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Abstract

SSITL (SS1G_14133) of Sclerotinia sclerotiorum encodes a protein with 302 amino acid residues including a signal peptide, its
secretion property was confirmed with immunolocalization and immunofluorescence techniques. SSITL was classified in the
integrin alpha N-terminal domain superfamily, and its 3D structure is similar to those of human integrin a4-subunit and a
fungal integrin-like protein. When S. sclerotiorum was inoculated to its host, high expression of SSITL was detected during
the initial stages of infection (1.5–3.0 hpi). Targeted silencing of SSITL resulted in a significant reduction in virulence; on the
other hand, inoculation of SSITL silenced transformant A10 initiated strong and rapid defense response in Arabidopsis, the
highest expressions of defense genes PDF1.2 and PR-1 appeared at 3 hpi which was 9 hr earlier than that time when plants
were inoculated with the wild-type strain of S. sclerotiorum. Systemic resistance induced by A10 was detected by analysis of
the expression of PDF1.2 and PR-1, and confirmed following inoculation with Botrytis cinerea. A10 induced much larger
lesions on Arabidopsis mutant ein2 and jar1, and slightly larger lesions on mutant pad4 and NahG in comparison with the
wild-type plants. Furthermore, both transient and constitutive expression of SSITL in Arabidopsis suppressed the expression
of PDF1.2 and led to be more susceptible to A10 and the wild-type strain of S. sclerotiorum and B. cinerea. Our results
suggested that SSITL is an effector possibly and plays significant role in the suppression of jasmonic/ethylene (JA/ET) signal
pathway mediated resistance at the early stage of infection.
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Introduction

Sclerotinia sclerotiorum (Lib.) de Bary is an economically significant

and destructive necrotrophic fungal pathogen with the capability

of infecting more than 450 species and subspecies of plants

worldwide [1,2]. Sclerotinia diseases lead to serious losses each

year in both vegetable crops and plant oil crops, including

rapeseed, soybean and sunflower. At the latter stages of infection,

S. sclerotiorum produces dormant melanized sclerotia in soil and

diseased stubbles during summer or/and winter. This durable

differentiated structure can persist and maintain viability in the soil

for many years. Host differentials of this pathogen have not been

observed and strains isolated from one host usually have similar

virulence to other hosts. Sclerotinia diseases have proven difficult

to control as breeding efforts have not met with success, resistance

is complex, useful cultivars are not available and management

practices and chemical spray regimes are ineffective. Thus the

control of Sclerotinia diseases has raised much concern.

Plant pathogen life styles have been divided into biotrophic,

hemibiotrophic and necrotrophic pathogens. Biotrophic patho-

gens must derive nutrients from living host cells and tissues,

hemibiotrophic pathogens absorb nutrients from living cells at the

early biotrophic stages of infection and transition into a necrotroph

killing host cells for nutrient acquisition. Necrotrophic pathogens

kill host cells and/or feed on dead tissue. Often, necrotrophic

pathogens secrete toxins (including non-host-selective toxins and

host-selective toxins), plant cell wall degrading enzymes, and

proteinases to facilitate host cell death.The interaction between

necrotrophic fungal pathogens and hosts is clearly more complex

than originally thought. Rather than overwhelming the plant host

with its battery of enzymes and toxins, evidence is emerging that

these fungi are more subtle in their pathogenic tactics. Oirdi et al

[3] reported that Botrytis cinerea manipulates the antagonistic effects

between immune pathways to promote disease development in

tomato, where B. cinerea produces a EPS b-(1,3)(1,6)-D-glucan to

activate the SA signal pathway. The SA signal pathway inhibits JA

signaling through NPR-1, resulting in enhanced host susceptibility.

When challenging Arabidopsis, B. cinerea induces the expression of

autophagy genes. Arabidopsis mutants defective in autophagy

exhibit enhanced susceptibility to B. cinerea and Alternaria brassicicola

[4]. On the other hand, over-expression of a B. cinerea anti-

apoptotic gene BcBIR1 in B. cinerea enhances virulence [5]. Plants
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also activate defense systems against necrotrophic fungal patho-

gens. Many P/DAMPs, such as fragments of chitin from fungal

cell walls and the plant cell wall–derived oligogalacturonides (OGs)

can be recognized by membrane localized receptor-like kinases

(RLKs), such as the putative chitin receptor LysM/CERK1 [6,7],

peptide receptors [8,9], and the OG receptor WALL-ASSOCI-

ATED KINASE 1 (WAK1) [10], and then activate the immune

responses to necrotrophic pathogens. Although plant-produced

ROS are important for resistance to biotrophs and hemibiotrophs,

the role of ROS in resistance to S. sclerotiorum appears to be more

complex, with a resistance role during early infection, but once

infection is established, promoting disease during later infection

[11]. Plant hormones also modulate innate immunity to necro-

trophs. In general, SA signaling pathway is activated against

biotrophic pathogens, whereas jasmonic/ethylene (JA/ET) signal

pathway is effective against necrotrophs [12–14]. However, many

previous studies have shown that SA-mediated defense is also

involved in the resistance to necrotrophic [15,16]. Cross-talk

between SA and JA/ET signaling pathways has been shown to

optimize the defense response against the attacker [17–19].

Together, evidence suggests that strong interaction between

necrotrophic pathogens and hosts should exist before killing and

being killed.

S. sclerotiorum is believed to be a typical necrotrophic fungus,

originally viewed as an aggressive pathogen secreting copious

amounts of oxalic acid (OA) to rapidly kill host cells and tissues,

coupled with a number of cell-wall degrading enzymes to further

destroy plant tissues during infection [20]. However, OA is likely

to have more important roles, it suppresses host oxygen burst and

host resistance [21,22], and triggers ROS mediated apoptotic-like

PCD. Recently, OA was found to create reducing conditions in

plant cells ahead of advancing hyphae. It was speculated that

reductive conditions dampen the oxidative burst allowing for

precious time for fungal establishment prior to plant recognition.

Furthermore, in the compatible interactions between S. sclerotiorum

and its host, host cells maintain viability, and at the same time,

suppression of the oxidative burst and callose deposition is

observed, in a manner akin to compatible biotrophic pathogens

during the early stage of infection [11]. Thus, S. sclerotiorum is more

accurately characterized as hemi-biotrophic pathogen possibly.

Previously, we reported that certain strains of S. sclerotiorum

harbored a debilitation associated RNA mycovirus (SsDRV)

resulting in a hypovirulent phenotype. Studies designed to identify

fungal genes down-regulated by the infection of SsDRV uncovered

a gene encoding a protein similar to integrin. This Sclerotinia

sclerotiorum integrin-like gene (SSITL) was significantly suppressed by

the RNA virus infection [23]. Integrins belong to a large family of

cell surface protein molecules that act as conserved transmem-

brane cell-adhesion receptors in a variety of vertebrates and

invertebrates [24]. They play a critical role in cell structure, cell

migration, anchoring cells to the extracellular matrices and

carrying signals from the outside to the inside of the cell and

vice versa. These mechanical and chemical signals play significant

roles in cell cycle, growth, development, differentiation, prolifer-

ation and apoptosis [25–27]. Integrin-like proteins were also found

in plants [28,29], and were considered to have similar functions as

reported in animals. Recently, the non-race specific disease

resistance NDR1 gene in Arabidopsis has been shown to be an

integrin-like protein gene [30].

Fungal integrin-like proteins were also identified with immuno-

biological or pharmacological methods. The first integrin-like

protein was identified from yeast Candida by immunobiological

assay [31]; an integrin-like protein was identified in Uromyces

appendiculatus with RGD short peptide emendation test [32]. By

screening an expression library with two antibodies against

leukocyte integrins aX and aM, the gene encoding integrin-like

uso1 was isolated from Saccharomyces cerevisiae [33], and gene cloned

from Candida albicans was another fungal integrin-like gene aint1,

which has a limited similarity to vertebrate integrins and

contributes to hyphal growth and adhesion to epithelial cells.

