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Abstract

Background

Pathologies of the muscles can manifest different physiological and functional changes. To
adapt treatment, it is necessary to characterize the elastic property (shear modulus) of sin-
gle muscles. Previous studies have used magnetic resonance elastography (MRE), a tech-
nigue based on MRI technology, to analyze the mechanical behavior of healthy and
pathological muscles. The purpose of this study was to develop protocols using MRE to
determine the shear modulus of nine thigh muscles at rest.

Methods

Twenty-nine healthy volunteers (mean age = 26 + 3.41 years) with no muscle abnormalities
underwent MRE tests (1.5 T MRI). Five MRE protocols were developed to quantify the
shear moduli of the nine following thigh muscles at rest: rectus femoris (RF), vastus medialis
(VM), vastus intermedius (VI), vastus lateralis (VL), sartorius (Sr), gracilis (Gr), semimem-
branosus (SM), semitendinosus (ST), and biceps (BC). In addition, the shear modulus of
the subcutaneous adipose tissue was analyzed.

Results

The gracilis, sartorius, and semitendinosus muscles revealed a significantly higher shear
modulus (U g=6.15+0.45kPa, y_s=5.15+£0.19kPa,andp_st=5.32£0.10 kPa,
respectively) compared to other tissues (frompy_rr=3.91+0.16 kPatop ,=4.23+0.25
kPa). Subcutaneous adipose tissue had the lowest value (U_agipose tissue = 3.04 £ 0.12 kPa)
of all the tissues tested.

Conclusion

The different elasticities measured between the tissues may be due to variations in the mus-
cles' physiological and architectural compositions. Thus, the present protocol could be
applied to injured muscles to identify their behavior of elastic property. Previous studies on

PLOS ONE | DOI:10.1371/journal.pone.0138873 September 23,2015

1/13


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0138873&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

MRE for Quantifying Elastic Property of Nine Thigh Muscles

muscle pathology found that quantification of the shear modulus could be used as a clinical
protocol to identify pathological muscles and to follow-up effects of treatments and thera-
pies. These data could also be used for modelling purposes.

Introduction

Muscles have mechanical properties that vary according to activity and the real-time estima-
tion of a muscle's contractile properties is challenging. Elastography is a non-invasive in vivo
technique that can provide reliable quantitative information on the mechanical properties of
contracted or relaxed muscle, and could improve our understanding of their functional
behavior.

Biopsies and palpations remain the conventional clinical tests used to diagnose and to moni-
tor [1-3] muscle diseases, respectively. However, these techniques are invasive and subjective.
Thus, elastographic methods, based on the propagation of shear waves in soft tissues, have
been developed using magnetic-resonance imaging (MRI) [4-9] and ultrasound [7,10-13].
Elastography aims to provide reliable quantitative information on the mechanical properties
(e.g., elasticity and viscosity) of skeletal muscles, which could indicate their functional behav-
ior. Indeed, the myopathies that affect the composition and organization of injured muscles
lead to different mechanical properties compared to those of healthy tissues.

Ultrasound elastography, such as a supersonic shear imaging (SSI) system, has been applied
to the upper trapezius muscle during different shoulder positions to demonstrate the feasibility
and sensitivity of changes to the muscle shear modulus measurements [12]. Similarly, SSI was
also applied to the calf muscle with different ankle angles of dorsiflexion and plantarflexion
[14] to measure changes in shear wave speed. Subsequently, SSI has been used to determine
physiological muscle structures, such as the slack length of each head of the biceps brachii [15].
This microstructural analysis has shown that the electromechanical delay (i.e., the time-lag
between muscle activation and force development) is related to muscle architecture [16]. Ultra-
sound can represent the displacement of muscle fibers and aponorosis structures compared to
those found using MRI, which cannot provide information at the structural level of muscle
fibers. However, deeper muscles are difficult to characterize with ultrasound elastography due
to the depth limitation of the beam [10].

MR elastography (MRE) is based on MRI technology and can resolve both superficial and
deep muscles in a single image [17]. Thus, the shear modulus of different muscles located
within the same volume (such as the vastus medialis, vastus lateralis, or sartorius) can be simul-
taneously characterized [5,18]. MRE was first introduced by Muthupillai in 1995 [19], and
there are now several MRE methods that can be applied to characterize the tissues of interest
[20-22] using different mechanical excitations [5,23,24], data acquisition methods, and pro-
cessing algorithms [25-28].

