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The Hodgkin-Huxley (HH) spiking neuron model reproduces the dynamic characteristics

of the neuron by mimicking the action potential, ionic channels, and spiking behaviors.

The memristor is a nonlinear device with variable resistance. In this paper, the memristor

is introduced to the HH spiking model, and the memristive Hodgkin-Huxley spiking

neuron model (MHH) is presented. We experimentally compare the HH spiking model

and the MHH spiking model by applying different stimuli. First, the individual current

pulse is injected into the HH and MHH spiking models. The comparison between action

potentials, current densities, and conductances is carried out. Second, the reverse

single pulse stimulus and a series of pulse stimuli are applied to the two models. The

effects of current density and action time on the production of the action potential are

analyzed. Finally, the sinusoidal current stimulus acts on the two models. The various

spiking behaviors are realized by adjusting the frequency of the sinusoidal stimulus. We

experimentally demonstrate that the MHH spiking model generates more action potential

than the HH spiking model and takes a short time to change the memductance. The

reverse stimulus cannot activate the action potential in both models. The MHH spiking

model performs smoother waveforms and a faster speed to return to the resting potential.

The larger the external stimulus, the faster action potential generated, and the more

noticeable change in conductances. Meanwhile, the MHH spiking model shows the

various spiking patterns of neurons.

Keywords: HH, MHH, memristor, neuron, spiking

1. INTRODUCTION

Neurons with highly nonlinear characteristics act as the basic functional unit of receiving and
propagating signals. The whole procedure of processing signals in the nerve system needs the
cooperation of neurons. Some theoretical knowledge and research methods are beneficial to unveil
the mechanism of information propagation in neurons. Italian scientist Camillo Golgi worked on
the nervous system structure and earned the Nobel Prize for physiology and medicine in 1906
(Dröscher, 1998). In 1998, Ramon y Cajal pointed out that the neurons without directly connecting
each other in the nerve system (Raviola and Mazzarello, 2011). To replicate the functions and
mechanisms of neurons, we urgently need to construct the biophysical model. A variety of
neuron models are emerging, and the Hodgkin-Huxley (HH) spiking neuron model is the original
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(Hodgkin and Huxley, 1989). Stochastic Hodgkin-Huxley
Neuron Systems with the NEF is helpful to study neuron
sensitivity (Chen and Li, 2010). The Hodgkin-HuxleyModel with
automatic parameter estimation is applied to the neuromimetic
chips (Buhry et al., 2011). The space-clamped Hodgkin-Huxley
model effectively inhibits the production of spikes under the
injection of the noisy synaptic input (Tuckwell and Ditlevsen,
2016). The Langevin is combined with the Hodgkin-Huxley
system performs accurate interspike interval (ISI) and realizes the
accuracy minimal loss (Pu and Thomas, 2020). The Berger-Levy
theory is introduced to the Hodgkin-Huxley model, demonstrate
that the information communication between neurons is related
to the presynaptic firing rate and the synchronization (Ghavami
et al., 2018).

The memristor with the non-volatility and variable resistance
characteristics is regarded as the fourth passive circuit element.
Therefore, it becomes a hot topic in neural computing (Le et al.,
2015), learning andmemorizing (Sayyaparaju et al., 2018), micro-
circuitry design (Berdan et al., 2014), biological synapse (Mandal
and Saha, 2016), and neuron modeling (Maheshwar et al., 2014),
and so on. The synaptic plasticity of biological neuronal systems
can be realized by memristors and memristive crossbar in 3-D
architecture to mimic the human brain (Truong et al., 2016).
The memristor with hysteresis and memory characteristics is
the most promising candidate for establishing the brain-like
neuromorphic system (Mokhtar et al., 2017). The key features of
biological neurons and synapses can be mimicked by memristors
(Berdan et al., 2016; Mandal and Saha, 2016). The ion motion
in neurons is represented by the electrical conductance change
of a memristor (Xia and Yang, 2019). A memristor is used
as a two-terminal resistor with memory (Chua, 1971; Strukov
et al., 2008) performs well in storing information according to
the physical laws (Yang et al., 2013). The memristor entirely
avoids the data transformation bottleneck between the memory
and computation (Li and Wang, 2019). The memristor crossbar
array can be used to integrate the co-processor chip, which
will realize machine learning algorithms and neuromorphic
computing (James, 2019).

This work elaborates on the construction of the memristive
Hodgkin-Huxley spiking neuron model. The mathematical
expressions and the circuit of the HH spiking model are
presented and analyzed in sections 2, 3. Section 4 describes the
MHH spikingmodel and discusses the memristors used to mimic
the ion channels. The comparison between two models under
the different stimuli is conducted in section 5. Section 6 is the
conclusion of the paper.

