invasion, glomerulations, andmucinous fibroplasia (also known as collagenous micro-

nodule).40 These features of UVM, THCA, and PRAD are separately unique and predominantly different from other cancer types. Conversely,

DLBC, MESO, and READ are more complex and challenging for accurate diagnosis. DLBCLs are characterized by partial or complete efface-

ment of the normal architecture (nodal or extranodal) by medium- to large-sized lymphoid cells with vesicular chromatin. These features

necessitate immunohistochemical staining in clinical setting for confirmatory diagnosis.41 Mesothelioma cells were morphologically diverse.

It is difficult to distinguish between epithelioid mesothelioma and metastatic carcinoma.42 READs are characterized by glandular tubular or

diffuse nests depending on its differentiation. These features of tumor cells or structure are not specific among these tumors, and it is difficult

to distinguish these tumors from STAD and COAD.

WIT has several specific advantages. First, WIT can be easily scaled into models of different sizes. Large model has better classification

performance as compared with smaller ones. However, the high performance of different WIT models cannot be merely attributed to their

model sizes as compared with the attention-based MIL baseline. For example, in the detection of 32 cancer types, WIT-1Mb achieved signif-

icantly higher overall accuracy in comparison to the baseline method [73.1% (95% CI, 72.5%–73.9%) versus 64.2% (62.4%–66.0%)] although

their model sizes are comparable. Therefore, the high performance ofWIT is likely due to its ability to take into account nonlinear associations

among all image patches. Besides, overall accuracy is steadily increasing with model size (Table S2). Second, WIT is data-efficient in that we

extracted image patches at320 magnification instead of full magnification. In this scenario, the 16 terabytes of TCGAWSI dataset were con-

verted into a dataset of 200 gigabytes, enabling fast experimentation. Third, multi-head attentions used byWIT enable model interpretability

from different feature representation subspaces, allowing for different morphological features to be identified by different attention heads.

For example, we observed that one attention head of WIT identified micropapillary tufts forming floret structure as strong evidence for lung

adenocarcinoma (Figure 4A), whereas the other heads pay attention to different tissue structure such as normal pulmonary alveoli (Figure S2).

Conclusion

Weakly supervised learning such as MIL-based approaches have been successfully applied in addressing the challenges of computational

pathology. However, their limitations are apparent in that they treat instances independently. Here, we addressed this challenge by present-

ing WIT—a deep learning method based on transformer for learning feature presentation of whole slide by taking into account nonlinear

associations among image patches. WIT will facilitate adoption of deep-learning-based solution and enable knowledge discovery in compu-

tational pathology.

Limitations of the study

However,WIT was not without limitations.We used the ResNet50model34 pretrained on the ImageNet dataset as feature extractor for image

patches of WSI. The ImageNet is a collection of natural scene images. Therefore, it is definitely suboptimal by using this pretrained ResNet50

model34 in characterizing image patches clipped from WSIs. This strategy was also adopted by CLAM, TOAD, and CRANE. Pretraining the

feature extractor on image patches of WSIs may have the potential to improve the performance ofWIT and all MIL-basedmethods. However,

this will drastically increase the computational resources. We will address this issue in our future study. In addition, the 2D spatial depen-

dencies among image patches is lost, as WIT accepts flattened patches as input. Addressing this drawback with multi-dimensional trans-

formers such as axial attention43 will improve the performance of WIT.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

B WSI datasets

B TCGA dataset

B CPTAC dataset

B The PANDA dataset

d METHOD DETAILS
iScience 26, 108175, December 15, 2023 7



ll
OPEN ACCESS

iScience
Article
B Whole-slide image (WSI) preprocessing

B WIT architecture

B Model training

B Different WIT models

B Baseline method

B Visualization of attention map

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Model evaluation

B Statistical and software

B Additional resources

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.108175.

ACKNOWLEDGMENTS

We are grateful for researchers for their generosity to make their data publicly available. This work was supported by the National Natural

Science Foundation of China (Grant No. 32270688 and 31801117 to X.L. and 82073287 to Q.Z.), National Key Research and Development Pro-

gram of China (Grant No. 2021YFC2500400 to K.C.), and Program for Changjiang Scholars and Innovative Research Team in University in

China (Grant No. IRT_14R40 to K.C.). This work was funded by Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-

009A).

