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ABSTRACT
◥

Purpose: To identify molecular subclasses of clear cell ovarian
carcinoma (CCOC) and assess their impact on clinical presentation
and outcomes.

Experimental Design: We profiled 421 primary CCOCs that
passed quality control using a targeted deep sequencing panel of 163
putative CCOC driver genes and whole transcriptome sequencing
of 211 of these tumors. Molecularly defined subgroups were iden-
tified and tested for association with clinical characteristics and
overall survival.

Results: We detected a putative somatic driver mutation in at
least one candidate gene in 95% (401/421) of CCOC tumors
including ARID1A (in 49% of tumors), PIK3CA (49%), TERT
(20%), and TP53 (16%). Clustering of cancer driver mutations and
RNAexpression converged upon two distinct subclasses of CCOC.
The first was dominated by ARID1A-mutated tumors with

enriched expression of canonical CCOC genes and markers of
platinum resistance; the second was largely comprised of tumors
with TP53 mutations and enriched for the expression of genes
involved in extracellular matrix organization and mesenchymal
differentiation. Compared with the ARID1A-mutated group,
women with TP53-mutated tumors were more likely to have
advanced-stage disease, no antecedent history of endometriosis,
andpoorer survival, drivenby their advanced stage at presentation.
InwomenwithARID1A-mutated tumors, therewas a trend toward
a lower rate of response to first-line platinum-based therapy.

Conclusions: Our study suggests that CCOC consists of two
distinct molecular subclasses with distinct clinical presentation and
outcomes, with potential relevance to both traditional and exper-
imental therapy responsiveness.

See related commentary by Lheureux, p. 4838

Introduction
Historically, tumor treatment approaches have been dictated by

tissue site, but large-scale molecular profiling efforts have shown that
remarkable heterogeneity exists in the landscape of cancer driver genes
and pathways within tumor types and even within histologic subtypes.
This has been well characterized for many common tumors through
multi-omic profiling (1) and characterization of the genetic determi-
nants of tumor behavior and outcome has led to the development of
personalized therapeutic approaches. Indeed, for some cancers, prog-
nosis and therapeutic strategies are based primarily on their presence

of genetic driver mutations identified in the tumor (2–7). For several
rare cancer types such as ovarian clear cell carcinoma (CCOC), no
strong associations between molecular profiles and clinical presenta-
tion or outcomes are known and broad-acting platinum-based che-
motherapy remains the standard of care.

When diagnosed at an advanced stage, CCOC has a worse out-
come than other invasive ovarian cancers including the more
common high-grade serous ovarian carcinoma (HGSOC; median
overall survival of 10 months; refs. 8, 9) presents at a younger age
(10), and is less responsive to platinum-based therapy (11). Relatively
small studies suggest that CCOC possesses several driver events that
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are distinct from HGSOC. CCOC is thought to arise from endome-
triotic lesions with recurrent somatic mutations in PIK3CA and
ARID1A, which are rare in HGSOC (12–15). In addition, the
existing data suggests that CCOCs are commonly TP53-wild-type
(whereas HGSOC ubiquitously harbors TP53 mutations) and exhi-
bits fewer structural rearrangements than HGSOC (13). However, it
is not known whether clinically meaningful molecular subtypes of
CCOC exist.

In the current study, we performed comprehensive targeted
sequencing and transcriptomic profiling of a large,multi-ethnic cohort
of 421 primary CCOCs to identify disease subclasses with distinct
biology and clinical behavior, which in turn may provide avenues for
personalized therapeutic approaches.

Materials and Methods
Study participants

Clinical data and therapy-na€�ve fresh frozen tumor material were
utilized from women diagnosed with invasive CCOC and enrolled
into research studies from the following sites: Memorial Sloan Ketter-
ing Cancer Center Gynecology Tissue Bank (MSK), Mayo Clinic
(MAY), Addenbrooks Hospital (ADD), Cedars-Sinai Medical Center
(WCP; Los Angeles, CA), University of Pittsburgh (PIT; Pittsburgh,
PA), Gynaecological Oncology Biobank (GynBiobank) at Westmead
Hospital (WMH, Sydney, Australia), University of Edinburgh (SCOT;
Scotland), Canadian Ovarian Experimental Unified Resource
(COEUR; multiple sites), Brigham and Women’s Hospital (BWH;
Boston, MA), and University of Pennsylvania (UPA; Philadelphia,
PA). Participants providedwritten informed consent. The studies were
conducted in accordance with recognized ethical guidelines (e.g.,
Declaration of Helsinki, CIOMS, Belmont Report, U.S. Common
Rule), and approved by local institutional review boards. Extraction
of DNA/RNA was performed centrally at MSK (for cases from MSK,
WCP, PIT, BWH, and UPA) or locally (for cases from MAY, ADD,
WMH, and COEUR). For the cases which were extracted centrally at
MSK, slides from frozen tissue sections were reviewed by a pathologist
(R. Murali) and extraction of DNA/RNA was performed from tumor
sections, selected based onhigh content (>80%) of clear cell carcinoma.
In total, tumors from 447 women diagnosed with CCOC were