The integrin-like protein in C. albicans is essential for the virulence

in murine model of intravenous infection [34,35]. Integrin-like

proteins in plant fungal pathogens are likely to involve in surface

attachment and pre-penetration stage development [36]. Howev-

er, whether integrin-like proteins contribute to the virulence of

plant fungal pathogen is still unknown.

To characterize the function of this gene, we employed both

forward and reverse genetic approaches. We report that SSITL, a

potential effector is involved in suppressing host resistance at the

early stage of infection.

Table 1. Primers used for vector construction and RT-PCR.

Application of primer pair Primer’s direction Primer sequence

SSITL silence vector, for amplifying intron from G. zeae gene
(EAA75655.1)

Sense 59GCGATATCAGGCAGCGTGAGTTTAC 39

Antisense 59TGCACTGCAGCCTACTCAGACTGGACA 39

SSITL silence vector, for amplifying SSITL gene from S. sclerotiorum Sense 59 CGCGGATCCATCGATAGCGTAATGGATGGTGG 39

Antisense 59 CGTCTGCAGGATATCAAGCAGATGCGACGAAC 39

SSITL prokaryotic expression vector Sense 59 CGGGATCCGATCCCAAACCCCCTTGAGAAACG 3

Antisense 59 CCCAAGCTTACCACTAGCAACATGTACTTCG 39

SSITL expression vector in host plants Sense 59 CGGGATCCATGCTGCTCAAACCACTT 39

Antisense 59 CGAGCTCTCAACCACTAGCAACATGTAC 39

A. thaliana GAPDH gene (At1g13440) used for RT-PCR Sense 59 GCAACATACGACGAAATCAAGAA 39

Antisense 59 CGACACGAGAACTGTAACCCC 39

N. benthamiana actin gene (AY179605.1) used for RT-PCR Sense 59 GCCGAGCGGGAAATTGTTAGG 39

Antisense 59 CCACTGAGGACAATGTTTCCGTAC 39

doi:10.1371/journal.pone.0053901.t001
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Materials and Methods

Fungal Strains, Plants, and Culture Condition
S. sclerotiorum virulent strain Ep-1PNA367 was derived from the

single-ascospore-isolation progeny of virus-infected hypovirulent

strain Ep-1PN, and CanBc-1c-66 was a single-conidium strain of

B. cinerea isolated from rapeseed [37]. Fungal cultures were grown

on potato dextrose agar (PDA) (Difco, Detroit, MI, USA) at 20uC.

S. sclerotiorum transformants were obtained and purified by up to

ten rounds of hyphal tip subculture on PDA amended with 30 mg/

mL hygromycin B (EMD Biosciences, USA) to stabilize transfor-

mants. Escherichia coli strain JM109 was used to propagate all

plasmids, while Agrobacterium tumefaciems strain EHA105 and

GV3101 were used for transformation. Arabidopsis thaliana wild-

type Columbia-0 and mutant ein2-1, jar1-1, NahG and pad4-1 were

kindly donated by Dr Yangdou Wei in University of Saskatch-

ewan, and were grown in a greenhouse at 2062uC, under a 12 hr

light/dark cycle.

Bioinformatics Data and Programs Used in this Study
The publicly available genomic sequence database of S.

sclerotiorum (http://www.broadinstitute.org/annotation/genome/

sclerotinia_sclerotiorum/MultiHome.html) was used to character-

ize gene SSITL (Sclerotinia sclerotiorum integrin-like). The TMHMM

Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/), the

Signal P 3.0 Serverits (http://www.cbs.dtu.dk/services/SignalP/)

and the MultiLoc/TargetLoc (http://abi.inf.uni-tuebingen.de/

Services/MultiLoc/) were used to predict the transmembrane

domain, signal peptide sequence and subcellular localization of

protein SSITL, respectively. Bioinformatics Toolkit HHblits (http://

toolkit.tuebingen.mpg.de/hhblits), NCBI (http://www.ncbi.nlm.

nih.gov/) and UniProt (http://www.uniprot.org/) were used for

Blastp analysis. The ClustalX and MCOFFEE program (http://

tcoffee.vital-it.ch/cgi-bin/Tcoffee/tcoffee_cgi/index.

cgi?stage1 = 1&daction = MCOFFEE::Advanced) were used for

amino acid alignments. The InterProScan Sequence Search (http://

www.ebi.ac.uk/Tools/pfa/iprscan/) and SUPERFAMILY HMM

search (http://supfam.org/SUPERFAMILY/hmm.html) were

used to predict the protein superfamily. The Radar (http://www.

ebi.ac.uk/Tools/Radar/), Bioinformatics Toolkit HHpred (http://

toolkit.tuebingen.mpg.de/hhpred) and the Jnetpred were used to

predict the structure of SSITL. The 3D structural model was

established by using the Phyre2 server (http://www.sbg.bio.ic.ac.uk/

phyre2/html/page.cgi?id = index).

Construction of SSITL Vectors and Transformation of S.
sclerotiorum

The strategy to construct a SSITL RNAi silence vectors was

performed as described by Yu et al [39]. A 452 bp DNA fragment

was PCR amplified from the Integrin-like (SS1G_14133) with a pair

of specific primers. At the 5’ terminus of the sense primer, two

restriction sites (BamHI and ClaI) were introduced, and at the 5’

terminus of the antisense primer, restriction sites for PstI and

EcoRV were introduced. The primer sequences are listed in

Table 1. The PCR product was co-digested with BamHI and PstI

or with ClaI and EcoRV to generate DNA fragments with two

types of cohesive ends. The two fragments were ligated to pCIT to

generate a new vector containing a reverse repeat structure that

was separated by the 420 bp intron was amplified from a Gibberella

zeae gene (EAA75655.1). This newly constructed vector was then

digested with XhoI and SacI to obtain the repeat fragment, and

then ligated with the pCH vector also digested by XhoI and SacI to

generate the integrin-like silencing vector pIntSILENCE. The

pIntSILENCE vector was transformed into A. tumefacies strain

EHA105.

To construct an E. coli expression vector, the full-length cDNA

of SSITL gene without the signal sequence was amplified by PCR

with a pair of specific primers. Restriction sites (BamHI and

HindIII) were introduced at the 5’ terminus of sense primer and

antisense primer, respectively. Primers sequences are listed in

Table 1. The pET-22b (+) vector and the PCR products were

digested by BamHI and HindIII, and the cDNA fragment was

ligated with pET-22b (+) to generate the expression vector

pET22bInt.

To transform S. sclerotiorum, protoplasts of strain Ep-1PNA367

were prepared as described by Rollins [38]. Agrobacterium-

mediated transformation (ATMT) of S. sclerotiorum was performed

as described by Yu et al [39] with some modifications that for co-

cultivation, the S. sclerotiorum protoplasts were re-suspended with A.

tumefaciens at the concentration of 16108 protoplasts per ml and

cultured on a cellophane membrane laid on co-induction medium.

Table 2. Primers and conditions used for Real-time RT-PCR amplification.

