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Abstract
In order to overcome the shortage of the current costly DVT diagnosis and reduce the waste of valuable healthcare resources, we
proposed a new diagnostic approach based on machine learning pre-test prediction models using EHRs. We examined the
sociodemographic and clinical factors in the prediction of DVT with 518 NICU admitted patients, including 189 patients who
eventually developed DVT. We used cross-validation on the training data to determine the optimal parameters, and finally, the
applied ROC analysis is adopted to evaluate the predictive strength of each model. Two models (GLM and SVM) with the
strongest ROC were selected for DVT prediction, based on which, we optimized the current intervention and diagnostic process
of DVT and examined the performance of the proposed approach through simulations. The use of machine learning based pre-
test prediction models can simplify and improve the intervention and diagnostic process of patients in NICU with suspected DVT,
and reduce the valuable healthcare resource occupation/usage and medical costs.
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Introduction

Venous thromboembolism (VTE) is blood clots, which may

happen if patients’ blood flow changes or slows down some-

where in their bodies, which seriously threatens the life and

health of patients. Unfortunately, the symptoms and signs of

deep venous thrombosis (DVT) are not the same for everyone,

which increases the difficulty of detection in practice. In some

cases, DVT symptoms may include pain, swelling, redness, or

other discomfort near the affected area.1 In other cases, however,

DVT does not cause any obvious symptoms until more serious

complications occur, like pulmonary embolism (PE).2 Currently,

DVT is a major cause of mortality in ICU patients,3 due to the

fact that the majority of patients in ICU have one or even more

risk factors for DVT.4 Those critically ill patients in ICU have a

higher risk of developing lower extremity DVT, compared with

hospitalized patients in other units.5 During their hospital stay,

ICU patients are further predisposed to DVT due to prolonged

immobilization,6 vascular injury,7 stroke,8 sepsis from central

venous catheters9 and other invasive interventions.

The DVT diagnosis and intervention are especially crucial

and tricky for critically ill patients, since those patients with

untreated DVT may develop other symptoms, e.g. PE. In this

process, predicting the probability of DVT presence in an indi-

vidual patient is of utmost important and helpful since DVT can

be prevented by thrombosis intervention (also known as throm-

bosis prophylaxis). Since it is extremely important, in our

on-site research, the physician has to make the decision that

all patients are suggested for further diagnostic work-up.

However, only 20% to 30% of DVT diagnosis of the suggested

patients are confirmed, which puts a heavy economic burden on
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both patients and the government medical expense. Then

the question arises, how to improve the efficiency of DVT

prediction accuracy to help with diagnosis, and to reduce the

waste of valuable hospital resources? One simple solution is to

exclude unnecessary tests or interventions of patients who have

a lower probability of DVT presence. For example, if we know

the probability of DVT presence of a patient is low and his/her

first ultrasound venous imaging (the most accurate and nonin-

vasive test to diagnose DVT) result is normal, he/she can pre-

clude the need for serial testing.10,11 Then the problem is how

to estimate the probability of DVT presence of an individual

patient.

In recent years, risk assessment models for individual

patient have become more popular to aid the clinical

decision-making. Abundant models have been developed to

estimate the probability of a certain outcome in an individual

patient, based on the his/her demographics, clinical or labora-

tory characteristics.12-14 Therefore, those prediction models

enable us to forecast the presence of DVT with less obvious

symptoms and conduct early intervention. Furthermore, to

identify those patients at lower risk of DVT can minimize the

need of a large number of expensive radiological tests for them.

In this study, we devote to design a pretest system in NICU

base on machine learning methods using EHRs, to filter those

patients who do not require repeated ultrasound imaging or

prophylaxis therapy.

In this study, we comprehensively incorporated all types of

sociodemographic and clinical laboratory features from the

EHRs system, and then examined the effectiveness of machine

learning models in predicting DVT presence of NICU patients.

Compared to previous studies, this study contributes from the

following aspects: (1) We investigated which factors might be

helpful to predict DVT risk in NICU patients, using both uni-

variate and multivariate filtering; (2) We developed machine

learning models to accurately predict the risk of DVT of

patients in NICU; (3) We devised better clinic process of DVT

in NICU patients with our pre-test prediction results; and

(4) We explored the cost-saving effect of the proposed

approach through simulations. To our best knowledge, this is

the first systematic attempt of DVT risk assessment in NICU

patients, due to a previous scarcity of suitable data.

