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Abstract: Continuous SiC fiber-reinforced Ti2AlNb matrix composites have a great potential for
high-temperature aviation structure applications, and their properties strongly depend on the
microstructure of the interfacial reaction layer. Notably, introducing diffusion barrier coatings
has still been a popular strategy for optimizing the interfacial structure and interfacial properties
of SiCf/Ti. In this work, C coating and C/B4C duplex coating were successfully fabricated onto
SiC fibers via chemical vapor deposition (CVD), then consolidated into the SiCf/C/Ti2AlNb
and the SiCf/C/B4C/Ti2AlNb composites, respectively, via hot isostatic pressing (HIP) under the
condition of 970 ◦C, 150 MPa, 120 min, and finally furnace cooled to room temperature. The C-
and C/B4C-dominated interfacial reactions in the SiCf/C/Ti2AlNb and the SiCf/C/B4C/Ti2AlNb
were explored, revealing two different reaction products sequences: The different-sized TiC and
the coarse-grained (Ti,Nb)C + AlNb3 for the SiCf/C/Ti2AlNb; and the fine-grained TiB2 + TiC,
the needle-shaped (Ti,Nb)B2/NbB + (Ti,Nb)C, the coarse-grained (Ti,Nb)C + AlNb2 for the
SiCf/C/B4C/Ti2AlNb. Annealing experiments were further carried out to verify the different reaction
kinetics caused by C coating and C/B4C duplex coating. The reaction layer (RL)-dominated interfacial
strength and tensile strength estimations showed that higher interface strength and tensile strength
occurred in the SiCf/C/Ti2AlNb instead of the SiCf/C/B4C/Ti2AlNb, when the same failure mode of
fiber push-out took place.

Keywords: SiCf/Ti2AlNb composite; C coating; C/B4C duplex coating; interfacial reaction;
tensile strength

1. Introduction

Continuous SiC fiber-reinforced titanium matrix composites (SiCf/Ti) have been considered as
one of most potential light-weight high-strength structural materials required by aerospace vehicles
and advanced propulsion system, due to their high specific strength and stiffness at both room and
elevated temperature [1–3]. The physical and mechanical properties of several materials for potential
applications in the aero-engine field are shown in Table 1 [4]. And the specific strength and stiffness at
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room and elevated temperatures of several composites are shown in Figure 1 [5]. Raising the service
temperature of SiCf/Ti is a continuous pursuit driven by many new applications. Recently, intermetallic
titanium aluminides (TiAl, Ti3Al, Ti2AlNb) have begun to be employed as the matrix of SiCf/Ti due to
their more excellent high temperature performance, as compared with common Ti alloys [6,7]. Among
them, Ti2AlNb alloys with higher ductility and formability have attracted more attention due to their
excellent low- and high-temperature loading capabilities [7–10]. Therefore, Ti2AlNb alloys, especially
with O-phase as the main component that contributes a superior ductility [10], would be the potential
choice for the development of high-temperature titanium matrix composites (TMCs) [11,12]. Smith et al.
fabricated the SCS-6 SiCf/Ti2AlNb by foil–fiber–foil processing (FFF) and identified the interfacial
products consisting of TiC1-x+Ti5Si3, (Ti,Nb,Si)C1–x, Al(Ti,Nb)3C and (Ti,Nb,Al)5(Si,Al)3, with the
primary reaction zone size of ~0.6 µm; the SiCf/Ti2AlNb exhibited more excellent high temperature
performance compared to SiCf/α2-Ti and the longitudinal tensile properties of the composite (which are
dominated by the fiber strength) were slightly improved due to the orthorhombic matrix. [13]. Luo et al.
further introduced C/Mo duplex coatings as barrier layers and prepared the SiCf/C/Mo/Ti2AlNb
by the FFF method. They found that the Mo barrier layer can regulate the microstructure of the
matrix by forming a B2-riched transition zone between the reaction layer (RL) and the matrix in the
SiCf/Ti-21Al-29Nb composite, obtaining a higher tensile strength relative to the Ti2AlNb alloy [14].
In addition, Yang et al. employed a matrix-coated fiber (MCF) method to fabricate SCS-6 SiCf/Ti2AlNb,
and also explored the interfacial reactions between SCS-6 SiC fiber and Ti2AlNb, showing a milder
interfacial reaction than that in SiCf/super α2-Ti (Ti-25Al-10Nb-3V-1Mo) [15]. Compared with other Ti
alloys matrices (Ti-6Al-4V, TC17, IMI834) [5,16,17], Ti2AlNb acting as the matrix can exactly elevate the
service temperature of SiCf/Ti. However, the SiCf/Ti2AlNb is still inadequately understood, especially
for the reason that the interfacial reactions of SiCf/Ti2AlNb are sensitive to the type of diffusion barrier
coating, the microstructure of the matrix, the consolidation process, etc.

