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Objective: To develop and validate a dual-energy computed tomography (DECT) derived
radiomics model to predict peritoneal metastasis (PM) in patients with gastric cancer (GC).

Methods: This retrospective study recruited 239 GC (non-PM = 174, PM = 65) patients
with histopathological confirmation for peritoneal status from January 2015 to December
2019. All patients were randomly divided into a training cohort (n = 160) and a testing
cohort (n = 79). Standardized iodine-uptake (IU) images and 120-kV-equivalent mixed
images (simulating conventional CT images) from portal-venous and delayed phases were
used for analysis. Two regions of interest (ROIs) including the peritoneal area and the
primary tumor were independently delineated. Subsequently, 1691 and 1226 radiomics
features were extracted from the peritoneal area and the primary tumor from IU and mixed
images on each phase. Boruta and Spearman correlation analysis were used for feature
selection. Three radiomics models were established, including the R_IU model for IU
images, the R_MIX model for mixed images and the combined radiomics model (the
R_comb model). Random forest was used to tune the optimal radiomics model. The
performance of the clinical model and human experts to assess PM was also recorded.

Results: Fourteen and three radiomics features with low redundancy and high
importance were extracted from the IU and mixed images, respectively. The R_IU
model showed significantly better performance to predict PM than the R_MIX model in
the training cohort (AUC, 0.981 vs. 0.917, p = 0.034). No improvement was observed in
the R_comb model (AUC = 0.967). The R_IU model was the optimal radiomics model
which showed no overfitting in the testing cohort (AUC = 0.967, p = 0.528). The R_IU
model demonstrated significantly higher predictive value on peritoneal status than the
clinical model and human experts in the testing cohort (AUC, 0.785, p = 0.005; AUC,
0.732, p <0.001, respectively).
May 2021 | Volume 11 | Article 6599811

https://www.frontiersin.org/articles/10.3389/fonc.2021.659981/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.659981/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.659981/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.659981/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:huanzhangy@163.com
mailto:yanchaosuper@163.com
mailto:daphny2014@163.com
https://doi.org/10.3389/fonc.2021.659981
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.659981
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.659981&domain=pdf&date_stamp=2021-05-14


Abbreviations: AI, artificial intelligence; A
Cancer; AUC, area under the curve; CA12
carbohydrate antigen 199; CEA, carcin
interval; DCA, decision curve analys
tomography; GC, gastric cancer; ICC, intr
NPV, negative predictive value; PCI, per
metastasis; PPV, positive predictive value
operating characteristic curve; ROI, region

Chen et al. Radiomics Predicting Peritoneal Metastasis

Frontiers in Oncology | www.frontiersin.org
Conclusion: DECT derived radiomics could serve as a non-invasive and easy-to-use
biomarker to preoperatively predict PM for GC, providing opportunity for those patients to
tailor appropriate treatment.
Keywords: dual-energy computed tomography, iodine uptake, peritoneal metastasis, gastric cancer, radiomics
INTRODUCTION

Gastric cancer (GC) is a serious health problem worldwide,
accounting for estimated 783,000 deaths in 2018 (1). Peritoneal
dissemination is the most frequent metastasis for GC. Even for
patients receiving radical surgery, peritoneal metastasis (PM)
occurs in up to 50% of patients, with median overall survival of 5
to 16 months (2–4). For patients with PM, upfront resection is
not recommended for its uncertain benefit (5). New treatment
strategies, such as intraperitoneal chemotherapy and extensive
intraoperative peritoneal lavage, is of improved prognosis for
those patients (6–9). Therefore, early and accurate detection for
peritoneal metastasis is of an urgent need to adopt appropriate
treatment to improve the prognosis for patients.

Currently, staging laparoscopy along with peritoneal lavage
cytology is recommended to evaluate PM, especially for patients
with radiographically suspicious signs (5, 10). However, due to
invasiveness, limited sensitivity, and cost-effectiveness concerns,
those tools are not universally applied (11, 12). Computed
tomography (CT) is the cornerstone for clinically staging GC
and is commonly used to detect PM. Nevertheless, low sensitivity
hinders the role of CT, for a considerable proportion of cases are
demonstrated as occult PM (13). Given biological heterogeneity
into gastric tumors, a full understanding of PM is under
exploration and no clinical or pathological characteristics could
accurately present peritoneal spread (2). Therefore, it is of
significant benefit to improve the detection of PM if a non-
invasive, easy-to-use and representative tool is developed.