2. THE HODGKIN-HUXLEY (HH) SPIKING
NEURON MODEL

The neuron cell membrane is a voltage-gated ion channel, which
has high selectivity for the permeability of external and internal
ions in body fluid. Only one type of ion can pass through
specific channels. There involves four ionic components, sodium,
potassium, calcium, and chloride. The transmembrane current
depends on the rapid inward current caused by sodium and

the slow outward current caused by potassium (Häusser, 2000).
The ion concentration difference inside and outside of the cell
is the primary driving force of neural activities. When the
sodium channels are opened, the high concentration sodium
flows from extracellular to intracellular, the depolarization is
produced, the action potential is generated. And then, the sodium
channels are closed, and the potassium channels are opened,
the potassium permeates from intracellular to extracellular, the
repolarization is performed. Finally, the membrane potential
undergoes a hyperpolarization phase, the membrane potential
shifts back to the resting potential. The above process is the
generation mechanism of the action potential in a neuron.

The inside of the axon membrane is full of ionic fluids
(cytoplasm), the outside of the axonmembrane is filled with body
fluids. The fluids (conductor) of intracellular and extracellular
are separated by the axon membrane (insulator). When an
insulator separates two conductors, the capacitor emerges to
model the charge storage capacity. The part of the axon
membrane without ion channels is equivalent to a capacitor
(Cm). The axon membrane of the neuron consists of the lipid
bilayer, the membrane protein, and ion channels (the upper
image in Figure 1). The sodium ion channel is represented by
a nonlinear conductance (gNa), the potassium ion channel is
denoted by a nonlinear conductance (gK), and other ion channels
are described as a linear conductance (gL) (Beck et al., 2020).
When the neuron is in the resting state, a potential difference
is caused by the ionic concentration between the intracellular
and extracellular fluids. The potential difference is called the
equilibrium potential of each ion (ENa, EK , and EL), which
is equivalent to a driving power supply (the lower image in
Figure 1).

When the neuron is in the resting state, there is a resting
potential. Here, we choose vrest =−65 mV as the resting potential
in experiments (Hodgkin and Huxley, 1952). The Vm denotes
the membrane potential, ENa (50 mV), EK (−70 mV), and EL
(−50 mV) represent the Nernst equilibrium potentials. When
the potassium current passes through the potassium channel,
the potassium current is proportional to the difference between
the membrane potential and EK (Hodgkin and Huxley, 1989;
Börgers, 2017):

IK = gK(Vm − EK) (1)

Here, gK is the potassium conductance, (Vm-EK) is the potassium
driving force. The sodium current and the leaky current are
described as:

INa = gNa(Vm − ENa) (2)

IL = gL(Vm − EL) (3)

The ion channels are sensitive to membrane potential, which
control the open and close states of channels.

In the Hodgkin-Huxley spiking model, the conductance value
of each ion channel is decided by the gate-controlled variables m,
n, h, and 0 ≤ m ≤ 1, 0 ≤ n ≤ 1, 0 ≤ h ≤ 1. The potassium
channel depends on four active gate variables (n). The sodium
channel is controlled by three active gate variables (m) and
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FIGURE 1 | The voltage-gated channel of the axon cell membrane.

one inactive gate variable (h). The potassium conductance, the
sodium conductance, and the leaky conductance are described as:

gK = gKmaxn
4 (4)

gNa = gNamaxm
3h (5)

gL = gLmax (6)

Here, gKmax, gNamax, and gLmax denote the maximum values of
potassium, sodium, and leaky conductances, accordingly. Their
values are 36, 120, 0.3 Ohm−1cm−2 (Hodgkin and Huxley,
1952, 1989). The expressions of gate-controlled variables of ion
channels are written as follows:

dm/dt = 1/τm(m∞ −m) (7)

dn/dt = 1/τn(n∞ − n) (8)

dh/dt = 1/τh(h∞ − h) (9)

The time constants τm, τn, and τh change with m, n, and h,
accordingly. The transition rate α characterizes the ion channels
change from the close state to the open state. The transition rate
β indicates the ion channels vary from the open state to the close
state. m∞, n∞, and h∞ are the steady-state values of the gate
variables m, n, and h, accordingly (Saïgai et al., 2011). They are all
the functions of the membrane potential. Their expressions are:

m∞ = αm/(αm + βm) (10)

n∞ = αn/(αn + βn) (11)

h∞ = αh/(αh + βh) (12)

τm = 1/(αm + βm) (13)

τn = 1/(αn + βn) (14)

τh = 1/(αh + βh) (15)
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αm = ϕ(2.5− 0.1(Vm − Vrest))/(e
(2.5−0.1(Vm−Vrest)) − 1) (16)

αn = ϕ(0.1− 0.01(Vm − Vrest))/(e
(1−0.1(Vm−Vrest)) − 1) (17)

αh = 0.07ϕe(−(Vm−Vrest))/20 (18)

βm = 4ϕe(−(Vm−Vrest))/20 (19)

βn = 0.125ϕe(−(Vm−Vrest))/80 (20)

βh = ϕ/(e(3.0−0.1(Vm−Vrest)) + 1) (21)

Here, ϕ=3(T−6.3)/10. The relationship between the transition state
and the membrane potential is shown in Figure 2 (Hodgkin and
Huxley, 1952, 1989; Börgers, 2017).