Table 1. Comparative properties of Titanium metal matrix composites (Ti MMCs) and superalloys.

Properties (Direction of Fibers) Conventional Ti MMC Ti Aluminide Ti MMC Superalloys

Density, g/cm3 4.04 4.18 8.3
Stiffness, GPa 200 242 207

Max use temperature, °C 538 760 1090
CTE, ◦C−1

× 10-6 8.91 9.18 13.0
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distribution, and each sub-layer thickness) of SiCf/Ti would determine the interfacial properties, and 
further act on the performances of SiCf/Ti [2,18]. Accordingly, understanding and further tailoring 
the interfacial behaviors of SiCf/Ti2AlNb would be necessary to ensure its superior properties. 
Notably, introducing diffusion barrier coatings is still a popular strategy for optimizing the interfacial 

Figure 1. Specific strength (a) and modulus (b) of several unidirectional TMCs and a nickel-
based superalloy.

It is accepted that the interfacial reactions (mainly including interfacial products and their
distribution, and each sub-layer thickness) of SiCf/Ti would determine the interfacial properties,
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and further act on the performances of SiCf/Ti [2,18]. Accordingly, understanding and further tailoring
the interfacial behaviors of SiCf/Ti2AlNb would be necessary to ensure its superior properties. Notably,
introducing diffusion barrier coatings is still a popular strategy for optimizing the interfacial structure
and interfacial properties of SiCf/Ti, which can not only protect the SiC fiber suffering from the attack
from the matrix, but also obtain a moderate interfacial debonding strength arising from the formation
of an appropriate interfacial reaction layer. Several potential diffusion barrier coatings, including
carbon, carbides, borides, oxides, nitrides, and transition metals, have been investigated to protect
SiC fiber and control the interfacial reactions of SiCf/Ti [19–23]. Among them, C coating is still the
most widely used diffusion barrier coatings in the SiCf/Ti [24,25]. In addition to protecting the SiC
fiber, the C coating has the following advantages: (1) It has a good thermal expansion coefficient with
SiC fiber; (2) it has a good compatibility with SiC; (3) the interface reaction of composites is easy to
control; and (4) the process stability is good. The interfacial reactions between SCS-6 SiC fiber and
Ti2AlNb have been well explored, when the SCS-6 SiC fiber is comprised of surface C coating with
some SiC particles in it [15]. However, the interfacial reactions between pure C coating and Ti2AlNb
matrix are still unclear. In addition, Zhang et al. found that as B4C coating was introduced to SiCf/TiAl
as the diffusion barrier coating, a thin interfacial layer appeared, confirming the role of B4C coating in
serving as a potential barrier coating in the SiCf/TiAl [26]. Obviously, both C and B4C are two potential
diffusion barrier coatings in the SiCf/Ti2AlNb. A comparative study on the interfacial reactions of
SiCf/Ti2AlNb with C and B4C diffusion barrier coatings would; thus, be helpful to understand their
interfacial behaviors.

In the present paper, C coating and C/B4C duplex coatings were, respectively, prepared on SiC
fibers by chemical vapor deposition (CVD) as different diffusion barrier layers, Then two kinds of
SiCf/C/Ti2AlNb and SiCf/C/B4C/Ti2AlNb composites were successfully fabricated by MCF method and
hot isostatic pressing (HIP) consolidation. Finally, C and C/B4C diffusion barrier layer-dominated
interfacial reactions, matrix microstructure evolutions, interfacial debonding strength, and tensile
strength were investigated.

2. Materials and Methods

2.1. Sample Preparation

C-coated and C/B4C-coated SiC fibers about 100 µm in diameter (provided by AECC Beijing
Institute of Aeronautical Materials, Beijing, China) were prepared by CVD. MCF method was
employed to fabricate Ti2AlNb coatings onto tungsten-cored SiC monofilament as precursor wires in a
facing-targets magnetron-sputtering system, with the Ti2AlNb alloy (nominal composition in at.% of
Ti-22Al-25Nb) utilized as targets and the coated SiC fibers used as substrates. Next, these precursor
wires were put into a Ti2AlNb alloy canister hermetically, which was then sealed using electron
beam welding. Subsequently, the SiCf/Ti2AlNb was manufactured by consolidating those packed
precursor wires through HIP under the soaking temperature, pressure, holding-time conditions of
970 ◦C, 150 MPa, 120 min, respectively, and then furnace cooled to the room temperature. This group of
HIP process parameters is based on previous research [27]. With this process employed, the composite
material can be completely closed, the diffusion barrier coating remains unfailing, and the RL will not
be too intense. Clearly, after HIP, two composites evolving from C-coated and C/B4C-coated SiC fibers
were named as SiCf/C/Ti2AlNb and SiCf/C/B4C/Ti2AlNb, respectively.