Primer name Sequence (59 to 39)
Target
organisms Target gene

Annealing
temperature

(6C)

PCR
product
size (bp)

Acquiring

temperature (6C)
in Real-time RT-
PCR

At.PDF1.2 F TCTTCGCTGCTCTTGTTCTCTT Arabidopsis
thaliana genes

At.PDF1.2
(AT5G44420.1)

55 150 72

At.PDF1.2 R TGGCTCCTTCAAGGTTAATGC

At.PR-1 F CTACGCAGAACAACTAAGAGGC At.PR-1 (AT2G14610) 55 150 72

At.PR-1R TTCGCAGCGTAGTTGTAGTTAG

At.GAPDH F GCAACATACGACGAAATCAAGAA At.GAPDH (AT1G13440)55 217 72

At.GAPDH R CGACACGAGAACTGTAACCCC

Ss. SSITL F AAGAGCGTAATGGATGGTGG Sclerotinia
sclerotiorum
genes

SS1G_14133 56 167 72

Ss. SSITL R AGCAAATGTGGTGCCGACT

Ss. b-tubulin F TTGGATTTGCTCCTTTGACCAG b-tubulin (SS1G_04652)56 104 72

Ss.b-tubulin R AGCGGCCATCATGTTCTTAGG

doi:10.1371/journal.pone.0053901.t002
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Figure 1. Characterization of the S. sclerotiorum SS1G_14133 gene. (A) Alignment of the amino acid sequences of SS1G_14133 protein of S.
sclerotiorum and other organisms using MCOFFEE and ClustalX program. AF: Aspergillus fumigates (XP_750162.2); NF: Neosartorya fischeri
(XP_001265249.1); AO: A. oryzae (EIT81778.1). (B) Alignment of the repeat peptides sequences and prediction of secondary structure of SS1G_14133
protein. These alignments were obtained using the MCOFFEE and ClustalX program and the default color scheme for ClustalW alignment in the
Jalview program was used. The secondary structure prediction was completed with Jnetpred program–beta strands as green arrows. Quality (yellow)
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Hygromycin was amended into PDA at a final concentration of

30 mg/mL.

Extraction and Manipulation of Nucleic Acids
To examine the expression pattern of SSITL in different growth

stages of S. sclerotiorum, mycelial agar discs taken from the active

colony edge of Ep-1PNA367 were inoculated on the cellophane

over PDA at 20uC. The mycelia were collected at 1, 2, 3, 4 and 5

day post incubation (dpi), and then stored at 280uC for total RNA

extraction. To explore SS1TL gene expression during fungal

interaction with Arabidopsis, 4 g fresh Ep-1PNA367 mycelia was

ground into fragments using a sterile mortar and pestle. The

hyphal fragments were cultured in 100 ml minimal medium broth

in a 250 ml flask at 20uC, at 150 rpm and fragments were

collected by centrifugation and washed with ddH2O twice before

being re-suspended in 20 ml ddH2O. The hyphal fragments

suspension was sprayed onto the leaves of A. thaliana Columbia-0

(6–8 weeks-old). The inoculated leaves and the hyphae growing in

plates as control, were harvested at 1.5, 3, 4.5, 6, 7.5, 9, 10.5 and

12 hours post inoculation (hpi), respectively, and then stored at

280uC. To compare transcript accumulation of SSITL between

silenced transformants and the wild-type strain (Ep-1PNA367), the

active mycelial agar discs of silenced transformants and Ep-

1PNA367 were inoculated to the cellophane of PDA at 20uC for 3

days (transcript levels reached the peak in Ep-1PNA367 at 3 dpi)

and mycelium was then collected and stored at 280uC for total

RNA extraction.

The total RNA samples of fungal strains and plants were

isolated with TriZOL reagent (Invitrogen, USA) according to the

manufacturer’s protocols. Northern hybridization analysis was

performed as previously described by Li et al [23]. The cDNA of

SSITL gene was labeled with [32P] dCTP using a radiolabeling kit

(TaKaRa, Dalian) probes. The total RNA samples were treated

with DNase I (TaKaRa, Dalian), and used to generate the first

strand cDNA with RevertAidTM First Strand cDNA Synthesis Kit

(MBI Fermentas, Lithuania). Gene expression was analyzed by

Real-Time (quantitative) RT-PCR using a Bio-Rad CFX96 Real

Time System (America) and Quantitect SYBR Green PCR master

mix (Bio-Rad, USA), according to the manufacturer’s instructions.

Primers were designed across or flanking an intron (See Table 2

for primers and PCR conditions). The expression of S. sclerotiorum

b-tubulin gene (SS1G_04652) [40] and A. thaliana GAPDH

(AT1G13440) were used to normalize the RNA sample for each

Real-time RT-PCR. For each gene, Real-time RT-PCR assays

were repeated at least twice, with each repetition having three

replicates.

Primer pairs for PCR amplifications, RT-PCR amplification

and Real-Time PCR detections were listed in Table 1 and Table 2.

Characterization of SSITL Silenced Transformants
To assay growth rates, the silenced transformant and the

virulent strain Ep-1PNA367 were cultivated on PDA at 20uC for 3

days. The mycelial agar discs were taken from the active colony

edge and inoculated on the center of the PDA petri dish at 20uC
before hyphal growth was examined. After growth on PDA at

20uC for 48 hr, the tip hyphal morphology of the silenced

transformants and the wild-type strain Ep-1PNA367 were

observed under a light microscope. The colony morphology and

sclerotia distribution of these strains were examined after being

grown on PDA plate for 30 days at 20uC. The mycelial agar discs

of these strains were inoculated to steam-sterilized carrot in

triangular flasks at 20uC for 30 days to culture sclerotia for

analysis.

To evaluate virulence, mycelial agar discs (diameter 6 mm) were

inoculated to the detached Brassica napus leaves at 20uC for 72 hr,

and lesions induced by transformants were measured.

is the quality level for the multiple alignments. (C) The comparison of the 3D structural models of SS1G_14133 protein, Integrin a4-subunit (from
35 aa to 478 aa) (UniProt Id: P13612) [46] and Psathyrella velutina Integrin-like protein (UniProt Id: Q309D1) [47]. The images were obtained from the
top (upper) and side (lower) of these proteins. The 3D structural models were generated with Phyre2 program.
doi:10.1371/journal.pone.0053901.g001

Figure 2. Gene expression analysis of SSITL gene in the wild-type strain Ep-1PNA367 of S. sclerotiorum. (A) The Northern blot analysis
shows gene expression levels of SSITL grown on PDA from 24 hr to 120 hr, respectively. The rRNA levels on the nylon membrane transferred from the
ethidium bromide (EtBr)-staining of the gel (lower) were used as sample loading marker. (B) The relative transcript accumulation patterns of SSITL
gene detected with Real-time RT-PCR amplification after contacting with Arabidopsis plants (dark columns) or growing on minimal medium (red
columns) for 0–12 hr. The relative levels of transcript were calculated by the comparative Ct method. The SSITL gene expression of S. sclerotiorum
inoculated on plants or in plate at 0 hr was set as level one. The levels of b-tubulin transcript were used to normalize different samples. Bars represent
means and standard deviations (three replications).
doi:10.1371/journal.pone.0053901.g002
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Figure 3. SSITL silenced transformants showing abnormal phenotypes. (A) The construction of SSITL silenced vector. (B) Northern blots
analysis of the SSITL gene transcript accumulation in SSITL silenced transformants. Expression of SSITL in the wild-type Ep-1PNA367 served as control.
Hyphae mass from 3-day-old colonies on PDA was collected for gene expression analysis. RNA samples were monitored by Northern hybridization
analysis of 18S rRNA on the nylon membrane. (C) Abnormal colony morphology produced by SSLTL silenced transformants. Colonies were grown on
PDA for 30 days at 20uC. (D) Excessive branching of hyphal tips of SSITL silenced transformants. (E) Hyphal growth rates of SSITL silenced
transformants. Growth rates were examined on PDA at 20uC. Different letters in the graph indicate statistical differences, P = 0.01. (F) Virulence
decreases in SSITL silenced transformants. Virulence was evaluated on detached leaves of rapeseed (Brassica napus) measured by the lesions diameter
at 20uC for 72 h. Different letters in the graph indicate statistical differences, P = 0.01. (G) Sclerotial sizes of SSITL silenced transformants. Sclerotia were
produced on the autoclaved carrot rods in 250 ml flasks at 20uC for 30 days.
doi:10.1371/journal.pone.0053901.g003
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Figure 4. Immunolocalization of SSITL of S. sclerotiorum during hyphal growth and infection. (A) Hyphae for ultrathin sections were
collected from 3-day-old colony grown on PDA at 20uC. Ep-1PNA367 and the SSITL silenced transformants A10 and B6 were incubated with the

A Protein of S. sclerotiorum Suppresses Resistance
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Subcellular Localization of SSITL in S. sclerotiorum and in
Host Cells

To prepare the antiserum of SSITL, pET22bInt was trans-

formed to E. coli strain Rosetta (DE3). Expression of the target

protein (SSIT) in E. coli was performed according to Novagen. pET

System Manual. 11th Edition. The purification and expression of

SSITL antiserum were performed according to the methods of Xu

et al [41].