analyzed. Race and menstruation status (pre vs. postmenopausal) was
obtained through participant self-report. History of endometriosis was
also obtained through self-report except at MSK where endometriosis
was only available if mentioned on the pathology report. Tumor
characteristics and clinical outcomes were obtained through medical
record review.

Targeted DNA sequencing and analysis
We performed targeted sequencing of 163 putative CCOC driver

genes (Supplementary Table S1) in DNA samples from the 447 tumor
and blood-derived DNA from 16 unmatched controls using a custom
Nimblegen capture-based panel. Genes were selected based on a
combined analysis of 105 clear cell somatic sequencing studies includ-
ing: (i) whole genome sequencing of 31 CCOCs from Wang and
colleagues (13); (ii) whole-exome sequencing of eight cases from Jones
and colleagues (12); (iii) targeted sequencing of 26 CCOCs using a
panel of 465 known cancer drivers (MSK-IMPACT; ref. 16); and
targeted or whole exome sequencing of 40 CCOCs from project
GENIE (17). Included in our panel were 119 genes where somatic
mutations have been identified in two or more CCOCs; 41 established
cancer driver genes based on the COSMIC Cancer Gene Census (18)
mutated in one CCOC and three genes in the SWI/SNF complex
(SMARCB1, SMARCC1, SMARCC2) (14) that have been implicated in
CCOC biology (Supplementary Table S1; ref. 19).We also included on
the sequencing panel highly polymorphic single nucleotide variants
distributed every 3 MB throughout the genome to capture large copy
number deletions/amplifications.

Of 447 tumor samples, 421 (94%) passed quality control. As a
technical set of normal samples (panel of normals), we included DNA
extracted from the blood of 10 healthy, cancer-free individuals. Two
tumor samples failed due to low coverage, 12 due to sample contam-
ination and 12 due to duplication. The median sequencing coverage
per sample was 539x. Raw sequence data were aligned to the human
genome (NCBI build 37) using BWA (20). Variant calling for single
nucleotide variants was performed using Mutect2 (21), Strelka (22),
and CaVEMan (23) and for insertions/deletions using Pindel (24),
Mutect2 (21), and Strelka (22). We considered mutations to be true if
they: (i) passed at least two variant callers; (ii) were present at a variant
allele fraction of greater than 2%; (iii) were present in gNOMAD (25)
whole-exome sequencing data with a maximum population frequency
of less than 0.001; (iv) had a variant allele frequency (VAF) at least two
times greater than the median VAF in a panel of normal samples; and
(v) were present in none of the panel of normal samples at a VAF of 2%
or greater. We further excluded mutations in low complexity regions
[DUST (26) score >7]. Mutations in known cancer hotspots that met
all other requirements but failed due to low complexity or to only being
passed by one variant caller were retained for consideration. We
calculated a microsatellite instability score for each tumor using MSI
sensor (27)

WeusedBayesianDirichlet processes to establish classification rules
that partitioned tumors into subgroups, minimizing overlap between
categories. The Dirichlet process defines an infinite prior distribution
for the number and proportions of clusters in a mixture model,
fitted with the use of the Markov chain Monte Carlo method (28).
Our method was based on an implementation of the Dirichlet process
mixture model available at https://github.com/nicolaroberts/hdp
using a non-hierarchical Dirichlet process. We used 5,000 burnin
iterations and subsequently sampled 10,000 realizations at intervals of
20 iterations. From this collection of data, we computed the optimal
number of clusters, requiring that 90% of the samples were assigned
a cluster.