The HH spiking neuron model is strongly dependent on
the temperature, and the early experiments were carried out
under the temperatures T = 6.3◦C and T = 18.5◦C. When
the temperature is 6.3◦C, the transition rates of the active
gates αn and αm (Figure 2A), the inactive rate βh (Figure 2B)
increase with the rise of the membrane potential. The inactive
transition rate αh (Figure 2A), the active transition rates βn and
βm (Figure 2B) decrease with the increase of the membrane
potential. When the temperature is increased to 18.5◦C, the
transition rates α and β show the same experimental phenomena
(Figures 2C,D) as above. We compare the transition rates at
different temperatures, and the difference is performed in the
light blue ellipse. When the temperature is 6.3◦C, αn varies from
0 to 10, αm alters from 0 to 1, αh changes from 0.5 to 0 (the
enlarged plot in Figure 2A). When the temperature is 18.5◦C, αn

varies from 0 to 36, αm adjusts from 0 to 3.5, αh changes from 2
to 0 (the enlarged plot in Figure 2C). When the temperature is
set to 6.3◦C, βn varies from 37 to 0, βm adjusts from 0.2 to 0, βh

changes from 0 to 1 (the enlarged plot in Figure 2B). When the
temperature is increased to 18.5◦C, βn varies from 140 to 0, βm

adjusts from 0.8 to 0, βh changes from 0 to 4 (the enlarged plot in
Figure 2D). The higher the temperature, the greater the range of
conversion rates, the longer time needed to return to the critical
value of the transition rate.

When the temperatures are T = 6.3◦C and T = 18.5◦C,
the simulation plots between the steady values of gate variables
(m∞, n∞, and h∞) and the membrane potential, the relationship
between the time constant (τm, τn, and τh) and the membrane
potential, as shown in Figure 3.

The steady-state values (m∞ and n∞) of activation gate
variables (m and n) change from 0 to 1 with the increase of
the membrane potential. The steady-state value (h∞) of the
inactivation gate variable (h) decreases with the increase of the
membrane potential (Figures 3A,C). The steady-state values are
not affected by the change of temperature.When the temperature
is 6.3◦C, τn varies from 5.8 to 1, τm adjusts from 0.8 to 0,
τh changes from 9 to 1. When the temperature is increased
to 18.5◦C, τn varies from 1.5 to 0.25, τm adjusts from 0.2 to
0, τh changes from 2.25 to 0.25 (Figures 3B,D). The higher
temperature, the smaller the range of τ .

3. THE ELECTRICAL CIRCUIT OF THE
HODGKIN-HUXLEY SPIKING NEURON

The significant electrical properties of a neuron can be precisely
replicated by the HH circuit model, as shown in Figure 4A

(Hodgkin and Huxley, 1989).
Here, C is the membrane capacitor. gNa is the sodium

conductance, gK is the potassium conductance, and gL is the leaky
conductance. Vm is the membrane potential. IC is the capacitor
current, INa is the sodium current, IK is the potassium current,
and IL is the leaky current. Iext is the external stimulus. ENa, EK ,
and EL are ion concentration differences of sodium, potassium,
and leakage [namely, the equilibrium potentials (Emili et al.,
2003) are calculated by the Nernst equation (Hill, 1992)]. The
arrow directions of currents are pointing from inside to outside
of the membrane. The value of the extracellular potential is set to
zero (Vout= 0, namely, the extracellular is grounded) (Hodgkin
and Huxley, 1989).

According to Kirchhoff’s voltage-current law, the circuit
equations are described as:

Vm = Vin − Vout (22)

IC = dQ/dt (23)

Q = CVm (24)

Im = INa + IK + IL (25)

Iext = IC + INa + IK + IL = IC + Im (26)

In the giant squid axon experiment, the current through the axon
membrane is expressed as the current density J(t, x). It represents
the amount of the electric current per square centimeter, and
its unit is mAcm−2. Based on the mathematical analysis of the
RC equivalent circuit (Figure 4A), the following voltage-current
equations are obtained.

C∂Vm(t, x)/∂t = −Jm(t, x)+ Jext(t, x)+ 1/(2rin)∂
2Vm(t)/∂x

2

(27)

Jm = JNa + JK + JL (28)

JNa = gNa(Vm − ENa) (29)

JK = gK(Vm − EK) (30)

JL = gL(Vm − EL) (31)

The left side of (27) is the charging or discharging rate per
unit area for the capacitor. Jm(t, x) is the total current density
that flows through the membrane. JNa is the current density
passing through sodium conductance. JK is the current density of
potassium. Vm is the membrane potential. Jext(t, x) is the external
stimulus. The last term is the charge rate of longitudinal current
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FIGURE 2 | The relationship between transition state and membrane potential. (A) The evolution of the transition rate α at the temperature of 6.3◦C. (B) The variation

of the transition rate β at the temperature of 6.3◦C. (C) The evolution of the transition rate α at the temperature of 18.5◦C. (D) The change of the transition rate β at

the temperature of 18.5◦C.

along the inside membrane surface. It depends only on the time
t rather than the location x, so the quadratic partial differential
term equals zero, (27) can be rewritten as:

C∂Vm(t, x)/∂t = −Jm(t, x)+ Jext(t, x) (32)

The propagated action potential is performed by (32). The action
potential is sensitive to the temperature. The action potential
of the cell membrane shows distinct firing behaviors under
various temperatures.