2.2. Characterization

The sectional morphology and chemical binding state of C and C/B4C coatings on SiC fibers
were analyzed respectively by scanning electron microscope (SEM, FEI nano 450, Hillsboro, OR,
USA), as well as ESCALAB-250 X-ray photoelectron spectrum (XPS, Waltham, MA, USA) using Al
Ka radiation as the X-ray source with an energy of 1 keV. The consolidated composite specimens
designated for microstructural observation by SEM were cut along the cross-section, polished, and
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etched in a 10% HF + 30% HNO3 solution. Specimens for transmission electron microscope (TEM)
observation were cut from the composites in two directions, perpendicular to the cross-section and
in the radial direction of the fiber, by FEI Quanta 200 FEG focused ion beam milling (FIB, Hillsboro,
OR, USA) [28]. The interfacial reaction products were investigated by field emission JEOL 2010F
TEM (Tokyo, Japan,) and the chemical compositions of the sub-layer in interfacial zones were further
examined by energy-dispersive X-ray spectrometer (EDS) equipped in TEM. In order to study the
kinetics of interfacial reaction, the composite samples were heat treated in vacuum at 800, 850, 900, and
950 ◦C for 36, 64, 100, 144, and 196 h, respectively. The total thickness of RL for these heat treatment
samples was measured by SEM. Nanoindenter (Nano Test Xtreme, Micro Materials, Wrexham, UK)
was employed to evaluate the interfacial debonding strength via fiber push-out test with the sample
slices with 0.35 ± 0.01 mm thickness [29]. Two tensile samples were prepared for each HIP consolidated
specimen with the gauge dimensions of Φ3 ×M6, as shown in Figure 2, and the composite material
inside the tensile specimen was ~2.8 mm in diameter. The room temperature tensile tests were
performed at an extension rate of 1 mm/min, using the Inspekt Table 100 kN model universal testing
machine. The fractographies were observed by SEM and laser scanning confocal microscope (LSCM,
KEYENCE VK-100, Osaka, Japan).
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3. Results and Discussion

3.1. Microstructure of C and C/B4C Coatings

As expected, C coating and C/B4C duplex coating were successfully fabricated on SiC fibers by
CVD. The results of SEM (Figure 3a,b) reveal that the uniform-thickness C single coating and the C/B4C
duplex coating can be clearly identified and were located between SiC fibers and Ti2AlNb matrix
coatings. It is noted that the thickness of C single coating was ~1.5 µm, which was almost the same as
the C layer-thickness in the C/B4C duplex coating, and the total thickness of the C/B4C duplex coating
approached ~3.5 µm. The ~20 µm thickness Ti2AlNb coatings on both barrier coatings are clearly
visible, which were deposited by PVD process and would evolve into the matrix during consolidation.
The morphologies of the two composites after consolidation are shown in Figure 4. XPS was further
used to investigate the chemical binding of the C and B4C coatings. For C coating, the XPS C 1s
spectrum is presented in Figure 3c, which could be deconvoluted into two peaks located at ~284.5 and
~285.0 eV, corresponding to sp2-hybridized and sp3-hybridized carbon, respectively. As suggested by
the following high-resolution TEM (HRTEM) in Figure 5i, the C coating was a typical pyrolytic carbon
exhibiting a turbostratic carbon structure in nature. This structure consists of small basic structural
units (BSUs) mainly comprising nanoscale few-layer graphene planes. Thus, the sp2-hybridized carbon
should come from graphene planes in BSUs of the C coating [16]. In contrast, the sp3 peak should be
assigned to defects in graphene planes or the amorphous region in pyrolytic carbon due to its nature of
high-density defects [30,31]. The integral area ratio of sp2 and sp2 + sp3 was calculated to be 76.0%,
which suggested that the C coating exists mainly in the form of sp2-hybridized graphene planes in
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BSUs and still possess high-density defects in graphene planes. For B4C coating, the XPS B 1s spectrum
is shown in Figure 3d, and the deconvolution revealed the existence of two boron chemical states at
the binding energies of 187.7 and 188.8 eV, corresponding to the B–B and B–C bonds, respectively [32].
This suggests that the B4C coating still possesses a large amount of B–B bonds.Materials 2019, 12, x FOR PEER REVIEW 5 of 17 
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HRTEM and selected-area electron diffraction (SAED) were further used to analyze the microstructure
of C and B4C coatings, which are shown in Figure 5i and Figure 6i, respectively. It reveals that C
coatings exhibited a typical turbostratic carbon structure with a certain degree of tortuosity in lattice
fringes, in which BSUs contained seven to eight layers (d space: 0.368 nm) as marked in the HRTEM.
According to the model proposed by Reznik et al., the SAED patterns further suggested the formation
of high-texture carbon by the appearance of orientation angle (OA) of 47◦ [33,34]. In contrast, the B4C
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coating exhibited a typical polycrystalline structure with the random B4C nano-particles (~10 nm in
average grain size) surrounded by a small amount of amorphous phases, as revealed by the HRTEM
images and corresponding SAED in Figure 6i.