One vital shortcoming for multi-detector CT is its limited
power to discriminate elemental compositions in materials,
which share the same CT values due to its single-energy
imaging. On the contrary, dual-energy computed tomography
(DECT) allows quantification of different densities in mixed
materials by obtaining two different energy levels (14).
Applications of DECT in GC have helped to evaluate tumor
invasion depth and stage migration rate, predicting lymph node
metastasis and tumor response to treatment (15–18). Artificial
intelligence (AI) especially deep learning has gained attention to
investigate its predictive value of PM (19–21), but the
interpretation is under elucidated due to its nature of “black
JCC, American Joint Committee on
5, carbohydrate antigen 125; CA199,
oembryonic antigen; CI, confidence
is; DECT, dual-energy computed
a-class coefficient; IU, iodine uptake;
itoneal cancer index; PM, peritoneal
; RF, random forest; ROC, receiver
of interest.
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box”. Radiomics is another emerging AI area to investigate
tumor heterogeneity by extracting and analyzing high-
throughput quantitative imaging features (22). Accumulated
researches have explored the value of radiomics in gastric
cancer, such as tumor staging, treatment response and
prognosis (23–26). However, the application that integrates
DECT and radiomics in GC is limited and the added value of
DECT-based radiomics to detect PM is under elucidated.

PM, especially for peritoneal micro-metastasis, which is
unseen by naked eyes, perhaps could be detected by DECT
based on radiomics. Therefore, in this study, we aimed to
develop and validate a DECT radiomics model to predict PM.
For comparison, we also performed a simulated conventional CT
based radiomics model. The diagnostic value of clinical factors
and radiologists was also evaluated.
METHODS AND MATERIALS

Patients
Patients were retrospectively and consecutively recruited from
Ruijin Hospital (Shanghai, China) from January 2015 to
December 2019. Inclusive criteria were as follows: 1) pathologically
confirmed as pT3 or pT4 gastric adenocarcinoma; 2) underwent
DECT scan less than one week before confirmed PM by
laparoscopy, lavage cytology or surgery; 3) no previous
anticancer treatment; 4) no previous abdominal surgery or
peritonitis. Exclusive criteria were as follows: 1) undetected
primary tumor on CT imaging; 2) unsatisfied quality of images
due to insufficient stomach distention or motion artifact;
3) concurrent cancers. A total of 239 patients enrolled in this
study (70 females;mean age, 62.9 years old, from27 to 85). Patients
with suspicious peritoneal implants or ascites during surgery were
further evaluated by pathologists through biopsy slices or lavage
cytology. The ultimate confirmation of PM relied on the consensus
between involved pathologists and surgeons, according to the
AJCC (American Joint Committee on Cancer) guidelines.

Finally, 65 patients and 174 patients were confirmed as PM and
non-PM, respectively. Those patients were divided into a training
cohort (n = 160) and a testing cohort (n = 79) at a ratio of 2:1
according to computer random. Baseline clinical factors included
location, tumor size (cm) and depth of tumor invasion (cT) of the
primary tumor, lymph node status (cN), differentiation status,
Bormann type and levels of carcinoembryonic antigen (CEA),
carbohydrate antigen 125 (CA125) and carbohydrate antigen 199
(CA199). Thedefinitions for those clinical factors are implemented
in SupplementaryMaterial. Theflowchart for patient recruitment
and framework for the study are presented in Figures 1 and 2.
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Imaging Protocol
All patients underwent DECT scan less than one week before
confirmed PM by either of two scanners (Siemens SOMATOM
Definition Flash or SOMATOM Force, Siemens Healthineers)
after fasting overnight. Images from portal-venous and delayed
phases were processed by dual-energy software (Syngo.via,
Version VB10, Siemens Healthineers) to acquisition 120-kV
equivalent mixed images. The imaging protocol and dual-
energy post processing were described in our previous study
(27) and detailed information is presented in Supplementary S2.
Then the images were used for post-processing by delivering to a
dedicated workstation with dual-energy software (Syngo.via,
Version VB20, Siemens Healthineers). Apart from the mixed
images, the iodine-uptake (IU) images for portal-venous phase
and delayed phase were reconstructed and obtained from the
dual-energy datasets (28). The mixed images and the IU images
based on both portal-venous phase and delayed phase were
ultimately acquired for further delineation and analysis.
Frontiers in Oncology | www.frontiersin.org 3
Standardization for Iodine Concentration
For iodine concentration images, iodine quantitation was
standardized in an in-house software (iodine standardization,
Syngo via). The purpose of iodine standardization was to reduce
the influence of technical or physiological differences resulting
from variational cardiac output and phase time when loading
iodine within tissues (29). A circular ROI inside the abdominal
aorta was independently outlined for individuals on the portal-
venous phase and delayed phase from the IU images, omitting
calcified plaque secondary to atherosclerosis. The rest tissues in
this image slice were used as the background to compare with the
reference iodine concentration from the abdominal aorta (nIC =
ICbackground/ICaorta). The standardized IU images generalized
were then used for masking and analyzing.