To study cellular localization of the SSITL protein in hyphal

cell, A10 and the wild-type strain were grown on PDA for 72 hr

and then the mycelial agar discs from the active colony edge were

collected. The distribution of SSITL during plant infection was

determined by inoculating mycelial agar discs to the leaves of 6–8

week-old plants of Col-0 for 12 hr at 20uC. Diseased leaves were

collected. Sample preparation, immunogold labeling were per-

formed according to the methods described by Kang et al [42].

Immunofluorescence with minor modifications was also used to

confirm the secretion of SSITL [43]. Transgenic S. sclerotiorum

strains carrying a SSITL: Flag tag fusion protein was expressed

under the modulation of PtrpC. The expression of the fusion gene

was determined by RT-PCR, and confirmed by Western blot

analysis. One transformant was chosen as a representative and

inoculated to onion bulb epidermal tissue for 12–24 hr at 20uC.

The inoculated epidermis was rolled with forceps, washed with

PBS buffer for three times and fixed with 2 ml 4% paraformal-

dehyde for 15 min. The fixed epidermis was permeabilized in

0.1% Triton X-100 or 0.1% NP-40 buffer for 3 min, blocked for

15 min in PBS containing 1% BSA and 0.09% sodium azide, and

then incubated with the primary anti Flag-tag mouse monoclonal

antibody (1:50 dilution in PBS containing 1%BSA) (CWBIO,

China) at room temperature for 2 hr. The epidermis was washed

for three times with PBS buffer and incubated with the secondary

antibody (Goat anti-mouse-Rhodamine Red-X, 1:75 dilution in

PBS containing 1% BSA) (CWBIO, China) for 1 hr at room

temperature. After three times of washing with PBS buffer, the

immunofluorescence reaction was observed under a Nikon Eclipse

80i fluorescent microscope (Nikon, Japan). Ep-1PNA367 was used

as control. The excitation wavelength and emission wavelength

used here were 510–560 nm and 575–590 nm, respectively.

Influence of SSITL to Local and Systemic Resistance
To explore SSITL with respect to pathogenicity, local resistance

and systemic resistance assays were conducted. To probe local

resistance affected by the SSITL silenced transformant, mycelial

agar discs (diameter 4 mm) were taken from the active colony edge

and inoculated on leaves of 6–8 week-old A. thaliana Columbia-0

and mutant ein2, jar1, NahG and pad4 at 20uC. The wild-type strain

Ep-1PNA367 was inoculated on the leaves of Arabidopsis as

control. The inoculated leaves of Arabidopsis were harvested at 3,

6, 9, and 12 hpi, respectively, and then stored at 280uC for RNA

extraction and Real-Time RT-PCR analysis. A portion of

inoculated plants were further incubated for 36 hr at the same

condition to allow lesion development, and then lesions were

photographed and their diameters were measured.

antiserum raised by immunizing rabbits with SSITL, respectively; the hyphae of Ep-1PNA367 which was treated with the pre-immune serum were
used as control. (B) Immunolocalization of SSITL (the arrow point) in A. thaliana leaf cells infected by Ep-1PNA367 at 12 hpi. Left: Treated with
antiserum; Right: Control sections treated with pre-immune serum. Hyphal agar discs were cut from colony margins and inoculated to the leaves of
Arabidopsis for 12 hr before the lesion margin was collected for ultrathin sectioning analysis.
doi:10.1371/journal.pone.0053901.g004

Figure 5. Immunofluorescence detection of SSITL during S. sclerotiorum infecting on onion bulb epidermis. A transgenic strain of S.
sclerotiorum in which an SSITL:Flag tag fusion protein was expressed using PtrpC. Onion bulb epidermis was inoculated with strains for 12–24 hr at
20uC, and was used for immunofluorescence observations under a Nikon Eclipse 80i fluorescent microscope (Nikon, Japan).
doi:10.1371/journal.pone.0053901.g005
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Figure 6. Expression of PDF1.2 and PR-1 induced by transformants of S. sclerotiorum at locally inoculated leaves of A. thaliana at the
early stage of infection. The expression of PDF1.2 (A) and PR-1 (B) on leaves inoculated with silenced transformant A10 or with the wild-type strain
Ep-1PNA367. The relative levels of transcript were calculated by the comparative Ct method. Expression on leaves of A. thaliana inoculated with
pathogen for 0 hr was set as one. Transcript levels of GAPDH of Arabidopsis were used to normalize different samples. Bars represent means and
standard deviations (three replications). (C) Lesions induced by transformant A10 and the wild-type strain Ep-1PNA367 on leaves observed at 20uC for
36 hr. Asterisks indicate statistical differences between the lesions diameter induced by A10 and Ep-1PNA367 (P,0.05).
doi:10.1371/journal.pone.0053901.g006
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To probe the systemic defense responses induced by A10, the

lower leaves of 6–8 weeks old A. thaliana Columbia-0 and mutant

ein2, jar1, NahG and pad4 were inoculated with the mycelial agar of

A10 for 48 hr at 20uC. Water agar and Ep-1PNA367 were

inoculated to Arabidopsis as controls. Inoculated leaves were cut

with a sterilized scissors at 48 hpi, and upper leaves were

inoculated with B. cinerea mycelial agar discs. The B. cinerea-

inoculated leaves were collected at 0, 1, 2 and 3 days post-

inoculation and stored at 280uC for RNA extraction and Real-

Time RT-PCR analysis. The lesions induced by B. cinerea on the

leaves of Arabidopsis were measured and photographed at 72 hpi.

The expression of two defense marker genes, PDF1.2

(AT5G44420.1) for JA/ET signal pathway mediated resistance

and PR-1 (AT2G14610) for SA signal pathway mediated

resistance, were examined with Real-Time RT-PCR assay as

described above.

Transient and Constitutive Expression of SSITL in Host
Plants

To construct an expression vector, full-length SSITL cDNA

including the signal sequence, was amplified by PCR with a pair of

specific primers. The restriction sites of BamHI and SacI were

introduced at the 5’ terminus of sense and antisense primers,

respectively. The pBI121 vector and the PCR products were

digested by BamHI and SacI, and the cDNA fragment was ligated

into pBI121 to generate the expression vector pBI121-Int. pBI121-

Int was transformed to A. tumefaciems strain GV3101. For SSITL

transient assays, Agrobacterium-mediated transient expression was

Figure 7. Strong systemic resistance induced by SSITL silenced transformants of S. sclerotiorum. (A) The lesions induced by B. cinerea with
the lower leaves being pretreated with SSITL silence transformant A10, Ep-1PNA367 and the water agar plugs (CK), respectively. Leaves were
inoculated with A10 or the wild-type S. sclerotiorum or water agar for two days before inoculated leaves were cut and then inoculated with B. cinerea
at 20uC for 72 h. (B) Expression of PDF1.2 on upper leaves of inoculated plants pretreated with A10. Expression in un-inoculated leaves of A. thaliana
was set as level 1. At 2 dpi, leaves of Arabidopsis were inoculated with A10 or the wild-type strain S. sclerotiorum or water agar and, at 0 dpi, and
upper healthy leaves were inoculated with B. cinerea. Expression of GAPDH was used to normalize. Bars represent means and standard deviations
(three replications).
doi:10.1371/journal.pone.0053901.g007
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performed using leaf infiltration as described by Krasileva et al

[44]. For the SSITL constitutive expression, the Agrobacterium-

mediated transformation of A. thaliana was performed using the

floral dip method as described by Zhang et al [45].