Materials 2019, 12, x FOR PEER REVIEW 7 of 17 

 

and thus became a C-diffusion barrier, the interfacial reaction that followed would transit from the 
reaction-controlled to the diffusion-controlled. Since the C source was absolutely sufficient, only a 
small amount of C passed through the RL-A and was located at its front end, and reacted with the Ti 
and Nb in the matrix to form (Ti,Nb)C. In this process, the formation of the relatively-stable AlNb3 
phase and (Ti,Nb)C resulted in an Al-enriched zone, in which the reaction with C did not occur, 
thereby increasing the transition temperature of B2 phase in Ti2AlNb matrix. Near RL-B, the Ti2AlNb 
matrix mainly consisted of α2 and O phases, as identified by SAED. 

 
Figure 5. (a,b,c) TEM bright field images and high magnification images of interfacial reaction 
products for SiCf/C/Ti2AlNb; (d) STEM image and EDS mappings of the interfacial zones for 
SiCf/C/Ti2AlNb; (i–viii) shows the HRTEM images of C coating and SAED patterns of interfacial 
reaction products for SiCf/C/Ti2AlNb marked in (a). 

Table 2. Chemical composition of interfacial reaction products in SiCf/C/Ti2AlNb composite (at.%). 

Position C Ti Al Nb 
a (ⅱ) 80.15 19.85 - - 
a (ⅳ) 76.54 23.46 - - 

Figure 5. (a–c) TEM bright field images and high magnification images of interfacial reaction products
for SiCf/C/Ti2AlNb; (d) STEM image and EDS mappings of the interfacial zones for SiCf/C/Ti2AlNb;
(i–viii) shows the HRTEM images of C coating and SAED patterns of interfacial reaction products for
SiCf/C/Ti2AlNb marked in (a).



Materials 2019, 12, 3257 7 of 17

Figure 6. (a–c) TEM bright field images and high magnification images of interfacial reaction
products for SiCf/C/B4C/Ti2AlNb; (d) STEM image and EDS mappings of the interfacial zones for
SiCf/C/B4C/Ti2AlNb; (i–viii) shows the HRTEM images of B4C coating and SAED patterns of interfacial
reaction products for SiCf/C/B4C/Ti2AlNb marked in (a) and (b).

3.2. Interfacial Reactions in the SiCf/C/Ti2AlNb and SiCf/C/B4C/Ti2AlNb

Figure 4a,b show the cross-sectional overview of the SiCf/C/Ti2AlNb and SiCf/C/B4C/Ti2AlNb
after consolidating at the same HIP condition. The fibers in both composites were uniformly arranged
in a hexagonal distribution. Apparently, the interfacial reaction layers could be found between the
residual barrier layer and the Ti2AlNb matrix in both composites, which might mainly come from the
interdiffusion of elements between the adjacent layers during high-temperature HIP consolidation [2].
In the SiCf/C/Ti2AlNb, the RL was compact with no cracks or holes, and its thickness was evaluated
to be ~1.6 µm. As C coating was utilized as the barrier layer of SiCf/Ti, the RL mainly arose from
the continuous diffusion of C atoms from C coating into the adjacent Ti matrix and was essentially a
TiC-based RL [16]. Near the RL, the Ti2AlNb matrix showed in a typical block or strip morphology.
In the SiCf/C/B4C/Ti2AlNb, a thicker RL of ~2.5 µm in thickness formed between the B4C and
Ti2AlNb matrix, as compared with that in the SiCf/C/Ti2AlNb. Compared to the SiCf/C/Ti2AlNb,
the SiCf/C/B4C/Ti2AlNb allowed the boron atoms with a smaller size to easily diffuse in the gaps and
the grain boundaries at a higher rate, consequently forming a thicker interfacial reaction layer. Clearly,
besides the thickness of RL, the reaction products and their distribution in the RL can strongly impact on
interfacial properties. In order to clarify the products distribution and the diffusion barriers-dominated
interfacial reaction, the interfacial reaction zones were further observed by TEM

