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In recent pioneer experiment, a strong spin-orbit coupling, with equal Rashba and Dresselhaus strengths,
has been created in a trapped Bose-Einstein condensate. Moreover, many exotic superfluid phenomena
induced by this strong spin-orbit coupling have been predicted. In this report, we show that this novel
spin-orbit coupling has important applications in quantum metrology, such as spin squeezing. We first
demonstrate that an effective spin-spin interaction, which is the heart for producing spin squeezing, can be
generated by controlling the orbital degree of freedom (i.e., the momentum) of the ultracold atoms.
Compared with previous schemes, this realized spin-spin interaction has advantages of no dissipation, high
tunability, and strong coupling. More importantly, a giant squeezing factor (lower than 230 dB) can be
achieved by tuning a pair of Raman lasers in current experimental setup. Finally, we find numerically that
the phase factor of the prepared initial state affects dramatically on spin squeezing.

T
he spin-orbit coupling (SOC) describes an intrinsic interaction between the spin and orbital degrees of
freedom of a particle. In condensed-matter physics, the SOC of electron not only generates some important
quantum phenomena such as the spin and anomalous Hall effects1,2, and the topological insulators and

topological superconductors3, but also plays a key role in realizing the spintronics4 and the topological quantum
computing5. However, the observations of SOC physics in naturally-occurring solid-state systems are often
hindered by the unavoidable disorder and impurity effects. In this context, the neutral atom gases provide an
ideal platform for exploring novel SOC physics and device applications6, owing to their unprecedented level of
control and precision in experiments. Recently, a synthetic SOC, with equal Rashba and Dresselhaus strengths,
has been created in a trapped Bose-Einstein condensate (BEC) by a pair of Raman lasers7. Moreover, its strength is
far larger than that in the typical solid-state materials. Under the strong SOC strength, rich superfluid phenomena
have been revealed8–36. Here we present that this novel SOC technique has important applications in quantum
metrology, such as spin squeezing.

Spin squeezing is a quantum correlation with reduced fluctuations in one of the collective spin components37. It
not only has possible applications in atom interferometers and high-precision atom clocks38, but also is closely
related to and implies quantum entanglement39. Nonlinear spin-spin interactions are the heart for producing spin
squeezing40. In experiments, the multi-component BEC is a powerful system to achieve spin squeezing41–49, since
the required spin-spin interactions can be induced by the intrinsic atom-atom collision interactions. Although
these atom-atom collision interactions can, in principle, be tuned widely by varying the scattering lengths via
Feshbach resonances50, the experimental achievements are still difficult, and thus the maximal squeezing factors
measured experimentally are higher than 215 dB51. Moreover, the atom-atom collision interactions usually
induce atom decoherence and dissipations, which limits the achievable squeezing factor52,53.

In this report, we show that the important spin-spin interaction can be induced by controlling the orbital
degree of freedom (i.e., the momentum) of the ultracold atoms in the trapped BEC, with the equal Rashba and
Dresselhaus SOCs. Since the generated interaction by the orbit is an indirect spin-spin interaction, it has
advantages of no dissipation, high tunability, and strong coupling, compared with previous schemes41–49.
Then, we obtain an analytical spin squeezing factor by means of the frozen-spin approximation. Interestingly,
the maximal squeezing factor can reach a large negative value (lower than 230 dB) by tuning the Raman lasers in
current experimental setup of NIST. This giant squeezing factor is far larger than previous ones51. Finally, we find
numerically that the phase factor of the prepared initial state affects dramatically on spin squeezing.
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Results
Model and hamiltonian. Figure 1(a) shows the experimental setup
of NIST for realizing the equal Rashba and Dresselhaus SOCs in the
trapped BEC, with 87Rb atoms7. In their experiment, all ultracold
atoms are prepared in the xy plane, using a strong confinement
along the z direction. Moreover, two hyperfine ground states, jF 5

1, mF 5 21æ and jF 5 1, mF 5 0æ, act respectively as effective spin-"
and spin-# components in a large detuning D from the excited state,
as shown in Fig. 1(b). When these components are coupled by a pair
of Raman lasers incident at a p/4 angle from the x axis, as shown in
Fig. 1(a), the equal Rashba and Dresselhaus SOCs can be created in a
dressed-state basis �:

