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Background: The genomic features of cancer cells may confer the metastatic ability of
lung adenocarcinoma (LUAD) to metastasize to specific organs. We aimed to identify the
differences in genomic alterations between patients with primary LUAD with and without
metastases and to elucidate the metastatic biology that may help developing biomarker-
directed therapies for advanced or metastatic disease.

Methods: A retrospective cohort of 497 patients with LUAD including 388 primary tumors
(PR), 53 bone metastases (MT-bone), 30 liver metastases (MT-liver), and 26 brain
metastases (MT-brain) was tested for genomic alterations by a next-generation
sequencing assay.

Results: The EGFR, TP53, TERT, LRP1B, CDKN2A, ERBB2, ALK, and KMT2C genes
had a high frequency of mutations, and the mutations were shared by PR and metastases
groups. TP53 and EGFR were the most common mutated genes. In comparison with PR,
KRAS, STK11, ATM,NPM1, and ROS1were significantly mutated in MT-brain, and TP53,
MYC, RSPO2, CDKN2a, and CDKN2B were significantly mutated in MT-liver. The
frequencies of TP53, CDKN2A, MTAP, PRKCI, and APC mutations were higher in MT-
bone than that in PR. The ERBB, phosphoinositide-3-kinase/protein kinase B (PI3K-AKT),
cell cycle, Fibroblast growth factor (FGF), and homologous recombination deficiency
signaling pathways were affected in both PR and metastases, and there is higher
frequency of mutations in metastases. Moreover, the co-mutations in patients with PR
and metastasis were respectively analyzed. In addition, the programmed death ligand 1
(PD-L1) level was obviously related to tumor stage and tumor metastases, and the tumor
mutational burden was correlated to clinicopathological features including age, gender,
pathological stages, and tumor metastases. FGFR1, KAT6A, MYC, RAD21, TP53, and
DAXX were also dramatically correlated to the tumor mutational burden.

Conclusion:Metastases are the most devastating stage of tumors and the main cause of
cancer-related deaths. Our results provided a clinically relevant view of the tumor-intrinsic
mutational landscape of patients with metastatic LUAD.
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INTRODUCTION

Metastasis to distant organs remains the leading cause of cancer-
related death (1). Metastasis is a dynamic process involving the
dissemination of cancer cell from their primary site to a distant
organ and the subsequent colonization of cancer cells at that
distant site (1). Most cancers have specific metastatic patterns: a
phenomenon known as “organotropism’’ or “organ-specific
metastasis” (2). For lung cancer, the most common sites of
metastasis are the contralateral lung, brain, bone, and liver (3, 4).

Lung cancer is the most common cancer in the world and the
leading cause of cancer death (5), which has the highest
morbidity and mortality rates in the world (6). For patients
with metastatic lung cancer, the overall survival of 5-year was less
than 5% until the last decade. Clinical observations suggested
that metastatic sites may predict prognosis (3). The outcomes of
the liver and bone metastases were inferior to brain metastasis
(3). Lung adenocarcinoma (LUAD) is the most common subtype
of lung cancer (7), preferentially metastasizes to the brain, liver,
contralateral lung, bone, and adrenal system (3). Although
targeted therapies have significantly improved the treatment of
patients with LUAD for the past few years, the prognosis is still
poor (8), and more investigation on the additional therapeutic
targets for LUAD is needed.

Targeted therapy and immunotherapy often require genomic
alteration or their derivatives to serve as biomarkers for the
identification of appropriate patients (9). All malignant tumor is
the result of genetic variation, and the development of tumor is a
process of accumulation of genetic and epigenetic changes (10).
Next-generation sequencing (NGS) of the primary tumor
samples has been widely acted as a practical method for
identifying genetic variation in patients with lung cancer (11).
In general, metastatic cancers carry mutations similar to those of
the primary cancer, but additional mutations occur after
transformation (12). NGS has been widely used to identify
genetic variation between groups of the primary tumor
samples and metastases in LUAD, but the association of
cancer-intrinsic mutational status with organ-specific
metastases in LUAD remains unclear. Elucidating the
metastatic biology of lung cancer may help developing
biomarker-directed therapies and improving treatment
strategies of advanced or metastatic disease.