When the temperature is 6.3◦C, the HH spiking model
generates three action potentials in 20 ms, the duration of a
spike is 7.65 ms (Figure 5A). When the temperature becomes
15◦C, the HH spiking model generates six action potentials in
20 ms, the duration of a spike decreases to 3.35 ms (Figure 5B).
When the temperature is increased to 20◦C, the HH spiking
model generates nine action potentials in 20 ms, the duration
of a spike reduces to 1.95 ms (Figure 5C). We increase the
temperature to 35◦C, and there is no action potential produced
after one action potential is generated (Figure 5D). We decrease
the temperature to −20◦C, and the action potential cannot be
obtained (Figure 5E). The temperature affects the time duration
of the spike, the generation of action potentials, and the firing
frequency of a neuron. It is hard to achieve the action potential
when the temperature is too high or low. The increase of
temperature has significantly decreased the time duration of the
spike and remarkably produced a higher firing frequency.

The external stimuli with various intensities act on the HH
spiking model, which performs different action potentials. When
the current density is 0.001mAcm−2, the HH spiking model
cannot produce the action potential (Figure 6A). When the
current densities are increased to 0.01 and 0.09mAcm−2, the

action potentials are obtained (Figures 6B,C). However, when
the current density becomes 0.2mAcm−2, the HH spiking model
generates one action potential. After that, it cannot produce the
action potentials (Figure 6D). The external stimulus is related
to the generation of the action potential. The larger the external
stimulus, the higher the firing frequency. If the external stimulus
is too larger or small, the HH spiking model cannot reproduce
the action potential.

When the action time of the external stimulus is 1 ms,
there is not enough time to show the complete firing process
(Figure 7A). Therefore, the action time is increased to 10 ms, and
the action potential is generated (Figure 7B). When the action
time becomes 20 or 50 ms, the HH spiking model produces more
action potentials (Figures 7C,D). Thus, the action time of the
external stimulus has a strong influence on the generation of
the action potential. The longer the action time, the more action
potentials generated. But when the action time is too long or
short, the HH spiking model cannot perform the firing process.

4. THE MEMRISTIVE HODGKIN-HUXLEY
(MHH) SPIKING NEURON MODEL

In the HH circuit model, the potassium conductance and the
sodium conductance are voltage-gated channels, which can be
described by time and membrane potential. The flux-controlled
memristor with the nonvolatile property is the function of time
and voltage, which can be used in a nonlinear circuit system
(Petras, 2010; Corinto and Forti, 2017; Corinto et al., 2018).
Based on the HH spiking model, we replace the sodium and
potassium conductances with the flux-controlled memristors
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FIGURE 3 | The relationship between gate-controlled variables, the time constant, and the membrane potential. (A) The evolution of the gate-controlled variables (m,

n, and h) at the temperature of 6.3◦C. (B) The change of the time constant (τ ) at the temperature of 6.3◦C. (C) The change of the gate-controlled variables (m, n, and

h) at the temperature of 18.5◦C. (D) The evolution of the time constant (τ ) at the temperature of 18.5◦C.

(Wang et al., 2012), and the memristive Hodgkin-Huxley spiking
neuron model is constructed (Figure 4B).

Some of the mathematical expressions in the HH spiking
model need to be modified. gNa and gK in (4) and (5) are replaced
by the memristance and rewritten as:

gMK = 1/MKn
4 (33)

gMNa = 1/MNam
3h (34)

The conductance values of the sodium and potassium ion
channels become the function of time, and the membrane
potential will change with the evolution of the memristance.

The flux-controlled memristor is described as (Wang et al.,
2012):

M(φ(t)) =















20000 φ(t) < −0.75
√

−3.98× 108φ(t)+ 108 φ(t) ≥ −0.75 and
φ(t) < 0.25

100 φ(t)) ≥ 0.25

(35)

Where MK=MNa=M is the function of time. The potassium
memristance (gMK) and the sodium memristance (gMNa) are
functions involved with time and membrane potential. When the
various external stimuli act on the MHH spiking neuron model,
changes in gMK and gMNa are performed in Figure 8.

The initial values of memductances and reductance gMK=
0.5×10−4 Ohm−1cm−2, gMNa= 0.5×10−4 Ohm−1cm−2, and
gL= 0.3×10−3 Ohm−1cm−2 [0.5×10−4 is the reciprocal of
the maximum value (20,000 Ohmcm−2) of a memristor]. The
temperature is 6.3◦C, C is 1 µF m−2. ENa is 50 mV, EK is −70

mV, and EL is−50 mV.
When the external stimulus [0.008 mA cm−2 (gMNa)] is

applied to the MHH spiking model, the sodium memductance

(the coral color curve) does not change in the time range from 0

to 1.025 ms (the enlarged plot in Figure 8A). Then, the sodium

memductance increases to 0.029Ohm−1cm−2 and then decreases

to zero. When the MHH spiking model receives the external
stimulus [0.08mAcm−2 (gMNa1)], the sodium memductance (the
dark red curve) remains the same in the time range from 0ms to
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FIGURE 4 | The electrical circuit of the axon cell membrane. (A) The HH circuit model. (B) The MHH circuit model.