Translational Relevance

Clear cell ovarian cancer (CCOC) is the second most common
subtype of epithelial ovarian cancer and when diagnosed at an
advanced stage, has a poor prognosis. The relationship between
molecular profiles and clinical presentation or outcomes is still
unknown but could help guide the development of personalized
therapeutic approaches for CCOC. Here, we profiled 421 primary
CCOCs using deep targeted sequencing and whole transcriptome
sequencing on a subset of 211. Clustering of cancer driver muta-
tions and RNA expression converged upon two distinct subclasses
of CCOC. The first was dominated by ARID1A-mutated tumors
with enriched expression of canonical CCOC genes andmarkers of
platinum resistance; the second was largely comprised of tumors
with TP53 mutations and enriched for the expression of genes
involved in extracellular matrix organization and mesenchymal
differentiation. These two distinct molecular subclasses showed
distinct clinical presentation and outcomes, with potential rele-
vance to therapeutic responsiveness.
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Whole transcriptome sequencing and analysis
RNA sequencing (RNA-Seq) libraries were prepared for 211 cases

from total RNA derived from the same tumor section using poly(A)
enrichment of the mRNA. One hundred bp paired-end libraries were
sequenced on Illumina’s HiSeq at a targeted depth of 40 million reads
per sample. We performed alignment using STAR (version
STAR_2.5.1b; ref. 29) against the reference genome hg38 (GENCODE
v26). Reads were summarized using featureCounts (version 1.5.0-p1;
ref. 30). RNA clusters were defined using hierarchical clustering using
the top 500most variable protein coding genes (clustering parameters:
method ¼ ward. D2, distance ¼ canberra). Differentially expressed
genes betweenRNAcluster 1 andRNAcluster 2 sampleswere obtained
using the RpackageDESeq2 (version 1.28.1; ref. 31) with collection site
and RNA cluster as part of the design formula. Pathway enrichment
analysis was performed using Metascape (version 3.5; ref. 4), looking
for enrichment of GO and KEGG terms, Hallmark, Reactome and
BioCarta Gene Sets, and Canonical Pathways. The top 500 most
overexpressed genes in RNA cluster 1 (log2 fold change <1 and FDR
<0.05) and the top 500most overexpressed genes inRNAcluster 2were
used as input for Metascape (32).

Outcome analyses
Survival data was available for 350 cases. Survival time was calcu-

lated from the date of diagnosis to last follow-up and allowed for left
truncation for cases whowere consented following diagnosis.We right
censored at five years from diagnosis to reduce non-ovarian cancer
related deaths. Race, age at diagnosis (continuous and quadratic,
assigned as site median for three cases), tumor stage, extent of residual
disease, and study site were considered as covariates using a Cox
proportional hazards model. Proportionality of hazards was examined
using Schoenfeld residuals. In addition, contingency analysis was done
on tumor mutational status and tumor cluster with primary treatment
response (complete response or partial response compared to stable or
progressive disease) stratified by tumor stage and vital status up to five
years using a c2 test.

Data availability
The somatic variant calls and normalized RNA-seq intensity data,

code, and deidentified clinical data are available here: https://github.
com/kbolton-lab/Bolton_OCCC. This will enable all the figures and
tables to be re-generated and also provide data for others for future
analyses. We will also make the BAMs/FASTQs available to research-
ers through contacting Kelly Bolton (bolton@wustl.edu).

Results
Clinical characteristics

Key characteristics, other than race, of the 421 participants included
in the study did not vary between study sites (Table 1). Compared with
clinical characteristics reported in the literature for women with
HGSOC (10, 33), women with CCOC in this cohort were more likely
to be of Asian ancestry (12% of individuals with non-missing race),
have a history of endometriosis (13%), and present with early-stage
disease (69%).

Targeted DNA sequencing of candidate CCOC driver genes
In 163 candidate CCOC driver genes we identified 6,361mutations.

Of these, 1,488 mutations were classified as potentially pathogenic
based upon annotation in OncoKB (34), frequency in COSMIC,
frequency in previously published CCOC sequencing data (12, 13, 16),
predicted pathogenicity based on PolyPhen (35) and SIFT (36), and
prior evidence in the literature (Supplementary Table S2). At least one
putative driver mutation was identified in 401 of 421 tumors (95%)
(mean number of mutations 3, range 1–25; Fig. 1A and C). The most
commonly mutated genes were ARID1A (49%, N ¼ 205), PIK3CA
(45%, N ¼ 188), and the TERT promoter (20%, N ¼ 84). The most
frequently recurrent mutations were clonally dominant with a VAF
>35% (e.g., ARID1A and TP53) suggesting that they represented early
events while others (e.g.,CREBBP) weremore often subclonal, possibly
representing secondary events (Fig. 1B). We detected a higher pro-
portion (16%, N ¼ 71) of tumors with TP53 mutations than has been

Table 1. Clinical characteristics of CCOC cases sequenced using targeted panel.