To evaluate the genomic features of cancer cells that may
confer the metastatic ability to specific organs, we investigated
the association of cancer-intrinsic mutational status with organs
of metastases. Understanding the genomic profiles of non-
metastatic and metastatic tumors at different sites could help
guide the treatment of LUAD and future drug development.
MATERIAL AND METHODS

Patients
A total of 497 Chinese patients with LUADwere selected from 959
patients for this study, whose tumor tissue and matched blood
specimens were collected by authors from patients admitted to the
Shandong Provincial Hospital Affiliated to Shandong First Medical
Frontiers in Oncology | www.frontiersin.org 2
University andFourthHospital ofHebeiMedicalUniversity during
December 2017 toMarch 2020. From the 497 eligible patients with
LUAD, 388 patients failed to detect any tumor out of the primary
lung adenocarcinoma (PR) and 109 patients had metastasis,
including 30 patients with liver metastases (MT-liver), 26 patients
with brain metastases (MT-brain), and 53 patients with bone
metastases (MT-bone). This study was approved by the
Institution Review Board according to the Declaration of Helsinki
and obtained the informed consent from all enrolled patients.

Sample Preparation
The formalin-fixed paraffin-embedded (FFPE) tumor samples
and matched blood samples were retrieved from the accredited
clinical hospitals. The NGS results of these two (tissue and blood)
sampling methods are not completely consistent, and when used
in clinical practice, they can be conditionally collected
simultaneously as a mutual supplement to make the genetic
information of tumor cells obtained by analysis more complete.
The diagnosis of the histologic subtyping was affirmed through
independent pathologists from OrigiMed (Shanghai). The
percentage of tumor cells in each sample was 20% or more,
and at least 50 ng of tumor tissue DNA was extracted for
subsequent genetic analysis.

Targeted NGS and Genetic Analysis
Genomic profiling was carried out using a targeted panel of 450+
cancer-related genes (Yuansu, Origimed Inc.) (13, 14). The FFPE
samples and matched blood samples were obtained for genetic
alteration testing. Tumor mutation burden (TMB) was defined as
somatic mutation of genomic detection, including coding base
substitutions and indel mutation per megabase (muts/Mb). We
defined TMB ≥ 10 muts/Mb as TMB-High and <10 muts/Mb as
TMB-Low (15).

PD-L1 Staining
The PD-L1 staining was performed as previously described (16).
The FFPE samples were stained using anti–PD-L1 antibody
(Abcam, Cambridge, UK), and the percentage of positive PD-
L1 staining cells was counted. Positive membrane staining of 1%
of tumor cells or tumor-infiltrating immune cells was defined as
positive for PD-L1.

Statistical Analysis
The Fisher’s exact test was used to analyze the relationship
between TMB or PD-L1 expression and clinical indexes.
Wilcoxon test and T-test were performed to analyzed the genes
correlated to TMB. The Fisher’s exact test and the Chi-square
test were used to compare gene-level mutation frequency
between PR and MT-bone, MT-liver, or MT-brain. A p-value
≤ 0.05 was recognized statistically significant.
RESULTS