Material and Methods

Data Source and Cohort Derivation

The samples were drawn from the EHRs system of West China

Hospital (WCH) of Sichuan University (one of the largest pub-

lic complicated and miscellaneous disease medical center in

China), which covers around 14 million residents in 22 districts

and counties. We collected data of patients in the NICU care of

the hospital from September 2016 to August 2018, and the

study framework is shown in Figure 1. Patients in this study

have undergone repeated ultrasound as the reference diagnosis

to determine the presence or absence of DVT while the imaging

evidence is used as the diagnostic criterion for thrombosis.

DVT is diagnosed by upper and lower extremity venous color

Doppler ultrasound and/or computed tomographic (CT)

venography.

593 records of inpatients admitted in the NICU care of the

hospital from September 2016 to August 2018 were extracted,

Figure 1. Research methodology framework.
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in which 518 records at last were kept. Based on this cohort,

records were excluded if they were: (1) of patients with missing

DVT ultrasound results; (2) of patients’ lab test information

missing; (3) duplicated storage (records with the same inpatient

code and case code). First, the data with 593 records were

checked for missing values, and subjects with any missing

value were excluded from the analysis. Second, the outliers

of each group were detected though the interquartile range

method and were removed before the start of the analysis, and

we ended up with 518 cases (with DVT prevalence of 0.36).

Various categories of features were extracted from the original

EHRs, including sociodemographic and clinical laboratory

factors. With the EHRs, large amounts of data are available,

providing an opportunity of more accurate prediction of

patients’ outcomes (see Figure 2). By using data-driven

predictive machine learning models, we sought to identify

reproducible clinical parameters during hospitalization that

may identify potential high-risk patients for intervention.

Data Analysis

The descriptive data analysis and machine learning algorithm

were implemented in R (Version 3.3.2 for Windows).

Feature extraction (risk factors)
A machine learning based risk prediction model contains fea-

ture extraction, which determines the predictive power of can-

didate predictors. The extraction is performed on the candidate

predictors (features) to reduce the curse of dimensionality,

while the odds of overfitting are reduced by removing less

predictive predictors.15-17

To identify the key predictors of the DVT risk, we first

screen the risk predictors using both univariate and multivariate

filtering, namely, statistical analysis (statistical), machine

learning (feature extraction-random forest (FE-RF)), and

regression (Lasso) method. Appropriate statistical tests such

as the analysis of variance (ANOVA), the chi-square test or

t-test, and the cross association of variables has also been inves-

tigated using logistic regression. RF could be used to rank the

importance of predictor in a classification problem and pro-

vides 2 multivariable importance measures (VIMs), i.e. the

Mean Decrease Accuracy (MDA) which is based on classifi-

cation accuracy of the out-of-bag (OOB) data from bagging,

and Mean Decrease Gini (MDG) which is based on the Gini

index of node impurity (see Online Appendix 1). FE-RF deter-

mined the second subset of predictors with the highest accu-

racy. We used penalized regression by the least absolute

shrinkage and selection operator (Lasso) method in a general-

ized linear mixed model in the R package glmLasso18 to deter-

mine another subset of predictors. An accuracy-simplicity

trade-off in Lasso regression is represented in Supplement 1,

and we used 3 feature extraction methods and the original all

predictors to construct different datasets. The details about the

numbers of datasets risk factors are listed in Online Appendix

2. In this study, we used real data on the diagnosis of DVT to

examine our predictive models and we compared the perfor-

mance of 3 different feature extraction methods as well as the

original baseline models.

Machine learning methods
The data was randomly split into 80% and 20% as training and

testing data, maintaining the same proportion of each class in

both data set. The same set of testing data was consistently held

out, and never used for model selection or parameter tuning.

We compared the performance of models developed by 4 dif-

ferent machine learning approaches to predict the risk of DVT.

To this end, we trained 4 different machine learning models, a

Xgboost (eXtreme Gradient Boosting) model, a 2-class support

vector machine (SVM) model, a GLM model and a RF19

model.

After spilling the data in to training set and test set, all data

pre-process and parameters tuning are completed in R language

using the preProcess function and the train function. The train

function in R can generate a set of parameter values, in which the

trainControl argument controls how many are evaluated. By

default, the function automatically chooses the tuning para-

meters with the best performance. To choose a sensible combi-

nation of predictors and modeling strategy, the composite

features and different machine learning performance were tested

on the test dataset by ROC analysis. Moreover, other classifica-

tion performance metrics (accuracy, specificity, sensitivity, etc.)

change when the threshold of classification model changes.