ADD
(N ¼ 28)

BWH
(N ¼ 9)

COEUR
(N ¼ 181)

MAY
(N ¼ 38)

MSK
(N ¼ 60)

PIT
(N ¼ 24)

SCOT
(N ¼ 22)

UPA
(N ¼ 7)

WCP
(N ¼ 28)

WMH
(N ¼ 24)

Overall
(N ¼ 421)

Age (y)
<40 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
40–50 1 (3.6%) 0 (0%) 37 (20.4%) 3 (7.9%) 6 (10.0%) 4 (16.7%) 4 (18.2%) 2 (28.6%) 7 (25.0%) 5 (20.8%) 69 (16.4%)
50–60 8 (28.6%) 2 (22.2%) 81 (44.8%) 16 (42.1) 28 (46.7) 9 (37.5%) 7 (31.8%) 2 (28.6%) 14 (50.0) 10 (41.7) 177 (42.0)
60–70 13 (46.4) 7 (77.8%) 48 (26.5%) 9 (23.7%) 19 (31.7) 5 (20.8%) 9 (40.9%) 2 (28.6%) 4 (14.3%) 5 (20.8%) 121 (28.7)
70–80 6 (21.4%) 0 (0%) 10 (5.5%) 7 (18.4%) 6 (10.0%) 4 (16.7%) 1 (4.5%) 1 (14.3%) 1 (3.6%) 3 (12.5%) 39 (9.3%)
≥80 0 (0%) 0 (0%) 1 (0.6%) 2 (5.3%) 0 (0%) 2 (8.3%) 1 (4.5%) 0 (0%) 0 (0%) 0 (0%) 6 (1.4%)
Missing 0 (0%) 0 (0%) 4 (2.2%) 1 (2.6%) 1 (1.7%) 0 (0%) 0 (0%) 0 (0%) 2 (7.1%) 1 (4.2%) 9 (2.1%)

Race
White 16 (57.1) 9 (100%) 0 (0%) 38 (100%) 44 (73.3) 23 (95.8) 0 (0%) 6 (85.7%) 23 (82.1) 10 (41.7) 169 (40.1)
Asian 2 (7.1%) 0 (0%) 0 (0%) 0 (0%) 13 (21.7) 0 (0%) 0 (0%) 0 (0%) 4 (14.3%) 4 (16.7%) 23 (5.5%)
Black 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1.7%) 1 (4.2%) 0 (0%) 1 (14.3%) 1 (3.6%) 0 (0%) 4 (1.0%)
Other 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (3.3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (0.5%)
Unknown 10 (35.7) 0 (0%) 181 (100%) 0 (0%) 0 (0%) 0 (0%) 22 (100%) 0 (0%) 0 (0%) 10 (41.7) 223 (53.0)

Endometriosis
Yes 0 (0%) 0 (0%) 13 (7.2%) 10 (26.3) 6 (10.0%) 0 (0%) 2 (9.1%) 2 (28.6%) 7 (25.0%) 3 (12.5%) 43 (10.2%)
No 0 (0%) 9 (100%) 168 (92.8) 26 (68.4) 49 (81.7) 0 (0%) 20 (90.9) 5 (71.4%) 0 (0%) 0 (0%) 277 (65.8)
Unknown 28 (100%) 0 (0%) 0 (0%) 2 (5.3%) 5 (8.3%) 24 (100%) 0 (0%) 0 (0%) 21 (75.0) 21 (87.5) 101 (24.0)