AUTHOR CONTRIBUTIONS

Xiangchun Li and Kexin Chen designed and supervised the study; Xiangchun Li and Hongru Shen performed data analysis and wrote the

manuscript; Xiangchun Li developed the model; Jianghua Wu interpreted the whole-slide image data. Xiangchun Li, Hongru Shen, Xilin

Shen, Jiani Hu, Jilei Liu, and Qiang Zhang collected data; Yan Sun provided comments on the results. Hongru Shen, Xiangchun Li, and Kexin

Chen revised the manuscript.

DECLARATION OF INTERESTS

The authors declare that they have no conflict of interest.

Received: March 20, 2023

Revised: August 29, 2023

Accepted: October 8, 2023

Published: October 12, 2023
REFERENCES

1. Campanella, G., Hanna, M.G., Geneslaw, L.,

Miraflor, A., Werneck Krauss Silva, V., Busam,
K.J., Brogi, E., Reuter, V.E., Klimstra, D.S., and
Fuchs, T.J. (2019). Clinical-grade
computational pathology using weakly
supervised deep learning on whole slide
images. Nat. Med. 25, 1301–1309. https://
doi.org/10.1038/s41591-019-0508-1.

2. Ström, P., Kartasalo, K., Olsson, H.,
Solorzano, L., Delahunt, B., Berney, D.M.,
Bostwick, D.G., Evans, A.J., Grignon, D.J.,
Humphrey, P.A., et al. (2020). Artificial
intelligence for diagnosis and grading of
prostate cancer in biopsies: a population-
based, diagnostic study. Lancet Oncol. 21,
222–232. https://doi.org/10.1016/S1470-
2045(19)30738-7.

3. Kotei, E., and Thirunavukarasu, R. (2022).
Computational techniques for the automated
detection of mycobacterium tuberculosis
from digitized sputum smear microscopic
images: A systematic review. Prog. Biophys.
Mol. Biol. 171, 4–16. https://doi.org/10.1016/
j.pbiomolbio.2022.03.004.

4. Chen, R.J., Lu, M.Y., Williamson, D.F.K.,
Chen, T.Y., Lipkova, J., Noor, Z., Shaban, M.,
8 iScience 26, 108175, December 15, 2023
Shady, M., Williams, M., Joo, B., and
Mahmood, F. (2022). Pan-cancer integrative
histology-genomic analysis via multimodal
deep learning. Cancer Cell 40, 865–878.e6.
https://doi.org/10.1016/j.ccell.2022.07.004.

5. Mobadersany, P., Yousefi, S., Amgad, M.,
Gutman, D.A., Barnholtz-Sloan, J.S.,
Velázquez Vega, J.E., Brat, D.J., and Cooper,
L.A.D. (2018). Predicting cancer outcomes
from histology and genomics using
convolutional networks. Proc. Natl. Acad. Sci.
USA 115, E2970–E2979. https://doi.org/10.
1073/pnas.1717139115.

6. Chen, R.J., Lu, M.Y., Wang, J., Williamson,
D.F.K., Rodig, S.J., Lindeman, N.I., and
Mahmood, F. (2022). Pathomic Fusion: An
Integrated Framework for Fusing
Histopathology and Genomic Features for
Cancer Diagnosis and Prognosis. IEEE Trans.
Med. Imaging 41, 757–770. https://doi.org/
10.1109/TMI.2020.3021387.

7. Courtiol, P., Maussion, C., Moarii, M., Pronier,
E., Pilcer, S., Sefta, M., Manceron, P., Toldo,
S., Zaslavskiy, M., Le Stang, N., et al. (2019).
Deep learning-based classification of
mesothelioma improves prediction of patient
outcome. Nat. Med. 25, 1519–1525. https://
doi.org/10.1038/s41591-019-0583-3.

8. Lipkova, J., Chen, T.Y., Lu, M.Y., Chen, R.J.,
Shady, M., Williams, M., Wang, J., Noor, Z.,
Mitchell, R.N., Turan, M., et al. (2022). Deep
learning-enabled assessment of cardiac
allograft rejection from endomyocardial
biopsies. Nat. Med. 28, 575–582. https://doi.
org/10.1038/s41591-022-01709-2.