1.38ms (the enlarged plot in Figure 8A). And themaximum value
of the sodium memductance is 0.031 Ohm−1cm−2. Likewise,
when the external stimulus [0.8 mAcm−2 (gMNa2)] acts on the
MHH spiking model, the sodium memductance (the purple
curve) does not change in the time range from 0 to 0.97 ms
(the enlarged plot in Figure 8A). And the maximum value of the
sodium memductance is 0.038 Ohm−1cm−2.

When the external stimulus [0.04 mAcm−2 (gMK)] is injected
into the MHH spiking model, the potassium memductance (the
coral color curve) does not change from 0 to 1.5 ms (the enlarged
plot in Figure 8B). Then, the potassium memductance increases
and attains 0.0324 Ohm−1cm−2. Likewise, the MHH spiking
model receives the external stimuli [(0.08 mAcm−2 (gMK1) and
0.16mAcm−2 (gMK2)], the potassiummemductance (the dark red
curve reaches 0.0348 Ohm−1cm−2 and the purple curve attains
0.0359 Ohm−1cm−2 (the enlarged plot in Figure 8B) are stable at
constant values (Figure 8B).

The sodium memductance and the potassium memductance
are associated with the external stimulus. The stronger the
external input, the faster thememductance changes, the larger the
memductance value. The change curves of sodium and potassium
memductance are similar to the theoretical curves (refer to
Hodgkin and Huxley, 1989). Therefore, the memristors can
mimic the sodium ion channel and the potassium ion channel.

The temperature is selected as 6.3◦C, and the external current
is 0.08 mAcm−2. The transition rate parameters (α and β), gate
variables (m∞, n∞, and h∞), and the time constant (τ ) in the
MHH spiking model are shown in Figure 9.

The transition rates of the active gates (αn and αm, Figure 9A),
the inactive transiton rate (βh, Figure 9B) enhance with the
increase of the membrane potential. The inactive transition
rate (αh, Figure 9A), the active transition rates (βn and βm,
Figure 9B) decrease with the rise in the membrane potential. The
steady-state values (m∞ and n∞) of activation gate variables (m

and n) change from 0 to 1 with the increase of the membrane
potential. The steady-state value (h∞) of the inactivation gate
variable (h) decreases with the increase of the membrane
potential (Figure 9C). The time constant τn changes from 4.52
to 0, τm adjusts from 0.5 to 0, and τh varies from 8.57 to 0
(Figure 9D). The changing processes of the transition rate, gate
variables, and the time constant in the MHH spiking model have
high similarities with those of the HH spikingmodel in Figures 2,
3. Therefore, the memristors can be utilized as the sodium ion
channel and the potassium ion channel.

When the current density Jm in (28) is replaced by JM ,
conductances gNa and gK in (29) and (30) are replaced by gMNa

and gMK , and the current equations are rewritten as:

JM = JMNa + JMK + JL (36)

JMNa = gMNa(V − ENa) (37)

JMK = gMK(V − EK) (38)

The membrane potential Vm in (32) is replaced by VM , and
the membrane potential of the MHH spiking neuron model is
described as:

C∂VM(t, x)/∂t = −JM(t, x)+ Jext(t, x) (39)

The electrical equivalent circuit of the HH spiking model is based
on the voltage-clamp experimental method. When the voltage-
clamp values are distinct, the variables perform various variations
in the HH and MHH spiking models. Here, the temperature T =
6.3◦C. The clamp voltage is denoted by Vclamp, and its value is
selected as +20 or +80 mV. The resting potential Vrest =−65 mV.
The membrane potential Vm=Vclamp +Vrest .

When the clamp-voltage value is 20 mV, the membrane
potential becomes −45 mV. Changes of Na+ and K+ gate
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FIGURE 5 | The action potentials under the different temperatures (the external stimulus is 0.08 mAcm−2 ). (A) The temperature is 6.3◦C. (B) The temperature is 15◦C.

(C) The temperature is 20◦C. (D) The temperature is 35◦C. (E) The temperature is −20◦C.

variables in the MHH spiking model (the plots on the left in
Figure 10B) are the same as those in the HH spiking model (the
plots on the left in Figure 10A). The HH spiking model generates
the reverse curves of JNa and Jm, and their maxima are −0.17
and −0.21 mAcm−2. The maximum of the forward curve JK is
0.14 mAcm−2, and the forward curve JL reaches 0.009 mAcm−2.
The peak values of gK and gNa are 4.54 and 2.25 mOhm−1cm−2

(the plots on the right in Figure 10A). The MHH spiking model
produces the reverse curves of JMNa and JM , and their maxima

are−0.18 and−0.16mAcm−2. The forward curves of JMK and JL
attain their maxima 0.04 and 0.009mAcm−2. The maxima of gMK

and gMNa are 1.26 and 1.88mOhm−1cm−2 (the plots on the right
in Figure 10B).