FIGO stage
I/II 17 (60.7) 7 (77.8%) 128 (70.7) 25 (65.8) 42 (70.0) 16 (66.7) 14 (63.6) 2 (28.6%) 15 (53.6) 16 (66.7) 282 (67.0)
III/IV 5 (17.9%) 2 (22.2%) 46 (25.4%) 12 (31.6) 17 (28.3) 8 (33.3%) 7 (31.8%) 5 (71.4%) 13 (46.4) 7 (29.2%) 122 (29.0)
Missing 6 (21.4%) 0 (0%) 7 (3.9%) 1 (2.6%) 1 (1.7%) 0 (0%) 1 (4.5%) 0 (0%) 0 (0%) 1 (4.2%) 17 (4.0%)
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described by some (9%–15%; refs. 13, 37) but not all NGS studies (18%;
ref. 38). This raises the possibility that some of the CCOCs in this
cohort were misdiagnosed high-grade serous or endometrioid ovarian
cancers.We explored this possibility in detail. First, we noted that 10 of
71TP53mutations (14%)were deeply subclonal (VAF<10%); previous
studies may not have detected these mutations as they used lower-
depth sequencing (Fig. 1B). Second, we performed additional path-
ologic review to verify clear cell histology for a subset of the cases
where formalin-fixed paraffin-embedded (FFPE) tissue sections were
available. This included 14 (20%) of the TP53-mutated cases and 4
(15%) of the BRCA1/2-mutated cases where FFPE tissue sections were
available. On the basis of morphology combined with and immuno-
histochemical staining of Napsin A, p53, and WT1 (markers of
HGSOC and not CCOC; ref. 39), it was determined that four of 14
TP53-mutant cases (28%; three endometrioid carcinomas and one
HGSOC) were misclassified as CCOC. None of the BRCA1/2-mutated
cases were misclassified. Thus, by extrapolation we estimate that
approximately 19 of our 71 TP53-mutant tumors in this cohort were
misclassified.

A subset of tumors (N ¼ 20) bore mutations in SMARCA4, a gene
that is the sole driver mutation in ovarian small cell carcinoma
hypercalcemic type (OSCCHT; refs. 40–42). However, unlike

OSCCHT, in our CCOC cases we observed SMARCA4 to be most
commonly comutated with either ARID1A (50%) or PIK3CA (35%).
Similar to our analysis of TP53 mutated cases, we performed central
pathology review of a subset (N ¼ 8) of the SMARCA4 mutated
cases. All of these cases showed typical CCOC morphology and were
positive for clear cell markers such as PAX8 (8/8 diffuse), and Napsin
A (5/8 diffuse, 2/8 focal), or HNF1B (5/5 diffuse). We conclude that
there was no evidence for these cases being misclassified OSCCHT.
Whether SMARCA4 has a similar driver capacity in CCOC compared
with OSCCHT requires further study.

Most cases (75%) had at least one large-scale copy number event
with the most frequently recurrent events reflecting common cancer-
driver aneuploidies including 8q amplification (Supplementary Fig. S1;
ref. 19). Cases with TP53 mutations had more whole chromosome
or arm-level aneuploidies (mean ¼ 12) compared with wild-type
tumors (mean ¼ 8; Supplementary Fig. S2). TP53-mutant/ARID1A-
mutant tumors showed less genomic instability (mean number of
aneuploidies ¼ 7) compared with TP53-mutant/ARID1A-wild type
tumors (mean number of aneuploidies ¼ 13). We detected recurrent
fusions in TGM7 (N ¼ 5) as previously shown by Earp and collea-
gues (43). In addition, recurrent fusions involving BCAR4 (N ¼ 6),
ITCH (N¼ 6), and DCAF12 (N¼ 5) were observed. These are known
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Mutational landscape of 401 clear cell ovarian carcinomas with a detectable mutation. A, Proportion of patients with mutations in commonly mutated genes.
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cancer fusion partners but have not been reported in CCOC before
(Supplementary Fig. S3).

We evaluated mutation status with respect to clinical and
epidemiological factors including age, race, tumor, and history
of endometriosis. Compared with ARID1A-mutated tumors,
patients with KRAS mutations were older at presentation (median
age 53 vs. 67, P ¼ 0.03; Fig. 2A). Individuals with a history of
endometriosis were more likely to have ARID1A-mutated tumors
(72% and 47% of patients with and without endometriosis respec-
tively, P ¼ 2 � 10–4; Fig. 2B). Advanced stage tumors were more
likely to harbor TP53 mutations than early-stage tumors (27% vs.
11% respectively, P ¼ 2 � 10–4; Fig. 2C). Among TP53 mutant
tumors, a similar proportion (50% and 51%, respectively) were
advanced stage with or without co-occurring ARID1A mutations.
There was a trend toward a higher frequency of ARID1A-mutated
tumors in women of east Asian descent but this was not significant
(Fig. 2D).