Patient Characteristics
A total of 497 patients with LUAD were investigated in this
study. Among them, 388 (78%) samples were diagnosed as
July 2022 | Volume 12 | Article 908759
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primary tumors, and 53 (10.7%), 30 (6.0%), and 26 (5.2%)
samples were metastases in bone, liver, and brain, respectively.
In patients with primary LUAD, there were 181 (46.6%) stage I,
95 (24.4%) stage IV, 67 (17.3%) stage III, and 40 (10.3%) stage II
patients, respectively. The median age of patients with primary
LUAD was 61, ranging from 32 to 81; and that of patients with
bone metastasis was 59, ranging from 33 to 82; patients with liver
metastasis was 63.5, ranging from 36 to 85; and patients with
liver metastasis was 60, ranging from 26 to 72. Among the 388
patients with primary LUAD, 211 were female and 177 were
male; among the 53 patients with bone metastasis, 23 were
female and 30 were male; among the 30 patients with liver
metastasis, 13 were female and 17 were male; and among the 26
patients with brain metastasis, 10 were female and 16 were male.
In patients with primary LUAD, 116 patients had smoked and
254 never smoked. Among the patients with bone metastasis, 12
patients had smoked and 29 never smoked; among the patients
with liver metastasis, 12 patients had smoked and 14 never
smoked; and among the patients with brain metastasis, three
had a history of smoking and 17 never smoked. The detailed
clinical characteristics of these patients were listed in Table 1.

The Mutational Landscape in Primary
Tumors and Metastases
A total of 4843 mutations were found, including 209 fusions/
rearrangements, 1,202 gene amplifications, 86 gene homozygous
deletions, 1,627 substitutions, and 407 truncations, in the entire
cohort: primary tumors (PR) and metastases (MT-liver, MT-bone,
and MT-brain). The top 40 mutated genes in PR, MT-brain, MT-
liver, and MT-bone were demonstrated in Figures 1A–D,
respectively. The EGFR, TP53, TERT, LRP1B, CDKN2A, ERBB2,
Frontiers in Oncology | www.frontiersin.org 3
ALK, andKMT2C genes had a high frequency ofmutations, and the
mutations were shared by PR and metastases (MT-liver, MT-bone
andMT-brain).TP53 and EGFRwere themost frequentlymutated
genes, among which TP53 accounted for 83% of MT-liver and
EGFR accounted for 70% of MT-bone. Notably, MAP3K13
mutation was found exclusively in MT-liver.

Discrepancy of Mutation Frequency
Between Primary Tumors and Metastases
The frequency of mutations was compared between PR and
metastases by using the Fisher’s exact test. In comparison with
PR, MT-brain, MT-liver, and MT-bone had more gene
amplifications and gene homozygous deletions but fewer
substitutions (Figures 2A–E). In addition, the frequently mutated
genes in PR and metastases were displayed in Figures 3A–C. In
comparison with PR, the mutations of ARID1A, ATM, B2M,
COL1A1, CRKL, DDR1, KDM5C, KDM6A, KRAS,MTAP, NPM1,
NRG3, ROS1, RUNX1T1, STK11, and VEGFA were significantly
more frequent inMT-brain (Figure 3A). Themutation frequencies
of ADGRA2, ARFRP1, CDKN2B, DAXX, EGF, EPHA7, FAT4,
FGFR1, KAT6A, KMT2C, MSH2, MYC, NET1, NOTCH1,
PRKDC, RAD21, RSPO2, TBX3, and TP53 were significantly
different between PR and MT-liver (Figure 3B), whereas the
mutation frequencies of APC, CDKN2A, CDKN2B, GRIN2A,
MCL1, MTAP, PRKCI, and TP53 were significantly different
between PR and MT-bone (Figure 3C).

To better discover the affected signaling pathways and guide the
development of targeted therapy,we classified patients according to
the presence and absence of mutation in each signaling pathway.
The topfiveaffectedsignalingpathwayswereERBB,PI3K-AKT, cell
cycle, FGF, and homologous recombination deficiency in PR and
TABLE 1 | Clinicopathological profile of patients.