The variable values of the HH spiking model are more
significant than those of the MHH spiking model (because the
memristance is large, its initial value is 10,000 Ohmcm−2). When
the clamp-voltage value is 20 mV, both spiking models cannot
generate the action potential.
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FIGURE 6 | The distinct stimuli are applied to the HH model. (A) The external stimulus is 0.001 mAcm−2. (B) The external stimulus is 0.01 mAcm−2. (C) The external

stimulus is 0.09 mAcm−2. (D) The external stimulus is 0.2 mAcm−2.

FIGURE 7 | The firing behaviors under the various action time of the external stimulus. (A) The action time is 1 ms. (B) The action time is 10 ms. (C) The action time is

20 ms. (D) The action time is 50 ms.
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FIGURE 8 | Changes of the memristance under the distinct input currents. (A) The variations of the sodium memristance. (B) The variations of the potassium

memristance.

A transient increase of sodium ions in the cell leads to the
depolarization of the action potential. The waveforms of the two
models change in the same way when the clamp voltage is 80 mV
(the membrane potential is 15 mV). We take the MHH model
as an example and make a vertical comparison (Figures 10B,D).
With the increase of clamp voltage, the current densities of
sodium and potassium increase significantly. The value of gate
variable n changes from 0.5 to 1, and the value of gate variable m
varies from 0.4 to 1. The potassium memductance changes from
1.26 to 8 mOhm−1cm−2, and the sodium memductance changes
from 1.88 to 30mOhm−1cm−2.

When the clamp-voltage value is 80 mV, the HH and MHH
spiking models can produce the action potential. The gate
variables n and m change with the identical waveforms. The
current densities, the potassium conductance, and the sodium
conductance are different. The maxima of JMNa, JMK , JL, and JM
are −1.059, 0.74, 0.0297, and −0.97 mAcm−2 (the right-upper
plot in Figure 10D), which are larger than those of the HH
spiking model (Figure 10C). The variation ranges of potassium
conductance and sodium conductance for the MHH spiking

model are [0 8], [0 30] less than those [0 29], [0 37] in the HH
spiking model. The higher the voltage-clamp value, the larger the
variable values, the smaller the conductance variation range.

5. THE COMPARISON BETWEEN TWO
MODELS UNDER THE DIFFERENT
STIMULI

5.1. The Individual Current Pulse Stimulus
The forward stimulus Jext = 0.1mAcm−2 (the pulse width is 0.1
ms) is applied to the HH spiking model and the MHH spiking
model, the temperature is selected as 18.5◦C, and the response
time of the model is 5 ms. The initial value of the membrane
potential is the resting potential, Vrest =−65 mV.

Here, Jext is the external stimulus, JNa (JMNa) is the sodium
current (the coral color curve), JK (JMK) is the potassium current
(the blue curve), JL (JML) is the leaky current (the green curve),
and Jm (JM) is the total current (the purple curve) flowing
through the cell membrane in the HH (MHH) spiking model. V
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FIGURE 9 | The transition rate, gate variables, and time constant of the MHH spiking model. (A) The variation process of the transition α. (B) The variation process of

the transition rate β. (C) The variation process of gate variables. (D) The variation of the time constant τ .

(VM) is the action potential generated by the HH (MHH) spiking
model. gNa (gMNa) is the sodium conductance (the sodium
memductance), and gK (gMK) is the potassium conductance (the
potassium memductance) in the HH (MHH) spiking model.

The HH andMHH spikingmodels receive the external stimuli
and produce the corresponding current densities of the ion
channels. The sodium current is negative because the sodium
ions move from the outside to the inside of the cell. In contrast,
the potassium current is positive because the potassium ions
flow from intracellular to extracellular. The potassium and total
current densities (the peak values: JK = 0.82 mAcm−2, Jm=
−0.51 mAcm−2) generated by the HH spiking model are larger
than those (the peak values: JMK = 0.4 mAcm−2, JM = −0.53
mAcm−2) in the MHH spiking model. The sodium and leaky
current densities (the peak values: JNa=−0.7mAcm−2, JL= 0.024
mAcm−2) generated by the HH spiking model are smaller than
those (the peak values: JMNa=−0.6mAcm−2, JL= 0.026mAcm−2)
in the MHH spiking model. The sodium current of the MHH
model has a smooth perturbation at around t = 1.072 s, and the

sodium current of the HH model has an obvious perturbation
at around t = 1.279 s. The perturbation is caused by the rapid
variation of potassium conductance (potassium memductance).
The curves formed by the MHH model (the left side plot in
Figure 11B) are smoother than those in the HH model (the left
side plot in Figure 11A) because the memristor has a unique
time-varying property.