We next examined the relationship between mutational burden,
cancer driver genes, and patterns of genetic cooccurrence. Several
genes harbored recurrent mutations within the same tumor (Sup-
plementary Fig. S4). This seen for both tumor suppressor genes
(e.g., ARID1A) and specific oncogenes including PIK3R1 and
PIK3CA. Among tumors with multiple PIK3CAmutations, variants
were more likely to occur in nonhotspot locations within the gene
(Supplementary Fig. S5; ref. 44). MSIsensor score was higher
among individuals more than 10 driver mutations (N ¼ 12, 3%)
and among those withMSH2 andMSH6mutations (Supplementary
Fig. S6). We observed a statistically significant co-occurrence
between mutations in ARID1A, PIK3CA, TP53 and BRCA1/BRCA2
Mutual exclusivity between somatic mutations of ARID1A, TP53,
PIK3CA and PIK3R1 (Supplementary Fig. S7) suggests that these
may represent distinct pathways to oncogenesis. The exclusivity

between TP53 and ARID1A mutation was stronger in the setting of
multiple ARID1A mutations (OR ¼ 0.21; 95% CI, 0.07–0.54; P ¼ 2
� 10–4) compared with a single ARID1A mutations (OR ¼ 0.68;
95% CI, 0.32–1.34; P ¼ 0.28). “We observed 54 mutations in genes
known to be relevant to high penetrance genetic predisposition to
ovarian cancer including PMS2, MSH6, MSH2, BRCA1, and
BRCA2. Overall, 52% of these mutations were present at a VAF
in the tumor of ≥35%. In the absence of matched normal tissue
sequencing, we were not able to distinguish these from germline
variants. Thus, it is possible that up to 26 cases (6% of the cohort)
harbored a germline pathogenic variant in a known cancer sus-
ceptibility gene.”

Because we observed clear patterns of exclusivity and cooccurrence
between gene drivers, we used unsupervised clustering approaches to
define nonoverlapping subgroups of CCOC based on their mutational
spectrum. We defined seven subgroups (Supplementary Fig. S8) and
compared the frequency of mutations between subgroups. Four
clusters were characterized by having an ARID1A mutation; the first
cluster (cluster A) was characterized by a single ARID1A mutation
in combination with another disease defining mutation (e.g., PIK3CA,
TERT,TP53,KRAS,PTEN,PPP2R1A,PIK3R1,CREBBP, or SPOP;N¼
86); the second (cluster B) with a single ARID1Amutation alone or in
combination with non-disease defining mutation (N ¼ 19); the third
(cluster C) withmultipleARID1Amutations combinedwith a PIK3CA
mutation (N ¼ 81); and a forth (cluster D) with multiple ARID1A
mutations and PIK3CA wild-type (N ¼ 25). Two clusters were
ARID1A wildtype: Cluster E was defined by a TP53 mutation
(N ¼ 50); and cluster F by other non-TP53 disease-defining muta-
tions (N ¼ 104). A final cluster (cluster G) was characterized by
mutations in SMARCA4 (N ¼ 13); a mutation typically observed in
small cell ovarian carcinoma (23). The remaining tumors were
undefined (N ¼ 57).
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Similar to the patterns we observed when studying the association
between individual mutations and clinical features, the TP53-mutated,
ARID1A wild-type cluster showed an enrichment of advanced stage
disease while tumors belonging to the ARID1A-mutant clusters were
more likely in individuals of Asian ancestry and those with a history of
endometriosis (Supplementary Fig. S9). Individuals in cluster G
(SMARCA4-mutant tumors) had a nonsignificant trend towards a
younger age at diagnosis (P ¼ 0.32).

Transcriptomic profiling of CCOC
Transcriptomic profiles were generated for 212 CCOC tumors in