Primary tumors (n = 388) Bone metastases (n = 53) Liver metastases (n = 30) Brain metastases (n = 26)

Age
Median 61 59 63.5 60
Range 32–81 33–82 36–85 26–72

Gender
Male 177 (45.6%) 30 (56.6%) 17 (56.7%) 16 (61.5%)
Female 211 (54.4%) 23 (43.4%) 13 (43.3%) 10 (38.5%)

Smoking status
Smokers 116 (29.9%) 12 (22.65%) 12 (40.0%) 3 (11.5%)
Non-smokers 254 (65.5%) 29 (54.7%) 14 (46.7%) 17 (65.4%)
NA 18 (4.6%) 12 (22.65%) 4 (13.3%) 6 (23.1%)

Stage
I 182 (46.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
II 42 (10.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
III 67 (17.3%) 2 (3.8%) 0 (0.0%) 0 (0.0%)
IV 96 (24.7%) 51 (96.2%) 30 (100.0%) 26 (100.0%)
NA 1 (0.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

PD-L1
Negative 117 (30.2%) 27 (50.9%) 10 (33.3%) 9 (34.6%)
Positive 26 (6.7%) 6 (11.3%) 5 (16.7%) 6 (23.1%)
NA 245 (63.1%) 20 (37.7%) 15 (50.0%) 11 (42.3%)

TMB
High 67 (17.3%) 8 (15.1%) 6 (20.0%) 13 (50.0%)
Low 294 (75.8%) 39 (73.6%) 23 (76.7%) 13 (50.0%)
NA 27 (6.9%) 6 (11.3%) 1 (3.3%) 0 (0.0%)
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metastatic tumors, with a higher frequency ofmutations in patients
with metastasis (Figure 4).
Co-Mutation Analysis in Primary Tumors
and Metastases
Co-mutations could provide information for drug combination
therapy and medication instruction. In PR, EGFR mutations and
SMARCA4, ALK, STK11, KEAP1, SPTA1, LRP1B, and KRAS
mutations were mutually exclusive, but EGFR mutations were
found to be co-occurred with BCL2L11, RB1, and TP53
mutations. TP53 mutations were significantly co-occurred with
Frontiers in Oncology | www.frontiersin.org 4
LRP1B and RB1 mutations. KRAS, KEAP1, and FAM135B
mutations were co-occurred with STK11 mutations, and NKX2-1
mutations were co-occurred with ERBB2, FRS2, and RB1mutations,
respectively. SDHA mutations were significantly co-occurred with
TERT and RB1mutations.MDM2mutations were significantly co-
occurred with FRS2 mutations. SMARCA4 mutations were co-
occurred with FAT3 and SPTA1 mutations (Figure 5A). In MT-
brain, LRP1Bmutations were significantly co-occurred with SPTA1
mutations, ERBB2 mutations were co-occurred with CDK12
mutations, and SPTA1 mutations were significantly co-occurred
with CCNE1 mutations (Figure 5B). In MT-liver, CDKN2B
mutations were significantly co-occurred with CDKN2A
A B

C D

FIGURE 1 | Genomic profiling of somatically altered genes and frequently mutated genes. (A) Primary tumors (PR). (B) Brain metastases (MT-brain). (C) Liver
metastases (MT-liver). (D) Bone metastases (MT-bone).
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mutations, and RAD21 mutations were obviously co-occurred with
MYC and RSPO2mutations.HGFmutations were co-occurred with
FAM135B mutations, and CIC mutations were co-occurred with
GNAS mutations (Figure 5C). In MT-bone, MDM2 and GRIN2A
mutations were both significantly co-occurred with CDK4, FRS2,
and GRIN2Amutations, and CDKN2Bmutations were co-occurred
with CDKN2A mutations. SDHA mutations were co-occurred with
TERT mutations, and LRP1B mutations were co-occurred with
KMT2C mutations (Figure 5D).