Ultrasound and MR elastography are complementary tools that can be performed on the
same muscle sample. A comparison of the results has linked MRE shear wave displacement to
muscle architecture (ultrasound acquisition) and has validated the physiological changes to
muscle observed with MRE shear modulus mapping [7].

All muscles from the same group (i.e., thigh, calf, or arm) are not affected in the same ways
by pathology or an injury. Therefore, there is a need to characterize the functional properties of
isolated muscles. Previous MR and ultrasound elastography studies have performed these mea-
surements within the upper (arm) [9,29] or lower (calf, thigh) [30-32] part of the body. Thus,
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the purpose of this study was to develop MRE protocols that could determine the shear modu-
lus of the nine muscles in the thigh at rest. This present study is the first step in the develop-
ment of a muscle atlas that could be used in clinical and modelling fields.

Materials and Methods
Ethics statement

In this study, ethical approval to study human subjects was sought from the institutional review
board of Amiens Hospital. All subjects had the experimental protocol explained and then gave
their informed written consent prior to admission into the study. The individual in Fig 1, show-
ing him during this experiment, gave his written informed consent, as outlined in PLOS con-
sent form, to publish the figure.

Participants

The thigh muscles from 29 healthy volunteers (7 women, 22 men, age range: 21-38 years,
mean age = 26 + 3.41 years, mean body mass index = 23.55 + 3.31 kg.m *(range: 18.93-33.12))
with no muscle abnormalities or histories of muscle disease were studied.

Experimental configuration

MRE tests were conducted with a 1.5 T Signa HDx MRI machine (General Electric, Milwaukee,
WI, USA). The quadriceps (rectus femorus: RF, vastus intermedius: VI, vastus medialis: VM,
vastus lateralis: VL) and sartorius (Sr) muscles of subjects in the supine position were studied
(Fig 1A). For the characterization of the group of ischio (semitendinous: ST, semimembranous:
SM, biceps (long and short): BC) and gracilis (Gr) muscles, the subjects were placed in a prone
position (Fig 1B). Although only the supine position could be used for all the investigated mus-
cles, the prone position was used to later characterize the muscles in their active states using
the following protocol.

Fig 1A shows a homemade ergometer that had been used in previous studies [5] and shows
the right knee positioned at a 30° flexion with the right foot placed on a support and secured
with Velcro straps. A custom-made Helmholtz surface coil was placed around the thigh, and a
pneumatic passive driver (silicon tube), consisting of a remote active pressure driver connected
to a hose (tube) was wrapped and clamped around the subject’s thigh.

For characterization of the quadriceps and sartorius muscles, the tube was placed on the
lower part of the thigh because of the lesser thickness of adipose tissue in this area. Subse-
quently, the tube was moved to the middle part of the thigh to investigate the ischio and gracilis
muscles; this enabled better placement of the driver above a larger volume of muscle. Periodic
variations in air pressure were induced inside the tube at 90 Hz (frequency: f), resulting in the
propagation of acoustic waves within the muscles. This frequency was chosen as optimal based
on previous MRE experiments on thigh muscles with the present tube driver [5,33]. The MRE
pulse sequence included a motion-encoding gradient that oscillated, in the Z-direction, at the
same frequency as the driver (90 Hz), and was used to image the displacement of the shear
waves.

Acquisition of the anatomical and phase images

A series of axial scout images of the thigh were acquired with a 2D gradient echo (GRE) MRE
sequence. Five different orientations of imaging planes (IP) were manually positioned on the
axial image of each muscle of interest. After several rotations of the imaging planes, the best
ones used to obtain clear and consistent displacement of the waves for the different muscles
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Fig 1. MRE setup placed inside a 1.5 T MRI machine. A: A participant laid supine on a custom-built ergometer to characterize the quadriceps (VL, RF, VI,
and VM) and sartorius (Sr) muscles. B: Participant laid on his abdomen to analyze the ischio (ST, SM, BC) and gracilis (Gr) muscles. Waves were generated
at 90 Hz through a pneumatic driver (silicon tube) attached around the thigh muscles, where a coil was placed. VL: vastus lateralis, RF: rectus femoris, VI:
vastus intermedius, VM: vastus medialis, Sr: sartorius, ST: semitendinosus, SM: semimembranosus, BC: biceps, Gr: gracilis.

doi:10.1371/journal.pone.0138873.g001
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were summarized at Fig 2A. Each orientation corresponded to a protocol to characterize spe-
cific muscles.