Segmentation
The segmentation was completed by one senior radiologist with
ten years of experience in abdominal imaging, who was aware of
the gastric tumor but blinded to the clinical and pathological
information. The delineation was performed using an open-
source software 3d-slicer (version 4.10.1) on the mixed images
on the portal-venous and delayed phases, respectively. Two
regions of interest (ROIs), including the peritoneal area and
the primary tumor, were independently segmented. For the ROI
of the primary tumor, the largest slice of the tumor on the axial
image was manually segmented along with the edge of the tumor,
avoiding gastric cavity and perigastric fat. For the peritoneal ROI,
the delineation was performed according to abdominal regions,
which consisted of the upper abdomen, the middle abdomen and
the lower abdomen. The anatomical landmarks of the three
regions included the upper liver, the lower costal arch, the
upper sacroiliac joint and the pubic symphysis. Peritoneal
ROIs were segmented at the middle slice of each abdominal
region. The peritoneal area on the largest slice of the primary
tumor was also included. As a candidate indicator for PM, ascites
was also segmented if there was any in the peritoneal cavity.
Therefore, the peritoneal ROI for each patient included four
slices. The peritoneal ROI was semi-automatically segmented by
setting a priori threshold ranging from -150HU to 50HU. The
images along with the ROI were in register to the IU images to
wipe off potential vessels in the peritoneal area. The ROIs
delineated on the mix images were also matched to the IU
images, guaranteeing they shared with the same slices.
Therefore, for mixed or IU images, each had four ROIs (two
on the portal-venous phase and two on the delayed phase).

Feature Extraction
Before feature extraction, all images underwent uniform
preprocessing, including resampling and filtering (see
Supplementary S3). Radiomics features were firstly extracted
from the original images and then extracted from the filtering
images. Finally, there were 1691 and 1226 radiomics features
extracted from the ROI of the peritoneal area and the primary
tumor, respectively. All radiomics features were in accordance
with the image biomarker standardization initiative (30).
Detailed information on feature extraction is implemented in
Supplementary S3.
FIGURE 1 | Patients enrollment in this study. DECT, dual-energy computed
tomography; PM, peritoneal metastasis.
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Reliability Analysis
We performed a reliability test to guaranteeing the
reproducibility and robustness of the radiomics features. Sixty
patients were randomly selected and one junior radiologist with
five years of experience in abdominal imaging repeated the
segmentation aforementioned. Given the same ROI of the IU
and mixed images, we chose the mixed images for reliability
analysis. Intra-class coefficient (ICC) was used to evaluate the
reliability between the two radiologists. Radiomics features with
ICCs above 0.75 were considered as good reliability.

Dimensionality Reduction
To overcome potential overfitting, a step-wise process for feature
selection was performed in the training cohort. First, Boruta was
used to choose relevant features to peritoneal status. Boruta is a
wrapper algorithm that selects relevant features by comparing
the original importance of attributes, estimated using their
permuted copies (31). To avoid randomness, the importance of
each feature was calculated with 100 iterations and then a mean
importance was generated. Features with the highest mean
importance were defined as the confirmed features and
remained. The features selected from Boruta would have highly
Frontiers in Oncology | www.frontiersin.org 4
relevant and redundant. Therefore, in the second step, we
calculated the Spearman correlation coefficients for those
features. Highly correlated features were clustered into the
same subgroup using unsupervised clustering algorithm and
feature with the highest mean importance in each subgroup
was considered as the representative feature for further
modeling. Consequently, features selected from the step-wise
method would have high contribution and low redundancy and
were included in the following modeling.