Results

Descriptive Analyses

We examined 518 patients admitted into NICU from the EHRs

database of WCH, with 36.49% DVT prevalence. Continuously

distributed outcomes were summarized with the mean and stan-

dard deviation (SD) and categorical outcomes were summar-

ized with frequencies and percentages. All statistical testing

was 2-sided with a significant level of P-value less than 5%,

by using the free statistical software, R. Those basic

Figure 2. Flowchart of the study subjects.
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sociodemographic characteristics of full cohort are summar-

ized in Table 1. The mean (SD) age of the study population

is 52.37 (17.35) years, and 53.1% of patients are male. Two

groups did not differ significantly in the gender, age, admission

times, if transferred, rehospitalization plan and length of stay

(LOS), while did differ in race ethnicity, cost type, payment

type, job status, marital status, and admission type. Particularly,

NICU patients who developed DVT were more likely to have the

following features, less surgery times (0.89 vs 0.81; P < .001),

retired (16.4% vs 7.3%), mental worker (4.8% vs 2.4%) rather

than manual worker (24.3% vs 30.4%), student (1.6% vs 5.2%; P

< .001), married (86.8% vs 79.9%) and widowed (5.8% vs 4.6%)

rather than single (4.8% vs 13.7%), the race ethnicity of Zang

(8.5% vs 3.0%) and Yi (2.6% vs 1.5%) rather than Han (86.8%
vs 93.6%), and pay with any type of medical insurances (50.8%
vs 36.8%; P < .001).

The results for analyzing laboratory test dataset, the

results of coagulation, blood, and biochemical examinations

tested before hospitalization of the study population were

extracted and classified in Table 2. For the coagulation

examination, NICU patients who developed DVT showed

higher mean values of fibrinogen (3.40 mg/dL vs 2.80

mg/dL; P < .001). For the routine blood examination, NICU

patients who developed DVT showed higher mean values of

white cell count (11.61 109/L vs 10.21 109/L; P ¼ .002),

percentage of neutrophils (85.13% vs 81.33%; P < .001),

average red blood cell volume (92.18 fl vs 90.38 fl; P ¼
.008), red blood cell distribution width CV (14.27% vs

13.93%; P ¼ .046) and SD (46.69 fl vs 44.76 fl; P <

.001). NICU patients who developed DVT showed lower

mean values of red blood cell count (3.63 1012/L vs 3.84

1012/L; P ¼ .002), hemoglobin (108.40g/L vs 114.49 g/L;

Table 1. Patient Demographic Details and Other Factors for DVT.

Overall No DVT DVT
Factors (518) (329) (189) P

Surgery times (mean (SD)) 0.86 (0.35) 0.89 (0.31) 0.81 (0.39) .01
Age (mean (SD)) 52.37 (17.35) 51.77 (17.60) 53.42 (16.90) .297
LOS (mean (SD)) 22.55 (24.03) 22.00 (26.50) 23.50 (19.01) .495
Gender ¼ M (%) 275 (53.1) 169 (51.4) 106 (56.1) .345
Cost type (%) .002

Cash 248 (47.9) 177 (53.8) 71 (37.6)
Insurance 217 (41.9) 121 (36.8) 96 (50.8)
Others 53 (10.2) 31 (9.4) 22 (11.6)

Marriage status (%) .014
Divorced 11 (2.1) 6 (1.8) 5 (2.6)
Married 427 (82.4) 263 (79.9) 164 (86.8)
Single 54 (10.4) 45 (13.7) 9 (4.8)
Widowed 26 (5.0) 15 (4.6) 11 (5.8)

Job status (%) .007
Labor 146 (28.2) 100 (30.4) 46 (24.3)
Management 17 (3.3) 8 (2.4) 9 (4.8)
Office 43 (8.3) 29 (8.8) 14 (7.4)
Others 213 (41.1) 134 (40.7) 79 (41.8)
Retired 55 (10.6) 24 (7.3) 31 (16.4)
Student 20 (3.9) 17 (5.2) 3 (1.6)
Unemployed 24 (4.6) 17 (5.2) 7 (3.7)

Race ethnicity (%) .037
Han 472 (91.1) 308 (93.6) 164 (86.8)
Others 10 (1.9) 6 (1.8) 4 (2.1)
Yi 10 (1.9) 5 (1.5) 5 (2.6)
Zang 26 (5.0) 10 (3.0) 16 (8.5)