TEM bright field images of the interfacial reaction zones and the Ti2AlNb matrix in the
SiCf/C/Ti2AlNb are shown in Figure 5. EDS analyses on concerned points are shown in Table 2.
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Based on the reaction products, the RL could be divided into two sub-layers, namely, RL-A near C
coating and RL-B adjacent to the Ti2AlNb matrix. The RL-A was composed of TiCx, while the RL-B
consisted of (Ti,Nb)C+AlNb3, as identified by the HRTEM and the SAED patterns in Figure 6ii–vi.
Enlarged images of the RL-A are also displayed in Figure 5b,c. On basis of the size of TiCx grains,
the RL-A could be further divided into RL-AI (fine-grained TiCx layer adjacent to C coating), RL-AII
(transition layer of TiCx in the middle of RL-A zone), and RL-AIII (coarse-grained TiCx layer next to
the RL-B). For SiCf/C/Ti2AlNb, the total thickness of RL-A was evaluated to be ~0.7 µm, consisting
of ~100 nm RL-AI, ~100 nm RL-AII, and ~0.5 µm RL-AIII. Meanwhile, the grain size considerably
increased from less than 100 nm for RL-AI to ~200 nm for RL-AII and ~500 nm for RL-AIII The gradual
increase in TiCx grain size along RL-A could be explained by the fact that C atoms continuously
diffuse from the C coating toward the matrix and the matrix grains grow at the same time during
HIP. A description for the process of RL formation is available in our previous paper [28]. Unlike the
RL-A that was only composed of TiCx, the RL-B mainly comprised (Ti,Nb)C and AlNb3, as confirmed
by SAED and EDS in Figure 5v,vi. The scanning TEM (STEM) images and EDS mapping analyses of
elements were obtained to further visualize the elemental distribution of the interfacial zones of the
SiCf/C/Ti2AlNb, as shown in Figure 5d. The metallic elements in the matrix were almost completely
blocked and located outside the C coating. By contrast, C atoms diffused from the C coating toward
the matrix, which dominated the formation of interfacial reaction zones with C content gradient.
Obviously, the reaction products in RL-A were all TiC. Based on the above observations, the sequence
of reaction products in SiCf/C/Ti2AlNb was TiC and (Ti,Nb)C+AlNb3. This can be discussed as follows.
Compared with the FFF foils commonly used by many researchers, the PVD Ti2AlNb was composed
of lots of nanocrystalline grains, which could provide a large amount of channels for elemental
diffusion. Accordingly, the interfacial reaction was supposed to be a reaction- and diffusion-controlled
process. Table 3 lists the equations for describing the possible interfacial reactions occurring in the
SiCf/C/Ti2AlNb composites and the corresponding ∆rG values [35,36]. Reaction 5 has a more negative
value of ∆rG than reaction 10. In addition, Ti atoms have a higher diffusion rate than Nb atoms to the C
coating during the reaction [37]. They resulted in the formation of TiC in the initial stage of the reaction.
At the same time, the remaining high concentration of Al and Nb elements in the Ti-depletion matrix
formed AlNb3. During the reaction, the elemental diffusion occurred simultaneously with the grain
growth. When the near-stoichiometric TiC formed and thus became a C-diffusion barrier, the interfacial
reaction that followed would transit from the reaction-controlled to the diffusion-controlled. Since
the C source was absolutely sufficient, only a small amount of C passed through the RL-A and was
located at its front end, and reacted with the Ti and Nb in the matrix to form (Ti,Nb)C. In this process,
the formation of the relatively-stable AlNb3 phase and (Ti,Nb)C resulted in an Al-enriched zone,
in which the reaction with C did not occur, thereby increasing the transition temperature of B2 phase in
Ti2AlNb matrix. Near RL-B, the Ti2AlNb matrix mainly consisted of α2 and O phases, as identified
by SAED.

Table 2. Chemical composition of interfacial reaction products in SiCf/C/Ti2AlNb composite (at.%).

Position C Ti Al Nb

a (ii) 80.15 19.85 - -
a (iv) 76.54 23.46 - -
a (v) 17.23 16.29 18.63 47.85
a (vi) 59.75 33.85 0.40 6.00
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Table 3. Equations of the interfacial reactions occurred in SiCf/C/Ti2AlNb and SiCf/C/B4C/Ti2AlNb
composites and the corresponding ∆rG values at 970 ◦C.