Modeling
Radiomics features selected from IU and mixed images were
independently used for modeling (the R_IU model and the
R_MIX model) to discriminate PM and non-PM in the
training cohort. To select the optimal radiomics model, we also
built a combined model (the R_comb model) integrating IU and
mixed features. Random forest (RF) algorithm with 10-fold
cross-validation parameter tuned by grid search approach was
implemented for model establishments. The performance of the
radiomics models was then validated in the testing cohort. The
weight of the features in each radiomics model were evaluated by
importance ranking via the Gini impurity using RF.
FIGURE 2 | Flowchart of this study. PM, peritoneal metastasis; ROI, region of interest.
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Model Comparison
The optimal radiomics model was in comparison with a clinical
model constructed by clinical risk factors. The performance of
human experts to assess PM was also recorded for all patients.
Two senior radiologists who major in abdominal imaging for more
than 10 years of experience independently reevaluated the
peritoneal status based on CT imaging. They have informed the
patients of GC but aware of the clinical and pathological
information. The consensus between the radiologists was recorded
and if there was any disagreement, the final decision was made by
the discussion. The performance of the radiomics model, the clinical
model, human experts was compared in both cohorts.

Clinical Use
The goodness offit for those models was evaluated to observe the
agreement between the actual probability and the predicted
probability made by those models. Decision curve analysis
(DCA) was implemented to show the net clinical benefits of all
models to predict peritoneal status.

Statistics
Continuous variables were compared by independent-sample t-
test or Mann-Whitney U test based on their distribution.
Categorical variables were compared using c2 or Fisher’s exact
test. RF was tuned by Grid search with 10-fold cross validation.
Discriminative metrics for peritoneal status included receiver
operating characteristic (ROC) curve, area under the curve
(AUC), accuracy, sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV). 95%
Confidence interval (CI) for each metrics was also recorded.
AUCs comparison was examined by the Delong test. The
goodness of fit for models was assessed and the deviation was
evaluated by the Brier score. The consensus between the
radiologists to evaluate peritoneal status was estimated by the
kappa coefficient. The strength of kappa coefficients with 0 to
0.20, 0.21 to 0.40, 0.41 to 0.60, 0.61 to 0.80 and 0.81 to 1 was
interpreted as slight, fair, moderate, substantial and almost
perfect. All statistical analysis was performed with R (version
3.6.0) and Python (version 3.7). Package resources are listed in
Supplementary Table S1. A significant difference was achieved if
a two-side p-value < 0.05.
RESULTS

Patients Baseline Information
No selective bias was found in terms of the positive rate of PM
between the training cohort and the testing cohort (26.9% vs.
27.8%, p = 0.874). Age and gender also presented no significant
bias between the two cohorts (p = 0.913 and 0.848, respectively).
For patients in the training cohort, gender, ascites, tumor size,
differentiation status, and Bormann type showed a significant
difference to discriminate the peritoneal status (all p < 0.05). For
patients in the testing cohort, age, ascites, tumor size, invasion of
tumor depth, and differentiation status showed statistically
different to predict the peritoneal status (all p < 0.05). The
other clinical factors indicated no significant difference in both
Frontiers in Oncology | www.frontiersin.org 5
cohorts (see Table 1). Indices that showed a significant difference
in the training cohort were considered as clinical risk factors and
were used for modeling using the multivariate logistic regression.

Reliability Analysis
For features extracted from the portal-venous phase, 213 and 138
radiomics features showed robust with an ICC higher than 0.75
for the peritoneal area and the primary tumor, respectively. As
for features from the delayed phase, 523 and 189 radiomics
features showed robust with an ICC higher than 0.75 for the
peritoneal and the primary tumor, respectively. Therefore, for
the IU and mixed images, each had 1063 reliable radiomics
features for further analysis.