To determine whether SSITL affects on local resistance,

tobacco leaves were infiltrated with Agrobacterium GV3101

strain carrying the SSITL expression vector, and then the SSITL

transiently expressed leaves of tobacco were inoculated with A10

and Ep-1PNA367, respectively. The plants were inoculated for

48 hr at 20uC, and then the sizes of lesions induced by A10 and

Ep-1PNA367 were measured. Arabidopsis leaves also were

infiltrated and inoculated with A10 or Ep-1PNA367 for 48 hr or

24 hr, respectively, and then the lesions diameters were measured.

Leaves infiltrated with GV3101 carrying empty vector were served

as control. Expression levels of defense genes PDF1.2 and PR-1 in

inoculated leaves were monitored as described above. In terms of

systemic resistance, the SSITL transiently expressed leaves of A.

thaliana were inoculated with A10 for 48 hr. The inoculated leaves

were cut and the upper leaves were inoculated with B. cinerea

mycelial agar discs for 72 hr at 20uC, and then the lesion

diameters were measured. Expression levels of defense genes

PDF1.2 and PR-1 in upper leaves were monitored after the SSITL

transiently expressed leaves were inoculated with A10 for 48 hr.

Leaves infiltrated with GV3101 carrying empty vector were served

as control.

In the constitutive expression of SSITL, the SSITL transgenic A.

thaliana was inoculated with A10 for 72 hr or with Ep-1PNA367

for 24 hr at 20uC, respectively, and then the lesions diameters

were measured. The expression assays of resistance genes PDF1.2

and PR-1 in SSITL transgenic lines of A. thaliana were performed.

Alternatively, the SSITL transgenic lines of A. thaliana were

inoculated with B. cinerea for 24 hr at 20uC before the lesions

diameters were measured.

Results

SS1G_14133 has a Secretion Property and is Similar to
Integrin-like Protein

The S. sclerotiorum SS1G_14133 gene is a single copy gene,

consisting of two exons and one intron and encoding 302 amino

acid residues and the initial N terminus 17 amino acids encode

signal peptide. No transmembrane helices of this protein were

predicted and the entire amino acid sequence/protein is outside

the cell, thus, the protein coded by SS1G_14133 is a secretory

protein possibly. BLAST searches for homologous sequences

resulted in significant similarity with sequences from B. fuckeliana

Figure 8. Enhanced susceptibility to A10 produced by disruption of JA/ET and SA signal pathway of Arabidopsis. (A, B) A10 induced
larger lesions on the leaves of Arabidopsis mutant jar 1 and ein2, and mutant pad 4 and transgenic line NahG were more susceptible than the wild-
type of A. thaliana. Different letters in the graph indicate statistical differences, P = 0.01. (C, D) The relative expression of PDF1.2 and PR-1 gene in
Arabidopsis mutants and transgenic line NahG inoculated with A10. Plants were incubated at 20uC for 36 hr after being inoculated with active
mycelial agar discs of A10. Bars represent means and standard deviations (three replications).
doi:10.1371/journal.pone.0053901.g008
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(CCD48260.1, E-value: 6.3E-152), Aspergillus fumigatus

(XP_750162.2, E-value: 2E-105), Neosartorya fischeri

(XP_001265249.1, E-value: 3E-102), A. oryzae (EIT81778.1, E-

value: 5E-105) that match to the FG-GAP repeat domain-

containing proteins frequently found in the N terminus of integrin

alpha chains [46]. Sequence alignment of these homologs revealed

significant conservation in length and amino acid composition

(Figure 1A), except the homolog from B. fuckeliana, which has 584

amino acid residues. Internal sequence repeats and secondary

structure prediction analysis show that SS1G_14133 protein

contains five highly conserved repeats; each repeat consists of

four b strands (Figure 1B). Furthermore, both the search results

using Superfamily HMM Sequence Search and InterProScan Sequence

Search indicated that this protein is classified in the integrin alpha

N-terminal domain superfamily (each E-value is 1.01E-10 and

6.7E-6 respectively). The Bioinformatics Toolkit HHpred analysis

result indicates that the function and structure of SS1G_14133 is

similar to human (Homo sapiens) integrin a subunits (UniProt Id:

P06756, E-value: 1.6E-16). The 3D structural model predicted by

Phyre2 showed that SS1G_14133 adopts a regular five-bladed b-

propeller domain with each blade consisting of four b strands

(Figure 1C), and shares a strong structural similarity with the

integrin a4-subunit (UniProt Id: P13612, E-value: 1.2E-21,

Confidence: 99.90%, Score: 114.97) [46] and Psathyrella velutina

integrin-like fungal protein (UniProt Id: Q309D1, E-value: 1.3E-30,

Confidence: 100.00%, Score: 155.33) [47]. However, both of these

two proteins contain a seven-bladed b-propeller domain.

In summary, the protein coded by SS1G_14133 resembles

integrin-like proteins, thus we named this gene ‘‘SSITL’’ derived

from Sclerotinia sclerotiorum integrin-like gene.

SSITL Expresses Highly at the Early Stages of Infection
and Sclerotial Development

Northern blot was used to examine the expression pattern of

SSITL at several stages of mycelial growth on PDA. Results

showed that expression of SSITL was detected on the second day

but not on the first day; transcript accumulation peaked on the

third day and then decreased slightly on the 4th day and the 5th

day (Figure 2A). When grown on PDA for 3–4 days, S. sclerotiorum

initiated sclerotial development; thus suggested that SSITL is

involved in sclerotial development possibly.

Real-Time RT-PCR analysis was used to determine expression

patterns of SSITL during fungal interaction with host plants.

Results indicated that when actively growing hyphal fragments of

Figure 9. Failure of A10 to induce systemic resistance in mutants of Arabidopsis disrupted in the JA/ET signal pathway. (A) The
lesions caused by B. cinerea on A. thaliana mutations and transgenic line NahG for 72 hr at 20uC after being pretreated with A10. (B) The lesions
caused by B. cinerea on A. thaliana for 72 hr at 20uC after being pretreated with A10 (blue), Ep-1PNA367 (red) and water agar plugs (black). Asterisks
indicate statistical differences from the A10 pretreated (P,0.05). (C, D) The expression of PDF1.2 and PR-1 during the infection of B. cinerea on A.
thaliana mutations and transgenic line NahG after being pretreated with A10. Bars represent means and standard deviations (three replications).
doi:10.1371/journal.pone.0053901.g009
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S. sclerotiorum were inoculated on leaves of A. thaliana (Col-0), the

transcript levels of SSITL rapidly increased (600 fold) peaking at

3 hpi, and then decreased, but expression was still about 120–250

fold higher than at 0 hpi for and remained so for a further 9 hr

(Figure 2B). However, when the same mycelial fragments were

inoculated on minimal medium, the expression of SSITL did not

vary to any great extent, with the highest expression being

observed at 6 hpi and the relative expression being about 3.4 fold

higher than at 0 hpi (Figure 2B). Thus the expression of SSITL was

strongly induced by its interaction with host. And also, when

inoculated with the wild-type strain Ep-1PNA367, lesions on the

A. thaliana leaves could be observed at approximately 6 hpi,

correlating with the expression pattern of SSITL during infection,

suggested that this gene may play significant roles at the early

stages of infection.