Correlation Between Expression of PD-L1,
TMB, and Clinicopathological
Characteristics
TMB is a promising prognostic biomarker for immunotherapy
across multiple cancer types. The median TMB for the cohort was
Frontiers in Oncology | www.frontiersin.org 5
4.3 muts/Mb, with a range from 0.5 to 55.7. TMB-High was seen
in 18.9% of patients, and TMB-Low was seen in 74.2% of patients.
Higher percentages of patients had the late tumor stage and tumor
metastasis condition, which were also displayed in the TMB-High
group, suggesting that these clinical factors might be relate to
higher TMB to some degree (Figure 6A). We determined the
relationship between TMB level and the clinicopathological
characteristics of LUAD. The results observed that the level of
TMB was obviously correlated to the age, gender, pathological
stages, and tumor metastasis (Figures 6B–F). TMB was also
significantly associated with APC, KRAS, NOTCH1, SMARCA4,
STK11, and ATRX mutations (Table 2).

Meanwhile, the relationships between the PD-L1 level and the
clinicopathological features of LUAD were also analyzed. A total of
206 patients with LUAD enrolled in our study had PD-L1 staining
A

B C

D E

FIGURE 2 | The distribution of mutation types of primary tumors and metastases. (A) The percentages of different mutation types in PR and metastases. (B) A
comparison of the proportions of mutation types between patients with PR and metastasis, (C) PR and MT-brain, (D) PR and MT-liver, and (E) PR and MT-bone.
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results, and the proportion of PD-L1–positive cases accounted for
79.1%. The 206 patients included 15 patients with MT-brain (PD-
L1 negative, 6; PD-L1 positive, 9), 33 patients with MT-bone (PD-
L1 negative, 6; PD-L1 positive, 27), and 15 patients with MT-liver
(PD-L1 negative, 5; PD-L1 positive, 10). We observed that PD-L1
expression was dramatically related to tumor metastases and
pathological stages, whereas there was no significant relationship
between the PD-L1 level and the other clinicopathological indexes
including age, gender, and smoking history (Figure 7).
DISCUSSION

Most lung cancers have already metastasized at the time of initial
diagnosis, and the survival rate of 5-year is poor (17). LUAD
Frontiers in Oncology | www.frontiersin.org 6
accounts for nearly 61% of the pathological subtypes of lung
cancer, so it is of great research value to improve the survival rate
of LUAD (18). Although more attention has been paid on LUAD
gene sequencing, the genetic profile and the underlying
mechanisms of metastatic cancer progression are still poorly
understood. We hope that the discovery of the differences in
genomic landscape between patients with primary LUAD with
and without metastases in our study could provide guidance for
the treatment and future drug development of LUAD.

Our study found that the frequently mutated genes including
EGFR, TP53, KRAS, TERT, LRP1B, CDKN2A, ERBB2, ALK, and
KMT2C were shared by PR and metastases. We found that EGFR
mutations were frequently mutated in PR (64%), MT-brain
(50%), MT-liver (50%), and MT-bone (70%). The results was
consistent with a previous study reporting that EGFR was the
A

B

C

FIGURE 3 | The differences of genomic mutations between PR and metastases. The differences of genomic mutations between (A) PR and MT-brain, (B) PR and
MT-liver, and (C) PR and MT-bone.
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most frequently shared driver gene, which accounted for more
than 40%–50% of the whole LUAD population (19). KRAS
mutations have been observed to be related to poor prognosis
in resected lung cancer, lack of survival benefit from adjuvant
chemotherapy, and resistance to erlotinib or gefitinib (20–22).
The results in the study of Pao et al. have indicated that, by
determining the mutant status of EGFR and KRAS, treatment
decisions for the use of these kinase inhibitors can be improved
(22). Gefitinib/erlotinib targeting EGFRmutations and crizotinib
targeting ALK translocations have shown clinical benefit and
Frontiers in Oncology | www.frontiersin.org 7
approved for clinical use (23). telomerase reverse transcriptase
(TERT) inhibition has been acted as a promising therapeutic
strategy for LUAD (24, 25). These mutated genes of LUAD may
serve as potential targets, providing more possibilities and
strategies for the treatment of LUAD.