Dimensionality Reduction
There were 31 and 37 confirmed features after Boruta analysis
from IU and mixed images, respectively (Figures 3A, B). Given
high redundancy among those features, Spearman correlation
analysis was performed. Unsupervised clustering indicated 14
and 3 subgroups generated for features from the IU and mixed
images (Figures S1 and S2). Finally, 14 and 3 features were
selected for each image set by the mean importance of each
feature. After tuned by RF, all the 14 radiomics features from IU
images were used for RF modeling to construct the R_IU model.
Similarly, the three features from mixed images were finally used
to establish the R_MIX model through the RF algorithm.

To build the R_comb model, we further integrated the 14
features from the IU images with the three features from the
mixed images. The correlation coefficients of those 17 features
were also calculated and no redundancy was observed (Figure
S3). After tuned by RF, eight features were considered as
important and used for modeling the R_comb model.

Consequently, the radiomics features selected by the step-wise
method showed little redundant and highly important. For each
model, the most important feature was coincidentally from the
peritoneal area. The importance ranking of those features in each
model are implemented in Figure 4.

The Performance of Radiomics Models
The R_IUmodel showed power ability to predict PM for the gastric
tumor in the training cohort, achieving an AUC of 0.981 (95%CI,
0.961-0.995) and accuracy of 95%. It also presented a considerable
sensitivity and specificity (90.7% and 96.6%, respectively). This
model showed good generalization by applying it to differentiate
peritoneal status in the testing cohort, with an AUC of 0.967 (95%
CI, 0.931-1). No overfitting was observed for the R_IUmodel in the
testing cohort (p = 0.528). The other discriminative metrics also
demonstrated a good diagnostic value of the R_IU model in the
testing cohort. Detailed information on discriminative metrics is
implemented in Table 2.

The R_MIX model showed inferior to the R_IU model in both
cohorts. For patients in the training cohort, the R_MIX model
reached an AUC of 0.917 (0.860-0.974) and an accuracy of 94.4%.
For patients in the testing cohort, the R_MIX model reached an
AUC and accuracy of 0.894 (0.800-0.988) and 84.8%, respectively.
The R_IU model was significantly better than the R_MIX model to
discriminate PM in the training cohort (p = 0.034).
May 2021 | Volume 11 | Article 659981
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The R_comb model did not improve the performance
compared with the R_IU model in both cohorts, with AUCs of
0.955 (95%CI, 0.904-1) and 0.961 (95%CI, 0.918-1), respectively.
Other information on discriminative metrics of the R_comb
model is implemented in Table 2.

Overall, we considered the R_IUmodel as the optimal radiomics
model and used it as the representative for further analysis.

Comparison With the Clinical Model
and Human Experts
ROC curve of each model in both cohorts was visualized in
Figures 5 A, B. Gender and ascites were indicated as
independent risk factors in the multivariate logistic regression
Frontiers in Oncology | www.frontiersin.org 6
(p = 0.025 and 0.018, respectively). The clinical model showed
the significantly poor performance to predict peritoneal status
compared with the R_IU model in both cohorts (the training
cohort, AUC: 0.847 vs. 0.981, p < 0.001; the testing cohort, AUC:
0.785 vs. 0.967, p = 0.005).

The consensus between the two human experts was almost
perfect, with a kappa value of 0.83. There were 10 (5.7%) and 31
(47.7%) patients misclassified by human experts in the non-PM
and PM groups, respectively. For patients in the training and
testing cohorts, there were 13 and 31 patients demonstrating
radiological suggestion of peritoneal metastasis, respectively. The
human experts reached AUCs of 0.733 (95%CI, 0.654-0.812) and
0.732 (95%CI, 0.623-0.842) to evaluate PM in the training and
TABLE 1 | Baseline clinical characteristics for patients in the training and testing cohorts.