SSITL Silenced Transformants Show Abnormal Phenotype
To study the functions of SSITL, this gene was silenced with the

RNAi technique. A gene silencing vector (Figure 3A) was used to

transform the wild-type strain Ep-1PNA367. Northern blot

analysis was used to examine the transcript accumulation of

SSITL in each transformants. The SSITL expressions in six

transformants were found to be dramatically reduced after up to

ten rounds of hyphal tip purification (Figure 3B). Colony

Figure 10. Enhanced susceptibility to SSITL silenced transformant A10 induced by the transient expression of SSITL in the host
plants. (A, B) The lesions induced by silenced transformant A10 and the wild-type strain Ep-1PNA367 on the leaves of tobacco (Nicotiana
benthamiana) for 48 hr at 20uC. (C, D) The lesions induced by silenced transformant A10 and the wild-type strain Ep-1PNA367 on the leaves of A.
thaliana Col-0 for 48 hr and 24 hr at 20uC, respectively. SSITL was expressed transiently in plants leaves by infiltrating with Agrobacterium GV3101
strain carrying SSITL expression vector. The leaves infiltrated with GV3101 carrying empty vector were selected as control (CK). Asterisks indicate
statistical differences from the control (P,0.05). (E, F) Transcript levels of PDF1.2 and PR-1 in the SSITL transiently expressed A. thaliana leaves (black)
after being respectively inoculated with silenced transformant A10 and the wild-type strain Ep-1PNA367 for 3, 6, 9 and 12 hr, with the plant leaves
infiltrated with the GV3101 carrying empty vector being sampled for control (red). (G) Analysis the SSITL expression in the transiently expressed leaves
of A. thaliana and tobacco (N. benthamiana) with RT-PCR. The leaves infiltrated with the GV3101 carrying empty vector were selected as control (CK).
The A. thaliana GAPDH and N. benthamiana actin genes (see primers in Table 1) were used to normalize different samples.
doi:10.1371/journal.pone.0053901.g010
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morphology, growth rate, virulence and the tip hyphae morphol-

ogy of SSITL silenced transformants were further studied.

SSITL affects hyphal growth and colony morphology. SSITL

silenced transformants sectored on PDA with abnormal colony

morphology (Figure 3C). Microscopic observations of hyphal tips

from growing colonies of SSITL silenced transformants showed

more excessive and shorter tip branching, denser hyphae

(Figure 3D), and reduced in growth rate (Figure 3E).

As suggested, SSITL appears to be important for sclerotial

development. When grown on PDA, the SSITL silenced transfor-

mants produced abundant irregular sclerotia. The sclerotia varied

in size from each other in the same plate, but were smaller than

those produced by the wild-type strain. In contrast, Ep-1PNA367

produced sclerotia at or near the outer edge of the plate

(Figure 3C). Many sclerotial initials formed but failed to fully

develop (Figure 3C).

To confirm the effect of SSITL on sclerotial development, SSITL

silenced transformants were cultured on autoclaved carrot in

250 ml flasks at 20uC for 30 days and sclerotia were collected.

Sclerotia of SSITL silenced transformants also decreased remark-

ably in size and most of which were spherical in shape, while the

sclerotia of the wild-type strain were irregular in shape (Figure 3G).

The weight per hundred sclerotia of SSITL silenced transformants

A10 and B6 were 1.2460.17 g and 1.8260.29 g, respectively,

which were much lower than that of the wild-type strain

(7.7661.96 g). Furthermore, the sclerotia produced by SSITL

silenced transformants did not germinate carpogenically.

The virulence of SSITL silenced transformants were significantly

reduced and only small lesions were developed on leaves of Brassica

napus (Figure 3F). The lesions induced by A10 and B6 were about

1.5 cm and 1.7 cm in diameter, respectively, while the lesion

induced by the wild-type strain was about 3.5 cm in diameter.

Smaller lesions on other hosts, such as A. thaliana, lettuce,

cucumber and soybean, were also observed when A10 and B6

were inoculated (data not shown).

Taken together, SSITL has pleiotropic effects on virulence,

hyphal growth, sclerotial development and germination.

Figure 11. Suppression of the systemic resistance induced by SSITL silenced transformant A10 in the Arabidopsis plants of SSITL
transient expression. (A) The lesions induced by B. cinerea on upper leaves of plants after the SSITL transiently expressed leaves were inoculated
with A10 for 48 hr. The lesions were induced by B. cinerea at 20uC and were measured at 72 hpi. Asterisks indicate statistical differences from the
control (P,0.05). (B) The relative transcript levels of PDF1.2 and PR-1 in the upper leaves of plant after the SSITL transiently expressed leaves were
inoculated with A10 for 48 hr. Plants infiltrated with GV3101 carrying empty vector only, served as control.
doi:10.1371/journal.pone.0053901.g011
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SSITL is Secreted to Cell Walls of S. sclerotiorum and the
Extracellular Matrix

The subcellular localization of the SSITL in hyphae was

detected by immunogold labeling. Our results indicated that

SSITL located mainly on the fungal cell wall, and was also

observed in the extracellular matrix and cytoplasm (Figure 4A).

The accumulation of SSITL on hyphal cell walls of A10 was

significantly lower than the wild-type strain (Figure 4A) in

accordance with SSITL being silenced. No gold labeled particles

were observed on the cell walls of the wild-type or mutant strains

treated with pre-immune serum (Figure 4A). Immunofluorescence

studies also showed that the SSITL:Flag fusion protein was

secreted through the hyphal tip during infection of onion

epidermis (Figure 5), which is consistent with other reports that

the secretory proteins were observed accumulating at the tips of

hyphae during infection of Magnaporthe oryzae and other fungi [48–

50]. Furthermore, when S. sclerotiorum infected Arabidopsis, gold

labeled particles were detected in the plant cells (Figure 4B), while

control sections displayed no labeling signals in fungal or plant

cells (Figure 4B). Thus, the SSITL was secreted to the host cell and

may have played an important role in promoting the infection.

SSITL Silenced Transformants Induce both Local and
Systemic Resistance in Arabidopsis

SSITL silenced transformants, like A10, produces a considerable

amount of oxalic acid, but are still attenuated in virulence on hosts.

We suspected that infection by transformants might trigger

resistance in the host. To experimentally investigate this possibility

transcript accumulation of pathogenesis-related genes PR-1 and

plant defensin PDF1.2 in A. thaliana were examined. When leaves

were inoculated with SSITL silenced transformants A10, rapid and

increased levels of transcriptions of these two genes were observed

at the early stages of infection. The expression of PDF1.2 and PR-1

on inoculated leaves increased 708 fold and 77 fold at 3 hpi

respectively, as compared with those at 0 hpi (Figure 6A and B).