The orientation of each imaging plane was slightly rotated (from the baseline orientation,
Fig 2A) and it was found that a range of +4 degrees, measured in the MRI console, was accept-
able to visualize clear propagation of the wave. Fig 3 showed a clear wave displacement (Fig
3B) and unclear wave propagation when the imaging plane was rotated over +4 degrees. Previ-
ous studies [7] have demonstrated that wave displacement was occurring primarily along the
muscle fiber [34], which led to placement of the imaging plane parallel to the muscle fiber.
Moreover, this orientation was specific to each muscle due to the orientation of the muscle
fiber and to the localization of the muscle within the thigh.

Anatomical landmarks were represented through sagittal images (Fig 2B), which showed
the shapes of the entire muscles along the thigh. This MRI anatomical muscle shape must be
known in order to have clear wave propagation that can be represented by a measurable wave-
length (Fig 3), and that can be tracked (Fig 2C). Moreover, the five sagittal images (Fig 2B)
could be used as a reference for muscle shape to accurately place the imaging plane. The wave
displacement phase image (Fig 2C) was recorded with a 256x256 acquisition matrix, two oppo-
site polarities of the motion-encoding gradient with a 2.2 G/cm maximum gradient amplitude
limit, a flip angle of 45°, a 24-cm field of view, and a slice thickness of 5 mm. Four offsets were
recorded for the nine thigh muscles in a relaxed condition. For each imaging plane, the scan
time was 40 s corresponding to a TR/TE of 56 ms/23 ms.

Phase image processing and data analyses

The recorded phase images underwent post-processing by applying a mask, which removed
the noise located in the background of the image. A directional filter, oriented along the direc-
tion of the wave propagation, combined with a Butterworth spatial filter, were applied to simul-
taneously remove interfering waves, longitudinal waves, and noise [35].

The shear modulus () of the different muscles and the adipose tissue surrounding the mus-
cle were obtained from displacement of the shear wave. The wavelength (A) that represented
the distance between consecutive peaks (Fig 4) was quantified with a profile that was manually
prescribed in the direction of shear wave propagation (since only the Z encoding direction was
recorded) within the muscle and adipose tissues (Fig 2C).

Assuming that the muscle was linearly elastic, isotropic, homogeneous, and incompressible,
the shear modulus (), which represented the local elasticity, was calculated using the following
equation u = p (f. 1)* [19], where p is the muscle density and assumed to be close to that of
water (i.e., 1000 kg/m”), f is the frequency and X is the wavelength.

Statistical analyses

A Friedman test and post-hoc t-test (Kolmogorov-Smirnov) were performed with Statgraphics
5.0 (Sigma Plus, Maryland, USA) software to compare the shear moduli between the muscles
and the subcutaneous adipose tissues. The level of significance was set at p <0.05.

Results
Propagation of the shear waves within the nine muscles

Fig 2A shows the imaging planes used to obtain clear and consistent displacement of the waves
for the different muscles. This result was obtained after several rotations of the imaging planes
within the investigated muscles.
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Fig 2. lllustration of the three MRE steps to obtain the phase image. A (step #1): The first column shows the baseline orientation of the imaging plane (IP)
as represented by a dashed line, within the target muscle. B (step #2): Sagittal images were obtained from step #1 and represent the investigated muscles
along the thigh. C (step #3): A MRE sequence was performed on the selected sagittal image leading to acquisition of the phase image, representing
displacement of the shear waves within the muscle. VL: vastus lateralis, RF: rectus femoris, VI: vastus intermedius, VM: vastus medialis, Sr: sartorius, ST:
semitendinosus, SM: semimembranosus, BC: biceps, Gr: gracilis.

doi:10.1371/journal.pone.0138873.9002
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Fig 3. Visualization of clear and unclear wave propagation. A: Axial image with two different orientations of the imaging planes (IP#2, IP#3) through
semimembranosus (SM) and semitendinosus (ST). Phase images showing clear (B) wave with measurable wavelength (A) (C) and unclear (D) waves with
non measurable wavelength (E). P1: Profile 1, P2: Profile 2.