The training cohort The testing cohort

non-PM (n = 117) PM (n =43) p non-PM (n = 57) PM (n = 22) p

Gender 0.005 0.322
Female 26 (22.2%) 20 (46.5%) 15 (26.3%) 9 (40.9%)
Male 91 (77.8%) 23 (53.5%) 42 (73.7%) 13 (59.1%)
Age 65.0 (59.0, 70.0) 65.0 (52.5, 69.0) 0.181 68.0 (60.0, 74.0) 53.5 (43.2, 57.0) <0.001
Ascites (ml) <0.001 <0.001
No ascites 94 (80.3%) 18 (41.9%) 48 (84.2%) 7 (31.8%)
Ascites < 50 22 (18.8%) 19 (44.2%) 9 (15.8%) 12 (54.5%)
Ascites > 50 1 (0.9%) 6 (14.0%) 0 (0.0%) 3 (13.6%)
Location 0.140 0.073
Fundus and Cardia 15 (12.8%) 2 (4.7%) 7 (12.3%) 1 (4.6%)
Body 23 (19.7%) 12 (27.9%) 13 (22.8%) 8 (36.4%)
Antrum and pylorus 49 (41.9%) 13 (30.2%) 27 (47.4%) 5 (22.7%)
Diffuse 30 (25.6%) 16 (37.2%) 10 (17.5%) 8 (36.4%)
Tumor size (cm) 4.6 (3.7, 5.8) 5.5 (4.7, 7.0) 0.006 4.4 (3.6, 5.6) 6.2 (5.2, 8.4) 0.001
Tumor invasion 0.159 0.024
cT2 2 (1.7%) 0 (0.0%) 0 (0.0%) 1 (4.6%)
cT3 6 (5.1%) 1 (2.3%) 4 (7.0%) 0 (0.0%)
cT4a 80 (68.4%) 24 (55.8%) 41 (71.9%) 11 (50.0%)
cT4b 29 (24.8%) 18 (41.9%) 12 (21.1%) 10 (45.5%)
Node lymph status 0.349 0.356
cN0 22 (18.8%) 8 (18.6%) 9 (15.8%) 3 (13.6%)
cN1 33 (28.2%) 8 (18.6%) 24 (42.1%) 6 (27.3%)
cN2 47 (40.2%) 17 (39.5%) 18 (31.6%) 10 (45.5%)
cN3a 11 (9.4%) 5 (11.6%) 5 (8.8%) 1 (4.6%)
cN3b 4 (3.4%) 5 (11.6%) 1 (1.8%) 2 (9.1%)
Differentiation status 0.007 0.007
High 1 (0.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Medium 19 (16.2%) 0 (0.0%) 11 (19.3%) 0 (0.0%)
Low 89 (76.1%) 41 (95.3%) 44 (77.2%) 18 (81.8%)
SRCC 8 (6.8%) 2 (4.7%) 2 (3.5%) 4 (18.2%)
Bormann 0.017 0.189
I 3 (2.6%) 2 (4.7%) 2 (3.5%) 1 (4.6%)
II 46 (39.3%) 10 (23.3%) 22 (38.6%) 5 (22.7%)
III 65 (55.6%) 25 (58.1%) 30 (52.6%) 12 (54.5%)
IV 3 (2.6%) 6 (14.0%) 3 (5.3%) 4 (18.2%)
CEA 0.651 1.000
Negative 103 (88.0%) 36 (83.7%) 50 (87.7%) 20 (90.9%)
Positive 14 (12.0%) 7 (16.3%) 7 (12.3%) 2 (9.09%)
CA199 0.036 0.554
Negative 58 (49.6%) 30 (69.8%) 37 (64.9%) 12 (54.5%)
Positive 59 (50.4%) 13 (30.2%) 20 (35.1%) 10 (45.5%)
CA125 0.562 1.000
Negative 74 (63.2%) 30 (69.8%) 33 (57.9%) 13 (59.1%)
Positive 43 (36.8%) 13 (30.2%) 24 (42.1%) 9 (40.9%)
May 2021 | Volume 11 | Article
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testing cohorts, respectively. The sensitivity and specificity of
human experts in the training cohort was 53.5% (37.8%-68.5%)
and 93.2% (86.6%-96.8%), respectively. The sensitivity and
specificity in the testing cohort was 50% (28.8%-71.2%) and
96.5% (86.8%-99.4%), respectively. The R_IU model showed
significantly more power to differentiate peritoneal status than
the human experts did in both the cohorts (both p < 0.001).
Frontiers in Oncology | www.frontiersin.org 7
Clinical Use and Calibration
The DCA curve showed similar good clinical benefit for patients
if preoperatively diagnosing them using the R_IU model and the
R_comb model, which were better than the other models (Figure
5C). Analysis of goodness of fit also demonstrated the R_IU
model was robust to evaluate peritoneal status in both cohorts
(Brier score = 0.051 and 0.055, respectively).
A