Considering the spatial heterogeneity of the tumor, the
genetic mutation status of a few tumor cells in the primary site
may not represent the mutation status of distant metastasis (26).
ARID1A, ATM, B2M, COL1A1, CRKL, DDR1, KDM5C, KDM6A,
KRAS, MTAP, NPM1, NRG3, ROS1, RUNX1T1, STK11, and
A B C D

FIGURE 4 | The mutation profiles according to signaling pathways in PR and metastases. The mutation profiles of the top five affected signaling pathways in (A) PR,
(B) MT-brain, (C) MT-liver, and (D) MT-bone.
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VEGFA were significantly mutated in the 26 patients with brain
metastases in our cohort, compared with PR. Shih et al. have
shown that the most frequently mutated genes (MYC, TERT,
MDM2, CDK4, CCND1, and NKX2–2) in both the brain
metastasis–LUAD and The Cancer Genome Atlas (TCGA)-
LUAD cohorts (27). A previous study revealed that more
ARID1A mutations were observed in MT-brain than that in
PR (28). The deficiency of MTAP to predict better treatment
response in patients with advanced LUAD who receive early
pemetrexed platin chemotherapy and bevacizumab (29). KRAS
mutation was significantly more common in MT-brain than
described for extracranial tumor manifestations (30). Whether
the newly identified genes highly mutated in both MT-brain and
PR can be used as predictive biomarkers and provide more
guidance for the treatment of MT-brain remains to be validated.
The mutation frequencies of ADGRA2, ARFRP1, CDKN2B,
DAXX, EGF, EPHA7, FAT4, FGFR1, KAT6A, KMT2C, MSH2,
MYC, NET1, NOTCH1, PRKDC, RAD21, RSPO2, TBX3, and
TP53 were significantly different between PR and MT-liver.
Emerging evidence supported that TP53 mutations augmented
the metastatic potential of tumors (31). The underlying
mechanism might be correlated to chromosomal instability or
drug resistance but still remained to be further elucidated (32). In
a study reported by Liao et al., in 2018, APC was only mutated in
PR but not in MT-brain, whereas our study showed that APC
was mutated not only in PR but also in MT-brain and MT-bone
(33). Our results indicated that the mutation frequencies of APC,
Frontiers in Oncology | www.frontiersin.org 8
CDKN2A, CDKN2B, GRIN2A, MCL1, MTAP, PRKCI, and TP53
were significantly different between PR and MT-bone. CDKN2A/
B were more abundant across all three metastatic cohorts. The
mutations of CDKN2A/B were frequently involved in genomic
deletions. CDKN2A/B are frequently mutated and tested in
various tumors. Several studies indicated CDKN2A/B deleted
or mutated patients can benefit from CDK4/6 inhibitors (34–37).
In a phase II clinical trial (NCT01291017), advanced non–small
cell lung cancer patients with wild-type RB and inactive
CDKN2A can benefit from palbociclib treatment. Eight of the
16 patients have achieved stable disease for more than 4 months.
Emergence of new genes with significantly higher mutation
frequency in each organ metastasis compared with the primary
tumors suggests that the different immunotherapeutic responses
of each organ metastasis to highly mutated tumors and their
sensitivity to PARP inhibitors may be a potential treatment for a
specific metastatic organ.

In the past, it is generally accepted that lung cancer drive gene
mutations were mutually exclusive (38). With the development of
gene detection technology, cases of co-existing driver gene
mutations were explored. In PR, KRAS, KEAP1, and FAM135B
mutations were co-occurred with STK11 mutations. This finding
was similar to previously result that co-mutations of both STK11
and KEAP1 were a strong determinant of unfavorable prognosis
with currently available therapies (39). NKX2-1 mutation was co-
occurred with ERBB2, FRS2, and RB1 mutations, which was
different from a previous study reported a co-mutation of
B

C D

A

FIGURE 5 | Co-occurrence of genomic alterations in PR and metastases. (A) The co-occurrence relationship between genomic mutations in PR is displayed in heatmap.
(B–D) The co-occurrence relationships between genomic mutations in MT-brain, MT-liver, and MT-bone are shown in corresponding heatmaps, respectively.
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TABLE 2 | The mutated genes associated with TMB.