The HH spiking model and the MHH spiking model can
perform the action potential. Themembrane potential peak value
(VM = 38.33mV at 1.188ms) of theMHHmodel (themiddle plot
in Figure 11B) is stronger than that (Vm = 28.31 mV at 1.366 ms)
of the HH model (the central plot in Figure 11A). Meanwhile,
the MHH spiking model takes a short time to produce the action
potential. After generating the action potential, both models
return to the equilibrium state (the resting state,Vrest =−65mV).

The HH spiking model takes 1.354 ms to reach the maximum
value of gNa (23.53 mOhm−1cm−2) and needs 1.715 ms to get
the peak value of gK (12.45 mOhm−1cm−2; the right side plot
in Figure 11A). Therefore, the MHH spiking model takes 1.134
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FIGURE 10 | The distinct clamp voltages are applied to the HH spiking model and the MHH spiking model. (A) The HH model with Vclamp = 20 mV. (B) The MHH

model with Vclamp = 20 mV. (C) The HH model with Vclamp = 80 mV. (D) The MHH model with Vclamp = 80 mV.

ms to attain the maximum value of gMNa (20.81 mOhm−1cm−2)
and needs 1.673 ms to reach the peak value of gMK (5.196
mOhm−1cm−2) (the right side plot in Figure 11B). The rise
in sodium conductance (sodium memductance) is faster than
potassium conductance (potassium memductance). The MHH
spikingmodel utilizes less time than the HHmodel to activate the
change of the memductance; however, the obtained memductane
is small. Because the variation in the memductance is slight in a
short time (5 ms), it maintains a large memristance.

5.2. The Reverse Single Current Pulse
Stimulus
The reverse stimulus (Jext =−0.1mAcm−2, the pulse width is 0.1
ms) acts on the HH spiking model and the MHH spiking model,

the temperature is 18.5◦C, and the response time of the model
is 5 ms.

There are not enough ions to move from intracellular
(extracellular) to extracellular (intracellular); therefore, the
sodium current and the potassium current cannot be produced
(the left-side plots in Figures 11C,D). The significant variation of
the conductance causes the generation of potassium and sodium
currents. The sodium conductance (sodium memductance)
is close to zero (the right-side plots in Figures 11C,D).
The potassium conductance (potassium memductance)
decreases from 0.37 mOhm−1cm−2 (0.36 mOhm−1cm−2) to
0.17 mOhm−1cm−2 (0.14 mOhm−1cm−2) and then increases to
0.35 mOhm−1cm−2 (0.26 mOhm−1cm−2). The HH and MHH
spiking models are unable to generate the action potential,
and the membrane potentials become hyperpolarization
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FIGURE 11 | The single pulse and the reverse pules are applied to two models. (A) The single current pulse is injected into the HH spiking model. (B) The single

current pulse is injected into the MHH spiking model. (C) The reverse current pulse is injected into the HH spiking model. (D) The reverse current pulse is injected into

the MHH spiking model.

before returning to their resting states (the middle plots in
Figures 11C,D.

5.3. The Three External Stimuli With
Different Intensity
The external stimuli Jext1 = 0.5 mAcm−2, Jext2 =1 mAcm−2, and
Jext3 =2 mAcm−2 are injected into the HH spiking model and

the MHH spiking model, the temperature is 18.5◦C, the response
time is 5 ms.

When the small external stimulus (Jext1 = 0.5 mA.cm−2) is
applied to the HH spiking model, the action potential cannot
be produced. The membrane potential has a slight rise (Vm =
−60 mv) and then returns to the resting potential (−65 mv)
at 3 ms (the second plot in Figure 12A). The current density
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FIGURE 12 | The three different current pulses are applied to the HH and MHH spiking models. (A) The HH spiking model. (B) The MHH spiking model.

is zero (the first plot in Figure 12A). There is only a slight
change in the conductance, which can be ignored (the third plot
in Figure 12A). However, when the MHH spiking receives the
stimulus Jext1 = 0.5 mA.cm−2, the action potential is obtained
(the second plot in Figure 12B). The changes in current densities
and the memductance are noticeable. When the external stimuli
increase to Jext2 = 1 mA.cm−2 and Jext1 = 2 mA.cm−2, the
values in current density, membrane potential, and conductances
strengthen gradually (Figure 12).

The larger the external stimulus, the faster the action potential
is produced, the higher the peak value is generated, the more
significant change in conductances, and the greater the current
density. The smaller the external stimulus, the longer time it takes
to produce the action potential. The peak value of membrane
potential in the MHH model (the middle plot in Figure 12B)
is greater than that of the HH model (the middle plot in
Figure 12A). The maximum values of current densities and
conductances in theMHH spikingmodel (the first and third plots
in Figure 12B) are lower than those in the HH spikingmodel (the
first and third plots in Figure 12A).