High expression of PDF 1.2 was still observed at 9 hpi, and then

began to drop, but the transcripts levels of PDF 1.2 at 12 hpi were

still higher than at 0 hpi (Figure 6A). However, the expression of

PR-1 dropped quickly and the expression level of PR-1 at 6 hpi

was very close to that of 0 hpi (Figure 6B). The results were similar

to the previous report that much higher expression levels of

defense response genes were induced at early stage in tomato

leaves when inoculated with attenuated virulent B. cinerea isolate

compared with that of virulent isolate [3]. In contrast, when leaves

were inoculated with the wild-type strain Ep-1PNA367, the

transcript accumulations of PDF1.2 and PR-1 were low at the early

Figure 12. Suppression of resistance induced by A10 in SSITL transgenic lines of A. thaliana. (A) Lesions on the leaves of SSITL transgenic
lines (line 1 and line 2) and the wild-type A. thaliana Col-0 induced by A10. Lesions were measured at 72 hpi. Asterisks indicate statistical differences
from the wild-type Col-0 (P,0.05). (B) PDF1.2 and PR-1 expression in the wild-type Col-0 (black), SSITL transgenic line 1 (red) and line 2 (blue) after
inoculated with A10. (C) Lesions induced by Ep-1PNA367 on the wild-type A. thaliana Col-0, SSITL transgenic line 1 and line 2 at 20uC for 24 hr.
Asterisks indicate statistical differences from the wild-type Col-0 (P,0.05). (D) PDF1.2 and PR-1 expression in the wild-type Col-0 (black), SSITL
transgenic line 1 (red) and line 2 (blue) after inoculated with Ep-1PNA367. (E) Lesions induced by B. cinerea on the wild-type A. thaliana Col-0, SSITL
transgenic line 1 and line 2 at 20uC for 24 hr. Asterisks indicate statistical differences from the wild-type Col-0 (P,0.05). (F) The analysis of SSITL
expression in transgenic lines (line 1 and line 2) of A. thaliana with RT-PCR. A. thaliana GAPDH (see primers in Table 1) was used to normalize different
samples.
doi:10.1371/journal.pone.0053901.g012
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stages, and then they increased gradually and reached a peak at

12 hpi (Figure 6A and B); similar resistance reactions of

Arabidopsis to virulent S. sclerotiorum and B. cinerea strains have

also been detected previously [15,16,51].

With respect to virulence, lesions on Arabidopsis induced by

A10 were much smaller in diameter than that of the wild-type

strain Ep-1PNA367 (Figure 6C), consistent with the higher

expression levels of these defense responses genes in the

Arabidopsis inoculated with A10 compared with that of the

wild-type. SSITL therefore may be required to suppress host

defense responses.

To examine whether systemic resistance occurs, mycelial plugs

of the wild-type strain and A10 were inoculated on the leaves of

Arabidopsis. At 48 hpi, upper leaves of the same plant were

inoculated with B. cinerea for a further 72 hr. The results showed

that when pre-treated with A10, the secondary infection lesions

caused by B. cinerea were significantly smaller than those pre-

treated with the wild-type strain and water agar plugs (control)

(Figure 7A).

Real-time RT-PCR amplification results showed that expres-

sion of PDF1.2 on the upper leaves of plant pre-treated with A10

was much higher than those plants pre-treated with the wild-type

strain of S. sclerotiorum or water agar. The induced expression of the

PDF1.2 corresponds with the disease severity but not the PR-1

(Figure 7A and B).

These results showed that A10 can induce both local and

systemic resistance in A. thaliana, while the wild-type cannot induce

systemic resistance or possibly suppress this resistance, and

suggested that both JA/ET-dependent and SA-dependent signal

pathways are involved in local resistance of Arabidopsis to S.

sclerotiorum infection, but JA/ET-dependent signal pathway plays a

more important role in both the local and the systemic resistant

reactions. However, both local and systemic resistances are

suppressed by the wild-type strain of this pathogen at the early

stage of infection.

To further validate these conclusions, A. thaliana mutant pad4,

jar1, ein2 and NahG Arabidopsis were inoculated with A10. The

lesions induced by A10 on jar1 and ein2 were obviously larger

than lesions on pad4 and NahG, and the latter were also larger

than those on the wild-type Arabidopsis (Figure 8A and B),

which correlates with the lower transcript accumulations of the

defense responses genes (Figure 8C and D). A10 was also

inoculated for 48 hr on the leaves of pad4, jar1, ein2 and NahG,

respectively, and B. cinerea was inoculated on the upper leaves

after pre-inoculated leaves were removed as described above.

The lesions induced by B. cinerea on the leaves of jar1 and ein2

were obviously larger than those on leaves of pad4 and NahG,

and than those on the wild-type Arabidopsis as well (Figure 9A

and B), which is consistent with the lower transcript accumu-

lation of PDF1.2 (Figure 9C and D).

Transient and Constitutive Expression of SSITL in Host
Plants Leads to be more Susceptible to S. sclerotiorum

To further verify that SSITL impacts the defense responses of

host plants, transient and constitutive expression of SSITL in host

plants was conducted. On SSITL transiently expressed leaves of

tobacco (Nicotiana benthamiana) and A. thaliana (Figure 10G), lesions

induced by A10 were significantly larger than those on control

leaves (Figure 10A and C). Following inoculation with A10, the

relative expressions of defense genes PDF1.2 and PR-1 were also

much lower than in control leaves (Figure 10E). Furthermore, on

SSITL transiently expressed leaves, the lesions induced by Ep-

1PNA367 were still slightly larger than those on control leaves

(Figure 10B and D); and when inoculated with Ep-1PNA367, the

expression of defense genes PDF1.2 in SSITL transiently expressed

leaves was slightly suppressed (Figure 10F), but the suppression

was not so obvious as in A10 inoculated leaves. Systemic resistance

induced by A10 was also suppressed. Compared with control,

when A10 was inoculated on SSITL transiently expressed leaves

for 48 hr, larger lesions on the upper leaves of Arabidopsis plant

were induced by B. cinerea (Figure 11A), which is consistent with

the reduced transcript levels of defense genes in the upper leaves

(Figure 11B).

SSITL was transformed successfully into Arabidopsis and was

constitutively expressed in transgenic lines (Figure 12F). The

transgenic lines were inoculated with A10 and Ep-1PNA367,

respectively. Results showed that the lesions on the leaves of

transgenic lines induced by A10 were obviously larger than those

on the wild-type Col-0 (Figure 12A), and the relative expressions of

PDF1.2 in the leaves of transgenic lines were significantly lower

than that in the wild-type Col-0 after being inoculated with A10

(Figure 12B). Furthermore, the lesions on the leaves of transgenic

lines induced by the wild-type strain Ep-1PNA367 were still

slightly larger than those on the wild-type Col-0 (P,0.05)

(Figure 12C) in spite of the relative expression of defense genes

PDF1.2 between leaves of SSITL transgenic lines and the wild-type

were not significantly different after being inoculated with Ep-

1PNA367 (Figure 12D). And the lesions on the leaves of transgenic

lines induced by the wild-type of B. cinerea were also slightly larger

than those on the wild-type Col-0 at 24 hpi (P,0.05) (Figure 12E).

Thus, these data are consistent with the ability of SSITL to

suppress JA/ET signal pathway mediated resistance in host plants

at very early stage of infection and make hosts more susceptible to

S. sclerotiorum.

Discussion

In this paper, we investigated an integrin-like gene (SSITL) of S.

sclerotiorum. This gene was significantly downregulated in the

presence of hypovirulence associated mycovirus SsDRV. SSITL is

an extracellular protein involved in virulence of S. sclerotiorum.

Targeting silencing of SSITL in S. sclerotiorum resulted in the

reduction of virulence, reduced hyphal polarity, and decreased

sclerotia both qualitatively (morphology/size) and quantitatively

(numbers). Sclerotia produced by SSITL silenced transformants

were also defective in carpogenic germination. Moreover, we

found that SSITL is likely to be an effector and is involved in

suppression of host resistance mediated by JA/ET signal pathway

at an early infection stage.