which targeted sequencing was also performed. Using unsupervised
clustering informed by expression of the 500 most variable genes,
we identified two main RNA clusters (Supplementary Fig. S10):
Expression cluster 1 showed higher expression of genes previously
reported as highly expressed in CCOC including ANXA4 and GPX3,
both of which are linked to platinum resistance (45, 46). Among
the most highly expressed genes in cluster 1 compared with 2 also
included GPX3 (47), which is known to be overexpressed in endo-
metriosis compared to normal endometrial tissue, and EEF1A2,
known to be overexpressed in CCOC associated endometriosis but
not benign endometriosis (48). Genes that characterized this cluster
were enriched in metabolic pathways including flavonoid glucuroni-
dation (P ¼ 10–15) and monocarboxylic acid metabolism (P ¼ 10–13).
Expression cluster 2 showed enriched expression of genes involved in
extracellular matrix (ECM) organization (P ¼ 10–22) and mesenchy-
mal differentiation, including genes such as ADGR2 and PDCH19
(Supplementary Fig. S10 and Fig. 3B). Compared to cluster 1, expres-
sion cluster 2 also showed higher expression of WT1 and lower
expression of CCOC marker HNF1B, which are features classically
associated with high-grade serous ovarian cancer (Fig. 3B; ref. 9).
Expression cluster 2 was enriched with TP53-mutant tumors (55% of
cases in cluster 2 compared with 10% in cluster 1). When comparing
RNA expression andmutation clusters, cluster 2was largely comprised
of tumors belonging to mutation cluster E, that is, TP53-mutant
ARID1A-wild type tumors (45% of cluster 2) and the undefined
mutation cluster (33% of cluster 2; Fig. 3A).

Clinical outcomes
There was no statistically significant association between overall

survival and CCOC mutations when examined on a per-gene level in
Cox proportional hazards models stratified by study site (Supplemen-
tary Table S3). We observed a nonsignificant trend toward improved
survival for patients withARID1A (HR¼ 0.82; 95%CI, 0.58–1.15; P¼
0.24) and PTEN (HR ¼ 0.52; 95% CI, 0.24–1.12; P ¼ 0.10) mutant
tumors. Because of the similarity of the ARID1A-mutant clusters in
regards to clinical presentation and outcome, we combined these
clusters for the purpose of survival analysis. Women with TP53-
mutant, ARID1A-wild type tumors had worse overall survival com-
pared to those with ARID1A-mutant tumors (HR ¼ 1.72; 95% CI,
1.06–2.81; P ¼ 0.03; Fig. 4A). Similarly, RNA-seq cluster 2 showed
an increased risk of death compared with RNA-seq cluster 1
(Fig. 4B, Tumor Cluster 2 vs. Tumor Cluster 1 HR 2.8; 95% CI,
1.66–4.84; P¼ 1� 10–4). Covariate adjustment for age, race, stage, and
residual disease attenuated the estimated mutation and cluster-
associated risk (Supplementary Table S4). To explore how these
subgroups might influence therapy outcome, we studied the relation-
ship between mutation status and response to first line therapy with
platinum/taxane combination therapy.We limited this to womenwith
advanced stage disease who successfully underwent debulking surgery
followed by combination platinum/taxol therapy (N ¼ 36). Women

withARID1Awild-type,TP53-mutant tumorsweremore likely to have
a complete response 75% (N ¼ 11) compared to ARID1A-mutant
tumors (55%), although this was not statistically significant (P¼ 0.33)
in this small sample size.

Discussion
Our results have several clinical implications. First, the results of

both genomic and transcriptomic cluster associations with clinical
presentation and outcome converged, suggesting two main subgroups
of CCOC: The first subtype included ARID1A-mutant tumors (par-
ticularly double-mutant tumors) and other commonCCOCmutations
(e.g., PIK3CA, TERT, etc.) that showed enriched expression of met-
abolic pathways, presented with early-stage disease and were more
likely to have a history of endometriosis. We denote this group as
“classic-CCOC”, which represented 83% of our cohort. The second
CCOC subtype was dominated by TP53-mutant tumors that showed
enriched expression of genes involved in extracellular matrix organi-
zation, mesenchymal differentiation and immune-related pathways.
These cases presented with advanced disease and had worse survival.
Interestingly, TP53 mutations either in the presence or absence of
cooccurring ARID1A mutations were associated with a higher degree
of genomic instability and aggressive, advanced stage tumors. The
worse survival for tumors in this “HGSOC-like” subgroup was largely
explained by advanced stage and higher burdens of residual disease.

Within both the “classic-CCOC” and “HGSOC-like” subgroups we
noted a subset of individuals had tumor with mutations in genes
known to be both somatic drivers of ovarian cancer and germline
susceptibility genes including PMS2, MSH6, MSH2, BRCA1, and
BRCA2. Due to the absence of matched normal samples, we were
unable to fully distinguish whether these represented somatic or
germline events and is a limitation of our study. Future studies
estimating the frequency of CCOC cases that arise in women with
strong hereditary predisposition and who may be considered for risk
reducing bilateral salpingo-oophorectomy should be prioritized (49).