9. Shamai, G., Livne, A., Polónia, A., Sabo, E.,
Cretu, A., Bar-Sela, G., and Kimmel, R. (2022).
Deep learning-based image analysis predicts
PD-L1 status from H&E-stained histopathology
images in breast cancer. Nat. Commun. 13,
6753. https://doi.org/10.1038/s41467-022-
34275-9.

10. Krizhevsky, A., Sutskever, I., and Hinton, G.E.
(2017). Imagenet classification with deep
convolutional neural networks. Commun.
ACM 60, 84–90.

11. Huang, G., Liu, Z., Van Der Maaten, L., and
Weinberger, K.Q. (2017). Densely Connected
Convolutional Networks, pp. 4700–4708.

12. He, K., Zhang, X., Ren, S., and Sun, J. (2016).
Deep Residual Learning for Image
Recognition, pp. 770–778.

https://doi.org/10.1016/j.isci.2023.108175
https://doi.org/10.1038/s41591-019-0508-1
https://doi.org/10.1038/s41591-019-0508-1
https://doi.org/10.1016/S1470-2045(19)30738-7
https://doi.org/10.1016/S1470-2045(19)30738-7
https://doi.org/10.1016/j.pbiomolbio.2022.03.004
https://doi.org/10.1016/j.pbiomolbio.2022.03.004
https://doi.org/10.1016/j.ccell.2022.07.004
https://doi.org/10.1073/pnas.1717139115
https://doi.org/10.1073/pnas.1717139115
https://doi.org/10.1109/TMI.2020.3021387
https://doi.org/10.1109/TMI.2020.3021387
https://doi.org/10.1038/s41591-019-0583-3
https://doi.org/10.1038/s41591-019-0583-3
https://doi.org/10.1038/s41591-022-01709-2
https://doi.org/10.1038/s41591-022-01709-2
https://doi.org/10.1038/s41467-022-34275-9
https://doi.org/10.1038/s41467-022-34275-9
http://refhub.elsevier.com/S2589-0042(23)02252-6/sref10
http://refhub.elsevier.com/S2589-0042(23)02252-6/sref10
http://refhub.elsevier.com/S2589-0042(23)02252-6/sref10
http://refhub.elsevier.com/S2589-0042(23)02252-6/sref10
http://refhub.elsevier.com/S2589-0042(23)02252-6/sref11
http://refhub.elsevier.com/S2589-0042(23)02252-6/sref11
http://refhub.elsevier.com/S2589-0042(23)02252-6/sref11
http://refhub.elsevier.com/S2589-0042(23)02252-6/sref12
http://refhub.elsevier.com/S2589-0042(23)02252-6/sref12
http://refhub.elsevier.com/S2589-0042(23)02252-6/sref12


ll
OPEN ACCESS

iScience
Article
13. Simonyan, K., and Zisserman, A. (2014). Very
deep convolutional networks for large-scale
image recognition. Preprint at arXiv. https://
doi.org/10.48550/arXiv.1409.1556.

14. Hou, L., Samaras, D., Kurc, T.M., Gao, Y.,
Davis, J.E., and Saltz, J.H. (2016). Patch-based
Convolutional Neural Network for Whole
Slide Tissue Image Classification. Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. 2016, 2424–2433. https://doi.org/
10.1109/CVPR.2016.266.

15. Coudray, N., Ocampo, P.S., Sakellaropoulos,
T., Narula, N., Snuderl, M., Fenyö, D.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and analyzed data https://portal.gdc.cancer.gov TCGA

Raw and analyzed data https://cancerimagingarchive.net/

datascope/cptac

CPTAC

Raw and analyzed data https://www.kaggle.com/c/

prostate-cancer-grade-assessment/data

PANDA

Software and algorithms

CLAM (Lu et al.18) https://github.com/mahmoodlab/CLAM

TOAD (Lu et al.20) https://github.com/mahmoodlab/TOAD
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and materials should be directed to and will be fulfilled by the lead contact, Xiangchun Li

(lixiangchun2014@foxmail.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� All datasets were downloaded from public databases. The source list of these datasets was provided in the key resources table. Source

code is available at https://github.com/deeplearningplus/WIT.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

WSI datasets

We collected a total number of 22,457 WSIs from The Cancer Genome Atlas (TCGA dataset, n = 11,623), The Clinical Proteomic Tumor Anal-

ysis Consortium (CPTAC dataset, n = 5,052) and PANDA (PANDA dataset, n = 5,782).