doi:10.1371/journal.pone.0138873.g003

Imaging plane #1 (IP#1) was vertically placed through the rectus femoris (RF) and vastus
intermedius (VI) muscles. IP#1 allowed visualization of wave displacement for both muscles
during the same MRE test. Any reflective wave was obtained by the presence of the femur. By
using imaging plane #2 (IP#2), all muscles from the ischio group (BC, ST, SM) were character-
ized in the same phase image (Fig 2C). Another imaging plane #3 (IP#3) was used to analyze
the gracilis (Gr) muscle. The sagittal image revealed the gracilis, a long (20 cm) and thin mus-
cle, near the SM and ST muscles. Moreover, unclear propagation was obtained through the SM
and ST muscles with IP#3, demonstrating the importance of accurate placement of the imaging
plane according to muscle architecture and localization within the thigh. Fig 3 summarized
this last result.

The identification of the imaging plane for the vastus medialis (VM), sartorius (Sr) (IP#4),
and vastus lateralis (VL) (IP#5) muscles has been previously determined [5]. These results are
included here (Fig 2) to provide complete representation of the MRE protocol and characteri-
zation of these thigh muscles.

Characterization of the shear modulus of the adipose tissue was independent of the place-
ment of the imaging plane. The physiological composition of the adipose tissue, being softer
than the muscle, provided excellent propagation of the wave within this media around the
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Fig 4. Behavior of the shear wave along the prescribed profile. The gracilis (Gr) muscle revealed a higher
wavelength (A) compared to the rectus femoris (RF) muscle.

doi:10.1371/journal.pone.0138873.9g004

thigh muscle. A profile was placed, within the subcutaneous adipose tissue layer, in the direc-
tion of the wave based on the phase image (Fig 2C).

Comparison of the shear modulus between muscles at rest

Due to the high number of acquisitions and time limitations, it was not possible to apply all the
imaging planes for each volunteer. Fig 5 shows the values of the shear moduli for the nine mus-
cles and the subcutaneous adipose tissues. Different shear moduli values were found for the
muscles in a relaxed state. The gracilis muscle had a significantly (p <0.04) higher shear modu-
lus (u_gr = 6.15 £ 0.45 kPa) compared to the other tissues. Two muscles (Sr and ST) also
showed significantly (p <0.03) higher shear moduli (u_s,=5.15+0.19kPaand gy =

5.32 £ 0.10 kPa) compared to the other five muscles (SM, BC, VI, VM, and RF) and the subcu-
taneous adipose tissue. These remaining tissues (SM, BC, VI, VM, and RF) had similar shear
moduli (from g gr=3.91 £0.16 kPa to p_yy = 4.23 £ 0.25 kPa). The shear modulus of the sub-
cutaneous adipose tissue had the lowest (p <0.01) value (U_,dipose tissue = 3-04 £ 0.12 kPa) com-
pared to all other muscles. The reproducibility of the shear moduli was assessed from
successive MRE tests with a delay of 5 min between each test. The reproducibility of the mea-
surements performed twice for all the muscles was evaluated through an intraclass correlation
coefficient (ICC) [36]. The result showed an average ICC of ~ 0.8 (range from 0.72 to 0.87) for
the nine muscles and the subcutaneous adipose tissue, attesting to the good reproducibility of
the shear moduli.

Discussion

The development of non-invasive protocols to assess functional tissue properties has provided
useful information. This study shows the feasibility of developing MRE muscle protocols to
quantify the shear modulus of all nine healthy thigh muscles. It could be used as a method to
identify problems within injured or diseased muscles and to follow the effects of treatments
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Fig 5. Shear modulus (p) with SEM obtained for the different thigh muscles and adipose tissues. VL: vastus lateralis, RF: rectus femoris, VI: vastus
intermedius, VM: vastus medialis, Sr: sartorius, ST: semitendinosus, SM: semimembranosus, BC: biceps, Gr: gracilis. *: significantly different to all tissues
(P < 0.04). ®: significantly different to all tissues except ST (P < 0.03). m: significantly different to all tissues except Sr (P < 0.03). a: significantly different to Gr,
Sr, ST and adipose tissue (P < 0.04). @: significantly different to all muscles (P < 0.01).

doi:10.1371/journal.pone.0138873.g005

and therapies. These data, obtained from healthy resting muscles, could be used as a baseline
model by clinicians. Moreover, human in vivo data for modeling the mechanical properties of
the muscle are lacking. Thus, our obtained values will be of interest for modeling purposes in
implementing the true in vivo characteristics of lower limb muscles.