No. Interfacial Reaction Equation ∆rG/kJ mol−1

1 2Ti + B4C = 2TiB2 + C −230.5
2 Ti + 2B = TiB2 −258.7
3 Ti + B = TiB −155.6
4 Ti + B4C = TiC + 4B −111.9
5 Ti + C = TiC −170.3
6 TiB2 + Ti = 2TiB −52.4
7 2Nb + B4C = 2NbB2 + C −133.7
8 Nb + 2B = NbB2 −162.9
9 Nb + B = NbB −107.7
10 Nb + C = NbC −134
11 4Al + 3C = Al4C3 −138

TEM bright field images and EDS analyses of the interfacial reaction zones in the SiCf/C/B4C/

Ti2AlNb are shown in Figure 6a,b and Table 4, respectively. The RLs (~2.5 µm in total thickness)
could be divided into three sublayers based on the reaction products, namely RL-A, RL-B, and RL-C.
Enlarged images of the RL-A and the RL-B are also displayed in Figure 6c. The RL-A, adjacent to the
B4C coating, was composed of fine-grained TiB2 and TiC with the grain size of ~20 nm, as revealed by
the SAED patterns in Figure 6ii. This means that only Ti reacted with B and C in the RL-A. Across the
RL-A, both Ti and Nb reacted with B and C, forming the RL-B. Thus, the RL-B consisted mainly of the
block-shaped (Ti,Nb)C and the needle-shaped (Ti,Nb)B2 with the elongated grains, as indicated by
SAED and EDS in Figure 6iii,iv and Table 2. Unlike the carbide products with equiaxed feature, the
boride products existed in needle shape when their composition deviated from the stoichiometry [15].
In the RL-C outside the RL-B, only the C atom diffused across RL-B, whereas the B atom diffusion
terminated in RL-B, forming the coarse-grained (Ti,Nb)C with the grain size of ~100 nm, together with
AlNb2, as revealed by SAED and EDS in Figure 6v,vi. Figure 6d shows the STEM images and EDS
elemental maps of the interfacial zones in the SiCf/C/B4C/Ti2AlNb for further visualizing the elemental
distribution. All reactions occurred outside the B4C coating, and the diffusion of B and C atoms
dispersedly distributed throughout the reaction zone and dominated the reactants. The Ti, Nb, and Al
elements started to appear in RL-A, RL-B, and RL-C in turn due to their different reactivity. Additionally,
the clear boundaries of B4C coating and each sublayer of interfacial reaction zones can be distinguished
in the SiCf/C/B4C/Ti2AlNb. The sequence of reaction products in the SiCf/C/B4C/Ti2AlNb was TiB2+TiC,
(Ti,Nb)B2+(Ti,Nb)C+NbB, and (Ti,Nb)C+AlNb2, and will be discussed in detail as follows.

Table 4. Chemical composition of interfacial reaction products in SiCf/C/B4C/Ti2AlNb composite (at.%).

Position B C Ti Al Nb

Spot 1 (RL-A) 65.14 14.10 20.76 - -
Spot 2 (fine needle in RL-B) 62.25 9.50 13.88 0.23 14.13

Spot 3 (block in RL-B) 40.21 28.27 27.38 0.23 3.91

RL—reaction layer, The RLs could be divided into three sublayers based on the reaction products, namely RL-A,
RL-B, and RL-C.

The initial stage of the interfacial reaction was a reaction-controlled process. The reactions (1),
(2), (5), and (3), as listed in Table 3, took place preferentially because of the high diffusion rate of Ti
and the high absolute values of ∆rG, and resulted in the production of TiB2 and TiC near the B-rich
B4C coating in the RL-A. High concentration of B-rich B4C contributed to the production with high
nucleation rate that hindered the grain growth of TiB2 and TiC, and lots of fine grains provided
terrible crystalline-boundary diffusion paths for B and C atoms in the RL-A. As the reaction and
the diffusion of the elements proceeded synchronously, Nb atoms began to participate during the
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reaction. A large amount of near-stoichiometric boride and (Ti,Nb)C (Ti-rich) in needle and block
shape, respectively, were formed in the RL-B. These products in RL-B could be regarded as the diffusion
barrier layer, which led to the interfacial reaction entering the diffusion-controlled dominated stage.
After the formation of previous products, the remnant highly-concentrated elements of Nb and Al in
the Ti-depletion matrix formed AlNb2 in the RL-C. Compared with the AlNb3 formation in the RL-B
of SiCf/C/Ti2AlNb, the AlNb2 formation could be attributed to a certain amount of participated Nb
atoms during the preformation of the borides. Simultaneously, a small amount of carbon released by
the reactions diffused into the matrix and formed a bit of (Ti,Nb)C. Due to the equilibrium of reaction
process, a large amount of Al atoms were not involved in the reactions, leading to the Al-enriched
matrix. Consequently, the main constituent phases of this matrix adjacent to the RL-C were α2-Ti and
O-Ti. The sequence of reaction products in the SiCf/C/B4C/Ti2AlNb is accordingly summarized in the
schematic diagram, as shown in Figure 7.
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In summary, the comprehensive SEM and TEM observations make it clear that in both the
SiCf/C/Ti2AlNb and the SiCf/C/B4C/Ti2AlNb composites, the RL zones were formed via a two-stage
process: the reaction-controlled and the diffusion-controlled. The according reaction products were
identified as the different-sized TiC and the coarse-grained (Ti,Nb)C+AlNb3 for the SiCf/C/Ti2AlNb,
and the fine-grained TiB2+TiC, the needle-shaped (Ti,Nb)B2/NbB+(Ti,Nb)C and the coarse-grained
(Ti,Nb)C+AlNb2 for the SiCf/C/B4C/Ti2AlNb. Compared with the C single coating, owing to the B4C
acting as the reaction front in the C/B4C duplex coating, the needle-shaped boride products facilitated
elements diffusion and; thereby, formed a thicker RL.