TCGA dataset

The TCGA dataset covers 32 cancer types: BRCA, KIRC, THCA, UCEC, LGG, LUSC, LUAD, HNSC, COAD, SKCM, PRAD, STAD, BLCA, GBM,

LIHC, KIHC, CESC, SARC, PAAD, PCPG, READ, ESCA, TGCT, THYM, KICH,OV, UVM,MESO, UCS, ACC, DLBC andCHOL. The formalin-fixed

paraffin embedded (FFPE) hematoxylin and eosin (H&E) stained WSIs are used. The details are in Table S1.

CPTAC dataset

We collected a total of 11,623 WSIs from the Cancer Imaging Archive CPTAC Pathology Portal. The collected projects consisted of CPTAC-

LUAD, CPTAC-LSCC, CPTAC-SAR, CPTAC-UCEC, CPTAC-UCEC, CPTAC-CCRCC, CPTAC-PDA, CPTAC-HNSCC, CPTAC-SAR and CPTAC-

CM (Table S8). The FFPE, H&E stained WSIs from normal donors and cancer patients are used.

The PANDA dataset

This dataset consists of 5,782 slides from prostate cancer patients and non-cancer individuals subjected to needle biopsies. There are 2,891

non-cancer biopsy WSIs. We randomly sampled 5,782 cancer biopsy WSIs to mitigate class imbalance cancer and non-cancer slides.

METHOD DETAILS

Whole-slide image (WSI) preprocessing

The slide image was segmented for the tissue regions using the CLAM Python package. We used 320 magnification. We cropped the WSI

into 2563 256 patches within the segmented tissue regions and flattened them into an array. We extracted a feature of 1024 dimensions for
10 iScience 26, 108175, December 15, 2023

mailto:lixiangchun2014@foxmail.com
https://github.com/deeplearningplus/WIT
https://portal.gdc.cancer.gov
https://cancerimagingarchive.net/datascope/cptac
https://cancerimagingarchive.net/datascope/cptac
https://www.kaggle.com/c/prostate-cancer-grade-assessment/data
https://www.kaggle.com/c/prostate-cancer-grade-assessment/data
https://github.com/mahmoodlab/CLAM
https://github.com/mahmoodlab/TOAD


ll
OPEN ACCESS

iScience
Article
these image patches from the second residual layer of pretrained ResNet50model12,34 on ImageNet dataset. The extracted features of image

patches from a WSI were saved to disk file.

WIT architecture

WIT consists of an embedding layer and a transformer encoder followed by a softmax layer.

Embedding layer

This layer takes as input the elementwise summation of image patch features and position embeddings of the flattened image patches. We

used the pretrained ResNet50 model12,26 as the feature extractor for image patches.

The transformer encoder

The encoder has two components: a multi-headed self-attention and a position-wise feedforward neural network.

The ith self-attention head is formulated as26:

AttentioniðQi;Ki;ViÞ = softmax

�
QiKi

Tffiffiffiffiffi
dk

p
�
Vi

The input embeddings outputted from the embedding layer are projected to three matrices: query (Qi ), key (Ki) and value (Vi ). dk is the

dimension of the query and it is used as scaling factor to mitigate the extreme small gradient.44

Themulti-headed self-attention is the concatenation ofmultiple self-attention heads, allowing for the transformer attending to information

in different feature representation subspaces. Multi-headed self-attention is formulated as44:

Multi � Head � AttentionðQ;K ;VÞ = ConcatðAttention1; :::;AttentionhÞWO

where WO ˛Rhdv3dmodel denotes the learned projection matrix.

The position-wise feedforward neural network (FFN) consists of two linear layers with ReLu activation in-between:

FFNðxÞ = maxð0; xW1 + b1ÞW2 +b2

where W1 and W2 are weight matrices and b1 and b2 are the bias.

Layer-wise normalization45 is used in the front and rear of FFN. Residual connection12 is applied to improve information flow.

Model training

TheWSIs are random sampled and trained usingWIT for 100 epochs. The weights and bias parameters of the model are initialized randomly,

and the ground-truth label is slide-level labels. We used the cross-entropy loss46 as the objective function in classification. The model param-

eters are updated via the AdamW optimizer with an initial learning rate of 23 10�5, weight decay of 13 10�5. WIT was trained with PyTorch

(version 1.12.0) and transformers (version 4.21.1) on NVIDIA DGX A100.