In 2006, the first MRE protocol was published to characterize the vasti (VL, VM) and sarto-
rius (Sr) muscles [5]. This previous protocol used the same tube driver and similar imaging
planes as the present study. Similar ranges of the shear modulus for the vasti (VL, VM) (from 3
kPa to 4 kPa) and Sr (from 5.5 kPa and 7.5 kPa) were found in both studies. Other studies have
established MRE muscle protocols with different drivers and MR sequences to also determine
the mechanical properties (i.e., elasticity and viscosity) of individual muscles as a function of
age, muscle condition [8,37], and diseases [33], such as myopathy [4,38]. The originality of the
present study was to characterize all the thigh muscles using the same MRE set up. In cases of
muscle pathologies or injuries, it appears that different muscles have different physiological
and functional changes. Thus, it was important to develop other muscle protocols that allowed
us to assess the complete behavior of a whole group of muscles. These shear moduli data will
improve our understanding of the changes in muscle elasticities at rest and during contraction,
and will enable us to adapt treatments as a function of muscle damage.

One of the challenges of developing a successful MRE technique is to characterize deep
muscles. This method is based on the interpretation of wave propagations along the muscle
fibers. Although this architecture is not available in MRE, ultrasound can reveal the orientation
of muscle fibers [7] and their anisotropic behavior [39], through rotation of the probe. Never-
theless, ultrasound is limited by the depth penetration of the beam [10]. The present study has
demonstrated the ability and potential of MRE to quantify the shear modulus of deep muscles
in the thigh, at rest. In addition, MRI provides a larger field of view compared to ultrasound
and can reveal a complete view of the muscle (e.g., gracilis) from the distal to the proximal
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sides of the thigh. This representation is of importance and can identify the affected muscle
area and localize future treatments such as pharmaco-gene therapeutic trials for Duchenne
muscular dystrophy [38].

The present study has demonstrated different shear moduli values between the muscles.
The gracilis, sartorius, and semitendinosus muscles showed higher shear modulus compared
with the other thigh muscles. Similar trends were also found for the sartorius and semitendino-
sus muscles. These differences in shear moduli could have been caused by the position (supine
vs prone), the subject's knee angle, and the placement of the scaning planes. However, the mus-
cles (Gr, Sr) were tested in both positions and revealed similar mechanical properties, demon-
strating that position had no influence on these two muscles. It is thus assumed that the
physiological and architectural compositions of the muscles have impacts on wave displace-
ment. Moreover, the lower shear modulus for the adipose tissue was may be due to its physio-
logical composition which differed to that of muscle tissue [7]. To better analyze the
physiological and structural composition of the different muscles, diffusion [40-43] imaging
technique could be performed. Moreover, it would be of interest to couple the MR elasto-
graphic sequence with diffusion imaging to characterized the anisotropic [32,44,45] properties
when there is muscle disease [34]. In this way, the anisotropic behavior of muscle could be
characterized and so avoid the previous isotropic assumption. To appreciate the real mechani-
cal behavior of muscle, the viscoelastic properties could be also measured using rheological
models.

The setup of the present MRE muscle protocols is mainly related to the orientation of the
imaging planes, which are important in achieving good wave displacement. The good repro-
ducibility we found showed the reliability of our study. This work is the first step towards the
development of a muscle atlas that could be improved by including other parameters, such as
viscosity [18,31,45], anisotropy [32], fiber type, muscle volume, and percentages of water and
adipose tissues.

The present MRE protocols were developed for muscles at rest condition and will be applied
for active muscles condition. According to previous studies, it is expected that the shear moduli
will increased as a function of the level of contraction [8].

Future perspectives will be to determine the active muscle shear modulus for all thigh mus-
cles. The present MRE methods to measure muscles can be used as a non-invasive diagnostic
tool to evaluate alterations to tissues or the progression of disease and the effect of treatments,
such as those in the ongoing therapeutic trials on Duchenne muscular dystrophy [38].

Supporting Information

S1 Table. Shear modulus () with SEM for the nine thigh muscles and the adipose tissues.
(XLS)
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