Pay type (%) .001
Medical insurance 124 (23.9) 60 (18.2) 64 (33.9)
Others 349 (67.4) 240 (72.9) 109 (57.7)
Self-paid 35 (6.8) 22 (6.7) 13 (6.9)
Social insurance 10 (1.9) 7 (2.1) 3 (1.6)

Admission type (%) .012
Emergency 337 (65.1) 202 (61.4) 135 (71.4)
Others 18 (3.5) 9 (2.7) 9 (4.8)
Outpatient 163 (31.5) 118 (35.9) 45 (23.8)

If transferred ¼ T (%) 99 (19.1) 60 (18.2) 39 (20.6) .581
Rehospitalization ¼ T (%) 54 (10.4) 33 (10.0) 21 (11.1) .812
Admission times (mean (SD)) 1.39 (1.65) 1.45 (1.88) 1.30 (1.14) .317
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P ¼ .004), percentage of lymphocytes (9.09% vs 13.09%;

P < .001), hematocrit (33% vs 35%; P ¼ .035), and

average red blood cell HGB concentration (325.26 g/L vs

330.54 g/L; P < .001). For the routine biochemical exam-

ination, NICU patients who developed DVT showed higher

mean values of urea (6.43 mmol/L vs 5.33 mmol/L; P ¼
.001), glucose (8.36 mmol/L vs 7.70 mmol/L; P ¼ .022),

and globulin (25.09 g/L vs 24.13 g/L; P ¼ .041). NICU

patients who developed DVT showed lower mean values

of white ball ratio (1.36 vs 1.50; P < .001), and albumin

(32.92 g/L vs 34.93 g/L; P ¼ .001).

Predictive Analyses

We ran the 4 algorithms using the training set, in order to build

better classifiers by optimizing the parameters of each

algorithm, and calibrated the classifiers using the testing set

that was never used for model selection or parameter tuning.

Fine-tuning the classifiers entailed using different parameter

combinations inside trainControl. The parameters producing

a classification with the best performance for each algorithm

were chosen using cross-validation on the training data. All

classifiers utilized in this study were fine-tuned and have the

same overall architecture. Several classifiers have been

selected to avoid bias toward the use of a particular classifier.

The 4 classifiers were run with 3 cohorts of subjects and feature

group combinations. To examine the effectiveness of feature

extraction procedure, we developed the predictive models

using all features (original) as the baseline model and com-

pared with the models using 3 different feature extraction

methods. The results showed that models developed by FE-

RF feature extraction method have the best performance. The

Table 2. Laboratory Predictors of Deep Vein Thrombosis.