Different WIT models

We evaluated fourWITmodels with different parameters by varying the hidden size: WIT-1Mb,WIT-2Mb,WIT-5Mb andWIT-17Mb. Details of

these models are provided in Table S2.

Baseline method

We used attention-based MIL18–20 implemented in TOAD20 as baseline method. Attention-based MILs are widely used in computational pa-

thology studies. It takes aWSI as a bag and image patches on thatWSI as instances. It uses attention-based pooling to aggregate the features

of all image patches to obtain slide-level feature representations.

Let H = fh1; :::;hkg be a bag of K instances, the MIL pooling is defined as30:

z =
XK
k = 1

akhk

ak is the attention score for the kth instance, which is defined as30:

ak =
exp

n
wT

k tanh
�
VhT

k

�o
PK
j = 1

exp
n
wT

j tanh
�
VhT

j

�o

whereck = 1;:::;K , and V ˛RL3M are parameters. The tanh is used as activation function. The network module is trained to assign an attention

score at for each patch30:
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ak =
exp

n
wT

k

�
tanh

�
VhT

k

�
1sigm

�
UhT

k

��o
PK
j = 1

exp
n
wT

j

�
tanh

�
VhT

j
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where U˛RL3M are parameters, 1 is an element-wise multiplication and sigm(.) is sigmoid non-linearity.
Visualization of attention map

For a given self-attention head, let a is the self-attentionmatrix; ai;j is the attention weight between the ith and jth. The attention score of the ith

patch with slide-level representation measures the contribution of the ith patch on classification. CLS stands for a slide-level representation

where we added at the start of flattened feature array of image patches for eachWSI, which is used for classification during training. The self-

attention is obtained via:

Softmax

�
Qi 3Ki

Tffiffiffiffiffi
dk

p
�

Assumed there are K patches in a WSI, the first row of each self-attention matrix (denoted as a0) quantifies the influence of each patch on

classification. a0 is converted to normalized percentile scores and scaled to the interval of ½0; 1� as proposed in CLAM.18 The normalized atten-

tion scores were converted to RGB colors using a disperse colourmap values and displayed on the spatial regions in the slide with high atten-

tion displayed in red and low attention in deep purple usingMatlibplot (version 3.5.2).We tiled theWSI into 2563 256 patches using a overlap

of 0.80 to create more fine-grained heatmaps. Gaussian blur is used to smooth uneven pixel values in a heatmap image using OpenCV

(version 4.7.0). We use the code of CLAM Python package for attention map visualization.18 We used diverging color scheme (i.e., seismic

palette in python matplotlib package) to represent the attention scores and overlay them onto the WSI image. The redder the higher prob-

ability of that region to be cancer, whereas the bluer the high probability of that region to be non-cancer.
QUANTIFICATION AND STATISTICAL ANALYSIS

Model evaluation

Weused area under the receiver operating cureve (AUROC), accuracy, precision (also known as positive predictive value), recall rate, negative

predictive value (NPV) and F1 score to assess the perfomance ofWIT. Precision is the ratio of true positives to total predicted positives. Recall

rate is the ratio of true positives to total actual positives.We reported the top-K accuracy for K= 1,2,3 on localization of 32 cancer types. NPV is

defined as the number of true negatives divided by the number of samples predicted to be negative. F1-score is the harmonic mean of pre-

cision and recall rate.
Statistical and software

We conducted our experiment with Python (version 3.8.10), OpenSlide (version 1.2.0), Pillow (version 9.1.1), R (version 4.2.1), ggplot2 (version

3.3.6), ROCR (version 1.0.11), multiROC (version 1.1.1) and PROC47 (version 1.18.0). The visualization of precision-recall curve (PRC) and calcu-

lation of area under PRC were performed with ROCR. Calculation of micro-averaged AUROC was performed with multiROC. Calculation of

AUROCwas performed with PROC.47 The 95% confidence intervals of the AUROCwere calculated using DeLong’s methods implemented in

pROC. The calculation of 95% confidence intervals for accuracy, sensitivity, specificity, precision, negative predictive value and F1 score with

Clopper-Pearson method.48
Additional resources

This study did not generate additional data.
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