�� ��
~exp ik1

:rð Þ :j i and �;
�� �~exp ik2

:rð Þ ;j i,
where k1 and k2 are the wave vectors of the Raman lasers). The
corresponding dynamics is governed by the following Gross-
Pitaevskii (GP) equation7
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whereW5 (W", W#)T is the normalization wave function in the dress-

state representation. The harmonic trap potential V rð Þ~ 1
2

m

v2
xx2zv2

yy2
� �

, where m is the mass of the ultracold atom, and vx

and vy are the trap frequencies in the x and y directions. The
Hamiltonian for the equal Rashba and Dresselhaus SOCs is written
as HSOC 5 pxsz 1 Vsx/2, where ~ kL=m~

ffiffiffi
2
p

p



mlð Þ is the
strength of SOC, l is the wavelength of the Raman lasers,
V~V1V

�
2



2D is an effective Rabi frequency, V1 and V2 are the

Rabi frequencies of the Raman lasers, and sz and sx are the Pauli
matrices. The mean-field atom-atom collision interactions HINT 5

diag(g""jW"j2 1 g"#jW#j2, g"#jW"j2 1 g##jW#j2), where g"" 5 g"# 5

4p 2N(c0 1 c2)/(maz) and g##5 4p 2Nc0/(maz) reflect the inter- and
intra- spin collision interactions, respectively, c0 and c2 are the s-wave
scattering lengths, and az~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p =mvz

p
with trap frequency vz in

the z direction.
Since the s-wave scattering lengths have been measured experi-

mentally as c0 5 100.86 aB and c2 5 20.46 aB
7, where aB is the Bohr

radius, we can find immediately that g::~g:;^g;;. This means that
the trapped BEC exhibits strong atom-atom collision interactions,
which can force all ultracold atoms to occupy the same many-body
quantum state. As a result, we can introduce two boson operators,

a~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mvx=2

p
xzipx=mvxð Þ and b~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mvy



2

q
yzipy



mvy

� �
, to

map the Hamiltonian for the GP equation (1) into a generalized
Dicke model HT~ vyNb{bz vxNa{az VSxz

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffi

m vx
p

i a{
�

{aÞSzzvS2
z

21, where Sz~Nsz=2~ y{
:y:{y{

;y;

� �.
2 and Sx~

Nsx=2~ y{
:y;zy{

;y:

� �.
2 are the collective spin operators, with

the field operators y" and y# for the different spin components, and v
5 (g"" 1 g## 2 2g"#)/4 is an effective spin-spin interaction induced
by the direct atom-atom collision interactions. Due to the fact
g::~g:;^g;;, this effective spin-spin interaction disappears (v 5 0),
but the strong atom-atom collision interactions have still remained. On
the other hand, the boson mode in the y direction does not interact
with the ultracold atoms. Thus, the system’s properties of the spin-orbit
coupled BEC in Fig. 1(a) is governed by the standard Dicke model54

H~ vxNa{az VSxz
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffi

m vx
p

i a{{a
� �

Sz: ð2Þ

We emphasize that the Hamiltonian (2) is valid for current experi-
mental conditions of NIST. For a sufficiently strong repulsive inter-
action between the different spin components, i.e., g"# . 0 and
g:;? g::,g;;

� 
, the trapped BEC undergoes an imaginary excitation

and is thus unstable20,55. In such a case, the mapping of the Dicke
model is invalid. On the other hand, for the opposite limit that the

trapped BEC has no interactions, including both the same and dif-
ferent spin components, all ultracold atoms occupy both

+Kmin ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2{V2
4 2
q� �

in the momentum space with an arti-

ficial ratio21, and there is no correlation between the ultracold atoms.
This means that the resulting spatial distribution of the trapped BEC
is artificial and the above single spatial mode approximation in the
Hamiltonian (2) cannot be applied.

Orbit-induced spin-spin interaction. For the Hamiltonian (2), it
seems that no spin-spin interaction can be found, i.e., spin squeezing
cannot be achieved. In fact, we can demonstrate, as shown in
Fig. 1(c), that the spin-spin interaction can be induced by the
momentum, i.e., , i(a{ 2 a), which reflects the orbital degree of
freedom of the ultracold atoms. To prove this argument clearly, we
employ a unitary transformation, U 5 exp[iG(a{ 1 a)Sz] with
G~