3.3. Reaction Kinetics of SiCf/C/Ti2AlNb and SiCf/C/B4C/Ti2AlNb

The interfacial reaction kinetics of SiCf/Ti is normally an indispensable and important basis for
evaluating the thermal stability of SiCf/Ti and understanding the interfacial reaction mechanism of
SiCf/Ti. The thickness of interfacial reaction zone develops progressively with the thermal exposure
temperature and the increase of time. In detail, the thickness of RL is linearly related to the square
of heat treatment time for the interfacial reaction zone in which the diffusion-controlled process
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dominates [38]. The total thickness of RL plotted as a function of the square root of reaction times at
various heat treatment temperatures for the SiCf/C/Ti2AlNb and the SiCf/C/B4C/Ti2AlNb composites
was estimated, respectively, and is shown in Figure 8a,b.Materials 2019, 12, x FOR PEER REVIEW 11 of 17 
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The reaction kinetics can be described by the following equations [39]:

x = kt1/2 + b0, (1)

k = k0exp(−Q/2RT) (2)

where x is the thickness of the RL, t is time, k is the reaction rate constant, b0 is the original thickness of the
RL, R is the gas constant, Q is the activation energy, k0 is the frequency factor, and T is the temperature.
The reaction rate k was determined from the slope of the curves for fitting the thickness of RL at
different times. The logarithm of k vs. the reciprocal of T, according to Equation (2), was plotted and is
shown in Figure 8c,d. The Q and k0 of the interfacial chemical reactions were subsequently calculated.

The activation energy Q and the rate constant k0 for the SiCf/C/Ti2AlNb and SiCf/C/B4C/Ti2AlNb
composites were 292 kJ/mol, 0.457 cm/s1/2 and 350 kJ/mol, 11.4 cm/s1/2, respectively. Both the Q and
the k0 can normally affect the growth of the RL in SiCf/Ti. The Q of SiCf/C/B4C/Ti2AlNb was larger
than that of SiCf/C/Ti2AlNb, indicating that the former would be more difficult to react in the early
reaction-controlled stage. However, since the pyrolytic C coating with stronger texture could hinder
the outward diffusion of C atoms and the needle-shaped borides could facilitate the elemental diffusion,
the k0 of SiCf/C/B4C/Ti2AlNb was much higher than that of SiCf/C/Ti2AlNb, which thereby resulted in
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a thicker RL of the former under the same consolidating conditions. Therefore, the growth rate of the
RL in SiCf/Ti2AlNb is dependent on the interaction between the Q and the k0.

3.4. Interfacial Strength and Tensile Strength

The effect of RL thickness and reaction products on the SiCf/Ti composites were further explored
by mechanical properties tests. It has been widely accepted that the interface strength of SiCf/Ti is a
crucial parameter governing the failure modes of composites subjected to an external load, and thereby
plays an important role in controlling the overall mechanical properties. Thus, push-out experiments
were carried out to evaluate the interfacial properties of SiCf/C/Ti2AlNb and SiCf/C/B4C/Ti2AlNb
composites. The load vs. displacement curve was determined and is shown in Figure 9. The interphase
shear strength or interface strength, τd, at the load level, Pd, corresponding to the initial debonding,
can be calculated based on the following formula [40]:

τd = Pd/πdfh (3)