Gene T-testp-value Wilcox test p-value Gene T-testp-value Wilcox test p-value

APC 0.041871 0.004278 KMT2C 0.003101 3.32E−05
ATRX 0.029324 0.002635 KRAS 0.01462 8.58E−04
BRCA1 0.014862 3.69E−04 LRP1B 2.19E−04 1.96E−08
CIC 0.04393 0.001201 LRP2 0.046485 0.010335
DICER1 0.04464 0.004705 MAGI2 0.020854 4.43E−04
EGFR 9.56E−06 1.05E−04 MUC16 0.002019 4.93E−06
ERBB4 0.021124 0.004603 NOTCH1 0.029449 0.002045
ERRFI1 0.04559 0.00235 NOTCH2 0.045895 0.002165
FAM135B 0.005188 1.26E−04 NTRK2 0.015291 0.004905
FANCA 0.049024 2.57E−04 PLCG2 0.041594 0.002491
FAT3 0.014584 2.93E−04 POLE 0.00878 8.55E−06
FAT4 0.009024 3.19E−04 RB1 0.03535 8.56E−04
GATA1 0.016516 9.58E−04 SMARCA4 0.001403 2.43E−06
GATA3 0.036069 0.037538 SOX9 0.048958 0.011621
GLI1 0.029308 0.008542 SPEN 0.020829 6.66E−04
GNAS 0.024932 0.014035 SPTA1 4.57E−04 1.03E−06
IL7R 0.027336 8.68E−04 STK11 0.003398 2.95E−06
KDR 0.036724 0.009621 TP53 1.40E−06 1.94E−07
KEAP1 0.02231 0.00137
Frontiers in Oncology | w
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FIGURE 6 | The relationship between TMB and clinical features. (A) The percentage of patients with different clinical features in the TMB-High and TMB-Low
groups. (B) The relationship between TMB and age. (C) The relationship between TMB and gender. (D) The relationship between TMB and pathological stages.
(E) The relationship between TMB and smoking history. (F) The relationship between TMB and tumor metastasis.
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NKX2-1 and NEKB1A in PR (9). Patients with metastasis had
different co-mutation profiles from PR. In MT-brain, LRP1B
mutation was significantly co-occurred with SPTA1 mutation,
and ERBB2 mutation was co-occurred with CDK12 mutation.
RAD21 mutation was obviously co-occurred with MYC and
RSPO2 mutations in MT-liver. In MT-bone, MDM2 mutation
was significantly co-occurred with CDK4 mutation, and LRP1B
mutation was co-occurred with KMT2C mutation. Previous
studies have shown that co-mutations of TP53 and KRAS can
function as potential biomarkers for immune checkpoint blockade
in lung cancer (40) and that co-mutations of KRAS and TP53
could identify long-term responders to first-line palliative
treatment with pembrolizumab from patients with LUAD with
high PD-L1 level (41). In our study, we drafted the co-mutation
profiles of LUAD with different site of metastasis, which might
provide potential biomarkers for immune checkpoint blockade in
LUAD with different organ metastases.

Inconclusion,weanalyzed themutationalprofiles that represent
the tumor-intrinsic factors of LUADmetastases. Metastatic cancer
Frontiers in Oncology | www.frontiersin.org 10
is a highly devastating disease. The development of novel systemic
treatments of metastatic cancer depends on the insight into the
therapeutic implications of metastatic heterogeneity. Our findings
on genomic characterization of PR and metastasis provide a viable
strategy for discovering potential pathways to prevent and treat
metastatic LUAD.
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