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffi

m vx
p

= vxNð Þ, to rewrite the Hamiltonian (2) as
H’~ vxNa{a{ qS2

zz VSx cos G a{za
� �� �

{ VSy sin G a{za
� �� �

,
where q 5 4m 2/( N) 5 8EL/( N) and EL is the recoil energy. In
experiment of NIST, the trap frequency vx and the Rabi frequency V
are of the orders of 10 Hz and kHz, respectively. For a large atom
number, we have vxN?max V,

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mvx=
p� �

and thus Æa{aæ , 0,
since Æa{aæ is inversely proportional to vxN21. This means that the
term VSy sin [G(a{ 1 a)] can be omitted safely and VSx

cos G a{za
� �� �

^ VSx. Finally, we obtain an effective Hamiltonian

H’~{ qS2
zz VSx: ð3Þ

Before proceeding, we check the validity of the Hamiltonian (3) by
investigating the ground-state properties, as well as the time-
dependent spin dynamics, under current experimental parameters
of NIST7. As shown in the Methods section, the atom population for
the Hamiltonian (3) is derived by jÆSzæj 5 0 for 2

ƒ V= 4mð Þ and
Szh ij j=N~N 4m 2z Vð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m 2{ Vð Þ

p 

8m 2 4m 2z Vð Þ½ � for

Figure 1 | Illustration about how to achieve spin squeezing, using the
experimental setup of NIST. (a) The specified experimental setup for

realizing the equal Rashba and Dresselhaus SOCs in the trapped BEC.

(b) The energy levels, labeled respectively by | F 5 1, mF 5 21æ, | F 5 1,

mF 5 0æ and | F 5 1, mF 5 11æ, are coupled by a pair of Raman lasers.

(c) A schematic diagram about how to use SOC to create spin correlation

between the ultracold atoms. Under the strong atom-atom collision

interactions, all ultracold atoms are forced to occupy the same many-body

quantum state. As a result, the momentum for each atom has the same

term. This identical momentum acts as a bus, generating an effective

spin-spin interaction.
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2 . V/(4m). This analytical result agrees well with the direct
numerical simulation of the GP equation (1), as shown in Fig. 2(a),
as well as the experimental observation31. In addition, the spin
dynamics for the Hamiltonian (3) is also similar to that of the GP
equation (1), as shown in Fig. 2(b). Based on the above
demonstrations, we can argue that the spin properties for the
trapped BEC, with the equal Rashba and Dresselhaus SOCs, can be
described by the generalized one-axis twisting model (3).

The Hamiltonian (3) is a key result of this report. It shows clearly
that the effective spin-spin interaction is generated by controlling the
orbital degree of freedom (i.e., the momentum) of the ultracold
atoms. If the realized SOC disappears ( 5 0), the Hamiltonian (3)
reduces to the form H9 5 VSx, in which no spin-spin interaction can
be found. In fact, the spin-spin interaction can also be realized by
controlling the direct atom-atom collision interactions via Feshbach
resonance. However, its strength v(5 (g"" 1 g## 2 2g"#)/4) is still
very weak in current experimental setups. For example, in the experi-
ment of producing spin squeezing46, the spin-spin interaction
strength v 5 2p 3 0.063 Hz, when N 5 2300. Moreover, this direct

spin-spin interaction usually induces atom decoherence and dissipa-
tions, which limit the achievable squeezing factor52,53. In addition, in
atom-cavity interacting systems, the virtual photon can also generate
a weak spin-spin interaction56,57. Compared with the previous results,
our proposal in this report has two advantages. The first is that the
generated interaction induced by the orbit is an indirect spin-spin
interaction, which does not lead to the atom decoherence and dis-
sipations. The other is that the corresponding spin-spin interaction
strength can reach a large value. For instance, when we choose N 5

2300 in the experimental setup of NIST, q 5 2p 3 6.175 Hz, which
has 2 orders larger than v. This strong spin-spin interaction will
generate a giant spin squeezing factor.

Spin squeezing. In the absence of the Rabi frequency (V 5 0), the
Hamiltonian (3) reduces to the form H~{ qS2

z , in which the
squeezing factor was demonstrated analytically to scale as N22/3 37.
However, in our proposal, the Rabi frequency V cannot be
considered to be zero. In fact, it ranges from 1022 kHz to MHz,
and thus satisfies the condition of V?q in current experimental
setup7. In such a case, the squeezing factor can be derived from the
frozen-spin approximation40.