where df is the diameter of SiC fiber and h is the thickness of composite. The average values of
Pd for SiCf/C/Ti2AlNb and SiCf/C/B4C/Ti2AlNb were measured to be ~7.9 and ~5.6 N, respectively.
By substituting Pd, the calculated values of τd were ~72 MPa for SiCf/C/Ti2AlNb and ~51 MPa for
SiCf/C/B4C/Ti2AlNb. Fibers push-out were verified through SEM observations of the front and the
reverse side of each specimen, as shown in Figure 10. The interfacial debonding took place at the
location between the C coating and the RL for the SiCf/C/Ti2AlNb, and at the location between the
C coating and the B4C coating for the SiCf/C/B4C/Ti2AlNb. It is generally believed that, within a
certain thickness range, the τd of the composites can be determined by the thickness of interfacial
zone including diffusion barriers and RL. An elevated thickness of the interfacial zone appropriately
would result in a higher value of τd for SiCf/C/Ti2AlNb [16,27,28]. However, the interfacial debonding
that occurred between pyrolytic carbon and amorphous polycrystalline structure of B4C resulted in
a poor interfacial bond strength. Therefore, the τd for SiCf/C/B4C/Ti2AlNb was lower than that for
SiCf/C/Ti2AlNb, even though the former had a thicker interfacial zone.
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We further carried out the room temperature tensile tests of the SiCf/C/Ti2AlNb and the
SiCf/C/B4C/Ti2AlNb composites, with the tensile curves of SiCf/C/Ti2AlNb and SiCf/C/B4C/Ti2AlNb
shown in Figure 11. The average tensile strength values of SiCf/C/Ti2AlNb and SiCf/C/B4C/Ti2AlNb
were calculated to be ~1360 and ~1150 MPa, respectively. The tensile strength of SiCf/C/Ti2AlNb
is ~200 MPa higher than that of SiCf/C/B4C/Ti2AlNb. This could be attributed to the difference in
interfacial zone, although they had the same fibers and matrix alloy. Figure 12 shows the tensile
fracture morphologies of SiCf/C/Ti2AlNb and SiCf/C/B4C/Ti2AlNb. Both two composites displayed an
identical step-like fracture mode. This fracture behavior involved only the obvious push-out of short
fibers; not the brush-like fracture caused by a too-low τd nor the brittle facture induced by a too-high
τd due to lower interfacial debonding. However, in contrast to the fractograph of SiCf/C/B4C/Ti2AlNb,
the fractograph of SiCf/C/Ti2AlNb exhibited more serious steps between the near regions of fiber and
the surrounding matrix, corresponding to more obvious crack deflections. The difference in fracture
characteristics are determined by the τd. Compared with the SiCf/C/B4C/Ti2AlNb, more cracks usually
initiated at the interfacial layers of the SiCf/C/Ti2AlNb, that has a higher τd and better interface/matrix
matching, as the process of continuous loading increased. When the crack passing through the brittle
Ti2AlNb matrix propagated to the next interfacial layer, the crack easily changed the propagation
direction and continued to extend along the plane of other cracks. This fracture behavior means that
the crack would travel through a longer path and consume more fracture energy. Probably for this
reason, the SiCf/C/Ti2AlNb had a higher tensile strength than the SiCf/C/B4C/Ti2AlNb, with more
fiber bridges in the fracture morphology of SiCf/C/Ti2AlNb, as shown in Figure 12a. In a word, as the
interfacial debonding totally dominated the tensile failure, the higher τd would aid in improving the
tensile strength.
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Figure 12. Low-magnification fractographs of (a) SiCf/C/Ti2AlNb and (b) SiCf/C/B4C/Ti2AlNb;
high-magnification fractographs of (c) SiCf/C/Ti2AlNb and (d) SiCf/C/B4C/Ti2AlNb; fracture
morphologies of (e) SiCf/C/Ti2AlNb and (f) SiCf/C/B4C/Ti2AlNb observed by LSCM.
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4. Conclusions

Both C coating and C/B4C duplex coating were successfully fabricated onto SiC fibers by CVD and
then consolidated into SiCf/C/Ti2AlNb and SiCf/C/B4C/Ti2AlNb after HIP. On the basis of microstructure
observations and mechanical properties tests of two composites, we make the following conclusions:

(1) C-coated and C/B4C duplex-coated SiC fiber-reinforced Ti2AlNb composites were fabricated and
the interfacial reaction products of both composites were identified. The reaction products sequence
was the different-sized TiC and the coarse-grained (Ti,Nb)C+AlNb3 for the SiCf/C/Ti2AlNb;
and the fine-grained TiB2+TiC, needle-shaped (Ti,Nb)B2/NbB +(Ti,Nb)C, and coarse-grained
(Ti,Nb)C+AlNb2 for the SiCf/C/B4C/Ti2AlNb. When the interfacial reaction process of two
composites was dominated by the diffusion-controlled, the SiCf/C/B4C/Ti2AlNb had a higher
diffusion activation energy Q due to the facilitated elemental diffusion by the needle-shaped
borides, making the frequency factor k0 much larger than SiCf/C/Ti2AlNb, which resulted in a
thicker RL in SiCf/C/B4C/Ti2AlNb under the same consolidating conditions.

(2) The SiCf/C/Ti2AlNb with a thinner RL exhibited a higher interface strength than SiCf/C/B4C/

Ti2AlNb when the interfacial debonding occurred between pyrolytic carbon and the amorphous
polycrystalline structure of B4C. The SiCf/C/Ti2AlNb with a higher interface strength exhibited a
more serious step-like fracture than SiCf/C/B4C/Ti2AlNb and thus contributed to a higher tensile
strength of the SiCf/C/Ti2AlNb.
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