B

FIGURE 3 | Feature selection using Boruta algorithm. The boxplots showed there were 31 and 37 confirmed radiomics features selected using Boruta algorithm
from the IU images (A) and the mixed images (B). The horizontal coordinate and vertical coordinate independently represent feature importance and feature names.
The importance of features was calculated using 100 iterations. The name of each feature was defined as follows: image (IU or mixed [MIX])_phase (portal-venous [p]
or delayed [d])_ROI (1, the peritoneal area; 2, the primary tumor)_preprocessing_category (firstorder, texture or shape)_feature. For example, for the first feature in
(A), i.e. IU_d_2_original_shape_SurfaceVolumeRatio, it means this feature (SurfaceVolumeRatio) belongs to shape category and is extracted from the primary tumor
from IU images of the delayed phase without any preprocessing (original).
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DISCUSSION

In this study, we developed and validated a DECT-derived
radiomics model to predict peritoneal dissemination for GC,
which outperformed the clinical model and human experts. The
non-invasive and easy-to-use radiomics biomarker showed
clinical benefit, which provided potentiality for GC patients
Frontiers in Oncology | www.frontiersin.org 8
with PM to avoid unnecessary surgery and adjust for new
treatment strategies.

Previous studies have revealed the diagnostic value of
radiomics for PM in GC based on conventional CT derived
radiomics, with AUCs in the range of 0.724 to 0.873 in the
validation cohort (32–34). In our study, similar performance was
also observed in the R_MIX model built by 120kV-equivalent
A

B

C

FIGURE 4 | The importance ranking of features selected in each model. There were 14, 3 and 8 radiomics features selected for the R_IU model (A), the R_MIX
model (B) and the R_comb model (C). In each model, the most important feature was from peritoneal area extracted from the portal-venous phase. The naming rule
for feature was described aforementioned.
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mix images in the testing cohort, with an AUC of 0.894. More
importantly, our study demonstrated iodine-uptake derived
radiomics provided more powerful value to predict PM than
the conventional one. DECT is a candidate modality to apply in
the gastric tumor due to its insight into materials decomposition
(29). Our previous researches have introduced the role of DECT
combined with PET/CT in dynamically monitoring the process
of peritoneal metastasis for GC in vitro (35). In this study, we
demonstrated the DECT-derived radiomics could accurately
diagnosing PM for GC patients. DECT provides the possibility
of materials decomposition. The R-IU model significantly
outperformed the R-MIX model in the testing cohort,
demonstrating the superiority of the iodine images. On the
other hand, although AUC and sensitivity were not improved
in the R_comb model compared with the R-IU model in the
testing cohort, other discrimination metrics (i.e., accuracy,
specificity, PPV and NPV) showed slightly better in the
R_comb model, indicating the necessity for a synthesis of two
models to predict PM in GC. The combination of materials
decomposition brought from iodine images as well as mixed
images and radiomics could probably detect micro-metastasis
and tumor heterogeneity of GC.

The radiomics model also significantly outperformed the
clinical model in diagnosing PM in both cohorts. It was
reported that females were susceptible to peritoneal
dissemination (36). In this study, we also found gender was an
independent risk factor in the multivariable logistic regression
and females were with significantly increased risk for PM. Ascites
are an important predictor for PM. It was reported that the
possibility of PM reached 75% to 100% if more than 50ml of
ascites was manifested in CT (37, 38). In our study, ascites was an
independent risk factor to indicate PM (p < 0.001) and the degree
of it was strongly correlated with PM. We also found tumor size,
differentiation status, Bormann type and CA199 showed
significance between PM and non-PM groups in the
univariable analysis but not presented as independent risk
factors. The clinical model integrated those clinical and
pathological parameters achieved a moderate performance to
discriminate PM and non-PM, indicating limited specificity of
those variables.