We first consider the following initial coherent spin state jy0æ 5

(j"æ 1 j#æ)flN/2N/2, with the mean spin ÆSx(0)æ 5 N/2 and ÆSy(0)æ 5

ÆSz(0)æ 5 0. For a weak spin-spin interaction q (or strong Rabi fre-
quency V) in the Hamiltonian (3), all ultracold atoms are almost
uncorrected in the framework of this prepared coherent spin state.
As a result, the quantum noise is evenly distributed in the yz com-
ponents of spin, namely, DS2

y 0ð Þ~DS2
z 0ð Þ~N=4, which is governed

by the standard Heisenberg uncertainty relation DSy(0)DSz(0) 5

jÆSx(0)æj/2, where DA2 5 ÆA2æ 2 ÆAæ2 is the standard deviation.
This quantum noise leads to the standard quantum limit, if the
coherent spin state is used in a Ramsey interferometer, such as an
atom clock38. In order to reduce variance of one spin quadrature in
the yz plane (the variance of the orthogonal one increases), quantum
correlation between the ultracold atoms is very important, and
results in a spin-squeezing state37. For the given initial coherent spin
state in the Hamiltonian (3), quantum correlation can be created by
increasing the nonlinear spin-spin interaction (or decreasing the
Rabi frequency). Moreover, the corresponding squeezing factor is
defined as40

j2
z tð Þ~ 4DS2

z tð Þ
N

, ð4Þ

Figure 2 | The ground-state properties and the time-dependent spin
dynamics for both the Hamiltonian (3) and the GP equation (1). (a) The

atom population 2 | ÆSzæ | /N as a function of the strength of SOC, when N 5

1.8 3 105. The critical point is evaluated as cc < 0.003 m/s. The black line

denotes the analytical result (AR) (see the Methods section), whereas the

red open symbol reflects the direct numerical simulation (NS) of the GP

equation (1). (b) The time-dependent spin dynamics 2 ÆSz(t)æ/N for both

the Hamiltonian (3) and the GP equation (1), when N 5 2 3 103. Initially,

all ultracold atoms are prepared as the spin-" component. Here the black

line and the red open symbol denote the numerical results for the

Hamiltonian (3) and the GP equation (1), respectively. In (a) and (b), the

other parameters are chosen as the experimental parameters, i.e., m 5 1.44

3 10225 kg, l 5 804.1 nm, vx 5 2p 3 50 Hz, and V 5 2p 3 17.8 kHz.

Figure 3 | The maximal squeezing factor j2
M as a function of the Rabi

frequency V. The black solid line stands for the analytical result (AR) in Eq.

(5), whereas the red open symbol reflects the direct numerical simulation

(NS). The atom number is chosen as N 5 2 3 103.
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where DS2
z tð Þ~ S2

z tð Þ
� �

{ Sz tð Þh i2. Since ÆSz(t)æ stands for the atom
population, Eq. (4) is also called the atom squeezing factor. If j2

zv1,
all ultracold atoms are squeezed, and vice versa.

We now obtain the explicit solution of Eq. (4) by applying the
Heisenberg equation of motion, with respect to the collective spin
operators Sy and Sz in the Hamiltonian (3), namely, _Sz~VSy and
_Sy~{VSz{q SzSxzSxSzð Þ. In general, these differential equations
cannot be solved analytically. However, when V?q, 2 Sx tð Þh i =N
remains approximately unchanged under the initial state jy0æ. This
implies that we can make an approximation by replacing Sx by N/2,
which leads to the following harmonic solutions: Sz tð Þ^Sz 0ð Þ
cos vtð ÞzVSy 0ð Þ sin vtð Þ=v and Sy tð Þ^{vSz 0ð Þ sin vtð Þ



Vz

Sy 0ð Þ cos vtð Þ, where v~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2zN qV

q
. Based on these solutions,

we have DS2
z tð Þ~N cos2 vtð ÞzV2 sin2 vtð Þ=v2

� �

4 and DS2

y tð Þ~N

cos2 vtð Þzv2 sin2 vtð Þ


V2� �


4. Since v . V, the reduced spin
fluctuations occurs in the z direction. Moreover, when t 5 (2n 1

1)p/(2v) with n~0,1,2, � � �, the maximal squeezing factor is
obtained by

j2
M~

V2

v2
~

1
1zqN=V

, ð5Þ

In Fig. 3, we compare the analytical result in Eq. (5) with the direct
numerical simulation. When V?q, the analytical result agrees well
with the numerical calculation. It implies that the orbit-induced spin
squeezing can be well described by the formula (5) in the case of
V?q. Based on Eq. (5), we find that if we choose current experi-
mental parameters, especially with V 5 50q and N 5 1.8 3 105 7, the
maximal squeezing factor can reach j2