5.4. A Series of Pulse Stimuli
When a series of pulses (Jext(n)= 1mAcm−2, n = 1,2,......,18,
the temperature is 18.5◦C.) act on the HH and MHH spiking
models, the action potentials are achieved. However, not
every single pulse can cause the generation of the action
potential (the first plots in Figures 13A,B). Only when the
action potential generated by the previous pulse has enough
time to return to its resting state, another action potential
will be generated. The MHH spiking model [six action
potentials (the second plot in Figure 13B)] generates more

action potentials than the HH spiking model (five action
potentials (the second plot in Figure 13A)). Meanwhile, the
action potential performs two oscillation behaviors in the MHH
spiking model (inside the blue ellipse in Figure 13B), and
the action potential shows three oscillation behaviors in the
HH spiking model (inside the blue ellipse in Figure 13A).
The memductances in the MHH model (the third plot
in Figure 13B) are smaller than those in the HH model
(the third plot in Figure 13A), which causes the current
density produced by the MHH model (the first plot in
Figure 13B) to be lower than the HH model (the first plot in
Figure 13A).

The action time of the external stimulus is extended to 100
ms, and two models can produce more action potentials than
Figures 13A,B. The MHH spiking model generates more action
potentials (the middle plot in Figure 13C) than the HH spiking
model (the middle plot in Figure 13D).

The action time is increased to 200 ms, the doublet
currents (Shigaki et al., 2020) are generated in the MHH
spiking model, one is large, the other is small (the enlarged
plot inside the left ellipse in Figure 13F). Meanwhile, the
action potential is produced before the current pulse comes
in the MHH model because the memristor has an initial
charge even though it is very small (the enlarged plot inside
the right ellipse in Figure 13F). The current intensity, the
voltage peak value, and conductances in the HH spiking
model (Figure 13E) are larger than the simulation results in
Figure 13F.

With the increasing of time length, the conductance (or
memductance) and the current density of sodium and potassium
increase dramatically. The more time we give, the more
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FIGURE 13 | The distinct action time of the external stimulus is set for the two models. (A) The HH spiking model with 20 ms action time. (B) The MHH spiking model

with 20 ms action time. (C) The HH spiking model with 100 ms action time. (D) The MHH spiking model with 100 ms action time. (E) The HH spiking model with 200

ms action time. (F) The MHH spiking model with 200 ms action time.

Frontiers in Neuroscience | www.frontiersin.org 15 September 2021 | Volume 15 | Article 730566

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Fang et al. Memristive Hodgkin-Huxley Spiking Neuron Model

FIGURE 14 | The time periods of the sinusoidal signal. Tin = 0.01 ms, Tin = 1 ms, Tin = 5 ms, Tin = 20 ms, Tin = 60 ms.

action potentials are generated, the larger the peak values of
current densities, conductances (or memductances), and action
potentials. However, the action time length should not be too
long; otherwise, the function of neurons cannot be replicated
effectively (Chen et al., 2019).

5.5. The Sinusoidal Current Stimulus
The sinusoidal stimulus [Jext = Jextm× sin(2 t/Tin), Jextm=0.01
mA.cm−2] is a positive-negative periodic signal with a single-
frequency component. Tin is the time period of input signals, and
the temperature is 18.5◦C.
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When Tin = 0.01 ms and Tin = 1 ms, the sinusoidal stimuli are
applied to the HH spiking model. The action potential cannot
be obtained because there is not enough time for the neuron
to depolarize. But the MHH model generates action potentials
under the same conditions. The frequency of the sinusoidal
stimulus affects the generation of the action potential. When the
frequency is low, there is sufficient time to depolarize, and the
action potential occurs (Figure 14). When Tin = 5 ms, the HH
and MHH spiking models produce the action potentials, their
spiking patterns belong to tonic spikes in pyramidal neurons.
When Tin = 20 ms, the MHH model generates the repetitive
bursts with doublet spikes, and the HH model performs the
tonic spiking. When the value of Tin is increased to 60 ms, the
action potential cannot be produced in the HH spiking model
but can be obtained in the MHH model. The frequency range
of the sinusoidal stimulus in the MHH spiking model is wider
than that of the HH spiking model. The various spiking patterns
can be obtained by appropriately adjusting the frequency of the
sinusoidal signal.

6. CONCLUSION

The biological neuron is expressed adequately by the classic HH
spiking model. It is sensitive to the temperature, the strength of
the external stimulus, and the action time of the stimulus. The
MHH spiking model successfully simulates the generation of the
action potential in a neuron. When the different external stimuli
are applied to the HH and MHH spiking models, the action
potential is produced, and various spiking patterns are achieved.
The MHH spiking model has advantages in generating the action
potential through the comparison with the HH spiking model.
The waveforms with smaller perturbations formed by the MHH

spiking model are smooth. The higher frequency of the external
stimulus, the more action potentials generated. The response
speed of the MHH spiking model is faster than that of the
HH spiking model. The various spiking behaviors are obtained
by adjusting the signal frequency in the MHH spiking model.
And meanwhile, the combination between neuron models and
a memristor provides the possibility to scale down the neuron
circuit and gives a novel way to replicate the functions of the
biological neuron.
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