The peritoneal status evaluated by human experts was also
unsatisfactory comparing to the R_IU model. CT is the
recommended modality to preoperatively staging GC and
evaluate peritoneal status with high specificity of 96.2% to 99%
(13, 39). However, due to micro-metastasis undetectable in CT,
the sensitivity was limited in a range of 25% to 50.9% (13, 36). In
this study, we reevaluated the preoperative status of the
peritoneum and similar performance was observed as previous
reported (sensitivity and specificity, 50%-53.5% and 93.2%-
96.5%). Nevertheless, our R_IU model was significantly better
than human experts to predict PM in both cohorts, especially
with improved sensitivity, probably indicating the advantage of
the radiomics model to discern occult PM.

We simultaneously outlined and analyzed the primary tumor
as well as the peritoneal area for the radiomics process. Notably,
we segmented ROIs on 2D instead of 3D slices (which is much
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time-consuming), for a multi-center study has demonstrated that
models built by 2D radiomic features revealed similar
performance in evaluating preoperative characteristics of GC
compared with those built by 3D features (40). Nevertheless, to
utmost capture information of peritoneum, we delineate the
peritoneal ROIs according to the anatomical distribution of
the peritoneal cancer index (PCI) (41). PCI is used to assess
the extent of peritoneal dissemination and is considered as a
prognostic indicator for patients with peritoneal carcinomatosis,
thus providing vital information for patient management and
treatment tailor for patients with gastric tumor (42, 43).
However, laparotomy is a must to evaluate PCI. The peritoneal
ROIs were simulated as PCI, and for simplification, we chose
three representative cross-sectional slices to inflect PCI. We also
delineated the peritoneal area where the largest slice of the
primary tumor settled, for the initial metastasis probably
occurs in this area according to the “seed and soil” hypothesis
(44). In the three radiomics model, the most important feature in
each model was unlimitedly from the peritoneal area, indicating
Frontiers in Oncology | www.frontiersin.org 10
the unneglectable role of peritoneum in delineation and only
delineating the primary tumor seems insufficient to assess PM.

Gray-level normalization for medical images is a prerequisite
against discretization and for feature robustness to ensure radiomics
as a reliable biomarker (45, 46). In this study, the iodine images were
standardized to decrease the individual circulation variation
resulting from technical reasons and patients, helping to
reconstruct uniform iodine-uptake images and normalize variable
gray levels. Previous studies reported the standardization of iodine
concentration was beneficial to staging tumors and evaluating
treatment response (47–49). Unlike standardizing iodine uptake
by comparing the concentration between tumors and aorta, we
compared the iodine concentration between background tissues to
the aorta. This method was probably representative to normalize an
individual’s iodine uptake effecting on gray-level normalization of
the whole images and thus equally treated ROIs for both the
primary tumor and the peritoneal regions.

Our study has several limitations. First, this is a single-center
study and the sample size is limited, therefore, the generalization
A B

C

FIGURE 5 | The performance of each model to predict PM for GC. (A, B) shows the ROC curves of each model to predict PM in the training and testing cohorts,
respectively. The R_IU model performed the best in both cohorts. (C) shows the clinical use of each model, which demonstrated the R_IU and the R_comb models establish
higher clinical benefit than other models. AUC, area under the curve; GC, gastric cancer; PM, peritoneal metastasis; ROC, receiver operating characteristic curve.
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of the DECT derived radiomics needs further external validation.
Meanwhile, the retrospective nature of the study probably
introduced selective bias for patients. Second, due to time-
consuming, delineation for the entire peritoneum area was
abandoned, which may omit potential metastasis in the
peritoneal area. Furthermore, it was worth noting that
considering the real-world clinical setting, part of the patients
enrolled in our study were radiologically suggestive as the
peritoneal spread, which could improve the performance of
the radiomics model. Besides, Lauren classification especially
the diffuse subtype was considered as a risk factor for peritoneal
spread (34, 50). In this study, this parameter was abandoned
because it was unavailable to a few patients who were transferred
to our hospital for upfront resection and the biopsy was
unavailable before surgery. Our clinical model demonstrated
limited power of those parameters to predict peritoneal status
and the value of Lauren type to represent PM is undermined due
to high tumor heterogeneity of GC (2). Lastly, the biological
meaning of the radiomics features selected remain elucidation.

In summary, the DECT based radiomics model is a noninvasive,
easy-to-use and representative tool to preoperatively predict PM for
GC, which of significant benefit to adopt appropriate treatment to
improve the prognosis for those patients.
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