M~{35:6 dB. This giant
squeezing factor is far larger than previous ones51. In Fig. 4, we
numerically plot the maximal squeezing factor as a function of the
phase w of the initial state, defined as jywæ 5 (j"æ 1 eiwj#æ)flN/2N/2.
This figure shows that the maximal squeezing factor depends
strongly on the phase w. It means that if we choose a proper phase
w in preparing the initial state, the maximal squeezing factor can also
be largely enhanced.

Discussion
In summary, we have proposed a new way to generate the spin-
spin interaction by controlling the orbital degree of freedom (i.e.,
the momentum) of the ultracold atoms in the trapped BEC, with
the equal Rashba and Dresselhaus SOCs. More importantly, a
giant spin squeezing factor (lower than 230 dB) has been
achieved by manipulating a pair of Raman lasers. We have also
found that the maximal squeezing factor can be largely enhanced
by tuning the phase of the prepared initial state. We hope that
our predictions could be observed in future experiments, since
spin squeezing has an important concept in quantum informa-
tion, and moreover, are closely related to design the best atomic
clocks.

Methods
Ground-state properties under a mean-field method. Here we employ the Holstein-
Primakoff transformation and boson expansion method to discuss the ground-state
properties of the Hamiltonian (3)58. By means of the Holstein-Primakoff
transformation, which is defined as Sz~c{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N{c{c
p

, S{~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N{c{cc
p

, and Sz 5 c{c
2 N/2, with [c, c{] 5 1, the Hamiltonian (3) is rewritten as

H’~{ q c{c{
N
2

� �2

z
V

2
c{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N{c{c
p

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N{c{cc
p� �

: ð6Þ

We now introduce a shifting boson operator d{~c{z
ffiffiffiffi
N
p

b, where b is a auxiliary
parameter to be determined, to describe the collective excitation of the ultracold
atoms. Substituting this shifting boson operator d{ into the Hamiltonian (6) and then
using the boson expansion method, we have H’~N H0zN1=2H1z � � �~N

Vb
ffiffiffiffiffiffiffiffiffiffiffiffi
1{b2

p
{4m 2 b2{

1
2

� �2
" #

zN1=2½ V 1{2b2� �
d{zd
� �.

2
ffiffiffiffiffiffiffiffiffiffiffiffi
1{b2

ph i
{

8m 2b b2{
1
2

� �
d{zd
� ��z . . . .

In terms of the expanded Hamiltonian, the scaled ground-state energy is obtained
by58

E bð Þ
N

~ Vb

ffiffiffiffiffiffiffiffiffiffiffiffi
1{b2

q
{4m 2 b2{

1
2

� �2

: ð7Þ

The corresponding auxiliary parameter b can be derived from the equilibrium con-
dition hE(b)/hb 5 0. The result is given by

Vg 1zg2
� �

{4m 2g 1{g2
� �

~0, ð8Þ

where h
ffiffiffiffiffiffiffiffiffiffiffiffi
1{h2
p

~b2{1=2 1



2ƒh2
v1

� �
and g~h

. ffiffiffiffiffiffiffiffiffiffiffiffi
1{h2
p

. Equation (8) has two

solutions, including g 5 0 and g2 5 (4m 2 2 V)/(4m 2 1 V). Finally, with the help
of the stability condition h2E(b)/hb2 . 0, we obtain g 5 0 for 2

ƒ V= 4mð Þ andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m 2{ Vð Þ= 4m 2z Vð Þ

p
for 2 . V/(4m). This implies that the Hamiltonian

(3) exhibits a quantum phase transition from a zero-momentum phase (g 5 0) to a

separate phase (g~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m 2{ Vð Þ= 4m 2z Vð Þ

q
) at the critical point

c~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V= 4mð Þ

p
21,24,31. In addition, by means of Eq. (8), the atom population is

obtained by

Szh ij j~ Ng

1zg2
~

0, 2
ƒ

V
4m

� �
N
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m 2{ V

4m 2z V

s
4m 2z V

4m 2 , 2
w

V
4m

� �
8>>><
>>>:

: ð9Þ
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