There is increasing recognition that other histologic types of ovarian
carcinoma, including HGSOC and endometrioid carcinoma, can
contain areas with clear cell change complicating the histologic
diagnosis (50). While a subset of cases in the “HGSOC-like” cluster
are misclassified HGSOC, and is a weakness of our study, it is unlikely
that this alone explains our findings. Firstly, all of our cases were
morphologically diagnosed by expert gynecological pathologists and at
some centers, this morphologic review was supplemented by immu-
nohistochemistry for histotype-specific markers. Secondly, in a subset
of TP53-mutant cases, we reconfirmed the diagnosis of CCOC using a
combination of morphologic and immunohistochemical features.
Thus, our results suggest that a subset of bona fide CCOCs with
HGSOC-like features exist. Our results also emphasize that expert
histologic review of CCOC cases, particularly those who present with
TP53-mutant, ARID1A-wild type tumors, is warranted given similar-
ities to the biology and behavior of HGSOC.

Gene expression profiles of the “classic-CCOC” and “HGSOC-like”
CCOC subtypes we observed are similar to those reported by Tan and
colleagues (51) which also reported two clusters, the first enriched for
genes in metabolic pathways and the second, a less common mesen-
chymal-like subgroup associated with late-stage disease. However,
unlikely Tan and colleagues, we observed differences in the frequency
of TP53-mutated tumors across clusters. The source of this discrep-
ancy is unclear and may include differences in sequencing technology
(Tan and colleagues performed targeted sequencing using Ion Tor-
rent) and patient characteristics (Tan and colleagues, included only
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women of Asian ancestry which trend towards lower frequencies of
TP53-mutated tumors in our analysis and which are known to have
lower frequencies of endometrial ovarian cancer). The overlap between
genes highly expressed in our “classic-CCOC” subgroup and those

enriched in endometriosis provide further support for the likely
transition from endometriosis to carcinoma in CCOC.

The greatest translational impact from these molecular CCOC
subtypes is expected to lie in the development of therapeutic
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approaches tailored to the vulnerabilities of each group. Interestingly,
despite being aggressive on presentation, a trend was seen towards the
“HGSOC-like” CCOC subgroup having higher response rates to first
line platinum-based chemotherapy. Future studies are warranted to
further explore whether genomic subtypes of CCOC predict response
to platinum-based and other therapies as treatment data were limited
here. The “classic-CCOC” subgroup dominated by mutations in the
SWI/SNF pathway and markers linked to chemo-resistance may be of
particular relevance to target for investigational first-line therapies.
Recent data suggests that the SWI/SNF pathway plays a novel role in
the regulation of antitumor immunity, and that SWI/SNF deficiency
can be therapeutically targeted by immune checkpoint blockade (19).
Several studies are currently evaluating the role of immune check point
inhibitors in CCOC including NCT03405454, NCT03425565.While a
limitation of our study was that we were unable to assess MMR
functional status, we did note a rare subset of tumors (3%) with
higher mutational burden (>10 drivers) and MSIsensor score. The
extent to which the subset of CCOCs with higher total mutation
and with MMR deficiency show improved responsiveness to
immune checkpoint blockade in ongoing clinical trials will be an
important avenue of investigation. Additional targeted therapeutic
strategies have been explored in preclinical settings including
epigenetic synthetic lethality, some of which are entering into
clinical trials. The PI3K inhibitor, alpelisib, is now FDA approved
for HR-positive breast cancer and ongoing trials in additional
PIK3CA-mutated cancers including CCOC are underway. Double
PIK3CA mutations appear to hyperactivate PI3K signaling and
enhance tumor growth and may confer increased responsiveness
to PI3K inhibitors than those with a single mutation (52). Thus, for
CCOC cases harboring multiple PIK3CA mutations, PI3K inhibi-
tors either alone or in combination with other agents may represent
a promising approach.

The strengths of this study include the large sample size, use of
multiple study sites, inclusion of women of European and non-
European ancestry, and integration of genetic and transcriptomic
markers of disease behavior and outcome. While this is the most
extensive genomic study of CCOC to date, greater sample size with

additional follow-up data will allow improved assessment and vali-
dation of these clinically relevant subtypes. Although future analyses
would benefit from larger patient collections, our current results
suggest that genomic classificationmay inform the future development
of targeted therapeutics in CCOC.
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