When inoculated with the SSITL silenced transformant, strong

and quick defense response of Arabidopsis to S. sclerotiorum was

induced at the very early stage of infection (about 3 hpi) based on

the highly expression of PDF1.2 and PR-1, suggesting that

Arabidopsis quickly responds to initiate resistance against SSITL

silenced transformant. Both PDF1.2 and PR-1 were highly induced

at 3 hpi and the high level expression of PDF1.2 lasted to 9 hpi,

while the expression of PR-1 dropped quickly at 6 hpi (Figure 6A

and B). The high expression of PDF1.2 suggested that JA/ET

signal pathway is involved in counteracting the infection of S.

sclerotiorum. And also, SSITL silenced transformant A10 can induce

larger lesions on Arabidopsis mutant jar1 and ein2 than on mutant

pad4 and NahG (Figure 8A and B), further confirmed the important

contribution of JA/ET signal pathway for Arabidopsis against S.

sclerotiorum. Our finding is consistent with other reports for

necrotrophic pathogens [3,12–16,51].

While inoculating Arabidopsis with the wild-type strain of S.

sclerotiorum, the expressions of PDF1.2 and PR-1 in inoculated

leaves were suppressed at the early stage of infection, and were
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only detectable after 9 hpi in our experiment (Figure 6A and B),

similar results were also observed in other studies [15,51]. This

defense response is too late to counteract necrotrophic pathogen,

such as S. sclerotiorum, since pathogens have already colonized on

their host. Small lesions at the inoculation sites can be observed

under microscopy at 6 hpi; furthermore, typical and macroscopic

necrosis lesions induced by S. sclerotiorum around the inoculation

sites can be observed easily with naked eyes at about 12 hpi. In this

paper, we found that the wild-type strain of S. sclerotiorum can

suppress the defense response of Arabidopsis at the early stage of

infection to facilitate its infection while the SSITL silenced

transformant failed or postponed to suppress the defense response,

thus, SSITL is involved in the suppression of host defense at the

early stage of infection.

Usually, the strong defense against the wild-type strain of S.

sclerotiorum at the early stage of infection is not detectable, which

means that the defense is most likely to be suppressed or postponed

by this pathogen. If suppression is a means by which S. sclerotiorum

is successful as a pathogen, then it is not surprising that S.

sclerotiorum may secrete pathogenicity factors to aid in the

suppression of host resistance. Previous studies on the pathoge-

nicity of necrotrophic pathogens mainly focus on toxins (including

proteinaceous effectors), plant cell degrading enzymes and

proteinases [20,22,52–56]. Oxalic acid is considered a key

pathogenicity factor for the killing of host cells and tissues by S.

sclerotiorum [57], and it is also involved in suppressing host

resistance and interrupting the host physiology rather than as a

direct killer [11,21,22,58]. However, this topic is also one of

increasing complexity; several mutants of S. sclerotiorum produce a

considerable amounts of oxalic acid, but do not infect the plant;

the SSITL transformant and the virus mediated hypovirulent strain

Ep-1PN, also produce significant amounts of oxalic acid, but

virulence is weak [59]; in addition, the mutant cannot produce

oxalic acid, but can still infect plant [60]. Recently, Williams et al

[11] found that reactive oxygen species (hydrogen peroxide) was

virtually absent in DAB stained leaf inoculated with the wild-type

strain of S. sclerotiorum, while leaves inoculated with an oxalic acid

deficient mutant A2 displayed strong DAB staining surrounding

the infection point, and they believed that oxalic acid suppresses

host defenses by manipulating the host redox environment at

8 hpi, an early stage of infection. Our experimental results also

suggested that the resistance of host may occur at a very early

stage, even earlier than 3 hpi, and SSITL is involved in the

suppression of the JA/ET signal pathway mediated resistance.

Bioinformatics analyses indicate that SSITL is likely a protein

similar to the integrin-like protein a-subunit of animals. The

majority of studies with integrins have focused on mammalian

systems, while rarely on phytopathogenic fungi. Particularly

noteworthy is the fact that integrins can signal through the cell

membranes in either direction [25–27]. Thus the presence of

SSITL may have functional relevance and maybe attributed to

several pathways. SSILT is a secretory protein and the distinct

difference between SSITL and typical integrins is the absence of a

transmembrane domain in SSITL. Thus, SSITL may be mobile

and is not directly anchored on membranes. Our finding that

SSITL was secreted into host cells during infection of onion

epidermis and was also detected in the leaf cells of Arabidopsis, is

consistent with the mobile characteristic of SSITL. It will be

important to determine binding partners for SSITL since this

protein may interact with a host receptor and/or a fungal protein.

The mechanism by which SSIT suppresses defense of

Arabidopsis against S. sclerotiorum infection is unknown. Previously,

C. albicans was found to express surface proteins with functional

and antigenic characteristics of human complement receptors type

3 (CR3), a member of the integrin superfamily, suggesting that C.

albicans was using this form of molecular mimicry to elude

phagocytosis [61]. In rice, the LysM domain–containing pattern

recognition receptor protein CEBiP, recognizes and directly binds

chitin oligosaccharides released from the cell walls of fungal

pathogens may induce chitin-triggered immune responses in rice

cells [62,63]. Recent studies demonstrated that the secretory

effector protein Slp1 of Magnaporthe oryzae also contains the LysM

domains as observed in CEBiP, and Slp1 competes with CEBiP for

binding to chitin oligosaccharides, thus preventing chitin-triggered

immunity in rice [48]. As mentioned above, plants also have

integrin-like proteins, and NDR1, a pathogen-induced protein

required for Arabidopsis disease resistance [64,65], was identified

as an integrin-like protein [30]. Further studies showed that NDR1

interacts with RIN4 initiating a resistant response [66]. Interest-

ingly, we have also found that both the A. thaliana NDR1 and S.

sclerotiorum SSITL protein possess the RGD-like motif NGD (Asn-

Gly-Asp), and the NGD motif in A. thaliana NDR1 is involved in

defense signaling following pathogens infection [30]. It is possible

that S. sclerotiorum uses SSITL to mimic NDR1 or other plant

integrin-like proteins as receptor to hold pathogenicity factors, and

then suppresses and/or interfere with the host resistance.

The importance of integrin-like proteins in other fungi or fungi-

like organisms also was illuminated. In U. appendiculatus, integrin-

like proteins are involved in the transmission of physical signals

from the leaf surface to initiate the formation of appressoria [32].

The int1 gene of C. albicans contributes to polar filamentous growth

and induces the growth of highly polarized buds [67]. In the

fungus-like organism, Saprolegnia ferax, an integrin protein, mediates

cytoplasm-wall adhesion and affects the growth rates of tip hyphae

[67]. Besides facilitating pathogenesis by suppressing the host

defense, the SSITL is also involved with proper hyphal growth and

sclerotial development. SSITL silenced transformants showed

physiological debilitating phenotypes, including slow growth,

excessive tip branching, frequent abortion of sclerotial develop-

ment and production of small sclerotia that fail to germinate

carpogenically. We have also tried several times to delete SSITL

gene in S. sclerotiorum, but failed, considering the importance

mentioned above, SSITL gene is most likely to be an essential gene

for S. sclerotiorum to survive and deletion of this gene will be fatal for

S. sclerotiorum. Surprisingly, only a few homologs of SSITL were

found in other fungi, such as Aspergillus spp., B. cinerea, Talaromyces

stipitatus and Fusarium oxysporum, and the functions of SSITL

homologs in these fungi are yet to be explored.

In summary, we have identified a gene encoding a secretory

integrin-like protein (SSITL) from S. sclerotiorum. SSITL is involved

in suppressing host defense at early stages of infection. This finding

enhances our understanding on pathogenicity of S. sclerotiorum

beyond necrotrophic stage. However, our finding also arises more

questions to be answered, such as, what kind of signal promotes

SSITL expression during the early stage of infection? Does this

signal come from fungus innately or from host? And how does

SSITL suppress host resistance defense?
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