Overall No DVT DVT
Category (518) (329) (189) P

Coagulation-Prothrombin time 13.07 (2.20) 12.97 (2.29) 13.26 (2.04) 0.155
Coagulation-ISR 1.12 (0.20) 1.11 (0.20) 1.13 (0.19) 0.188
Coagulation-Activated partial thromboplastin time 32.50 (11.20) 32.58 (11.67) 32.35 (10.37) 0.82
Coagulation-Thrombin time 20.04 (10.28) 20.22 (9.57) 19.73 (11.43) 0.607
Coagulation-Fibrinogen 3.02 (1.49) 2.80 (1.42) 3.40 (1.54) <0.001
Coagulation-Thromboplastin time ratio 1.17 (0.40) 1.17 (0.42) 1.16 (0.37) 0.861
Blood-Red blood cell count 3.77 (0.76) 3.84 (0.76) 3.63 (0.75) 0.002
Blood-Hemoglobin 112.26 (23.47) 114.49 (23.46) 108.40 (23.04) 0.004
Blood-Platelet count 158.19 (75.27) 158.77 (71.10) 157.19 (82.22) 0.818
Blood-White cell count 10.72 (4.97) 10.21 (4.53) 11.61 (5.54) 0.002
Blood-Percentage of neutrophils 82.71 (10.78) 81.33 (11.76) 85.13 (8.32) <0.001
Blood-Percentage of Lymphocytes 11.63 (8.77) 13.09 (9.64) 9.09 (6.28) <0.001
Blood-Percentage of eosinophils 0.62 (1.22) 0.63 (1.11) 0.60 (1.40) 0.764
Blood-Percentage of basophils 0.15 (0.21) 0.15 (0.18) 0.15 (0.25) 0.975
Blood-Hematocrit 0.34 (0.07) 0.35 (0.07) 0.33 (0.07) 0.035
Blood-Average red blood cell volume 91.04 (7.43) 90.38 (7.36) 92.18 (7.44) 0.008
Blood-Average red blood cell HGB 29.91 (2.67) 29.88 (2.72) 29.97 (2.58) 0.703
Blood-Average red blood cell HGB_concentration 328.62 (14.07) 330.54 (14.19) 325.26 (13.24) <0.001
Blood-Red blood cell distribution width CV 14.05 (1.88) 13.93 (1.74) 14.27 (2.09) 0.046
Blood-Red blood cell distribution width SD 45.47 (5.99) 44.76 (5.37) 46.69 (6.78) <0.001
Biochemical-Alanine aminotransferase 27.15 (40.11) 27.47 (46.40) 26.60 (25.85) 0.811
Biochemical-Aspartate aminotransferase 36.92 (137.11) 40.30 (170.66) 31.02 (28.77) 0.459
Biochemical-Urea 5.73 (3.66) 5.33 (3.06) 6.43 (4.44) 0.001
Biochemical-Total bilirubin 13.88 (7.81) 13.58 (7.64) 14.41 (8.08) 0.245
Biochemical-Direct bilirubin 6.21 (3.99) 6.09 (4.04) 6.43 (3.90) 0.354
Biochemical-Indirect bilirubin 7.72 (4.84) 7.58 (4.84) 7.96 (4.85) 0.395
Biochemical-Total protein 58.68 (9.09) 59.06 (9.53) 58.01 (8.26) 0.204
Biochemical-Albumin 34.20 (6.67) 34.93 (6.79) 32.92 (6.28) 0.001
Biochemical-Creatinine 78.65 (83.95) 74.48 (64.07) 85.92 (110.16) 0.135
Biochemical-Glucose 7.94 (3.15) 7.70 (3.05) 8.36 (3.30) 0.022
Biochemical-Alkaline phosphatase 70.78 (36.39) 71.36 (40.18) 69.78 (28.72) 0.636
Biochemical-Glutamyl transpeptidase 40.59 (50.61) 40.12 (53.61) 41.40 (45.04) 0.783
Biochemical-Sodium 143.45 (7.48) 143.08 (7.74) 144.08 (6.98) 0.144
Biochemical-Potassium 3.91 (0.54) 3.94 (0.53) 3.85 (0.55) 0.089
Biochemical-Chlorine 106.57 (8.02) 106.08 (8.26) 107.41 (7.53) 0.069
Biochemical-Globulin 24.48 (5.16) 24.13 (5.18) 25.09 (5.09) 0.041
Biochemical-White ball ratio 1.45 (0.39) 1.50 (0.40) 1.36 (0.38) <0.001
Biochemical-Uric acid 216.71 (119.58) 221.61 (120.54) 208.19 (117.72) 0.219
Biochemical-Triglycerides 1.45 (1.19) 1.41 (1.21) 1.53 (1.16) 0.272
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composite features and different machine learning perfor-

mances were calibrated on the testing dataset with ROC anal-

ysis by calculating the area under the ROC curve (AUC). We

can see from Figure 3 that GLM and SVM prediction models

have larger AUC, i.e. 0.77 and 0.78, respectively (P ¼ .6736,

DeLong’s test), when compared to the other 2 methods using

FE-RF feature extraction method (P < .1, DeLong’s test). Our

predictive model could be used to stratify patients according to

their DVT risk in randomized clinical trials and enable us to

explore the optimal diagnosis and intervention process to in

patients in NICU.

Simulation and Cost-Effect Analysis

Comprehensive ultrasound imaging is the most accurate and

noninvasive way to diagnose DVT. However, the availability is

often limited due to the lack of equipment or physicians. Usu-

ally, some widely accepted diagnostic approaches of DVT

include the judgment based on doctors’ clinical suspicion, the

use of Wells score for risk stratification and the D-dimer in

low-risk patients, to reduce unnecessary imaging.20,21 The

current practice is that patients are screened by compression

ultrasound for the first time within the first week of admission

to NICU. However, regardless of the results, patients must

receive compression ultrasound every week until they leave

the hospital. After being screened for DVT, physicians initiate

standard prophylaxis (Intermittent pneumatic compression)

empirically when ultrasound tests do not show DVT, even most

of comprehensive studies are ultimately negative, while the

positive patients get treatment.

In order to overcome the shortage of the current practice of

DVT diagnosis and to reduce the waste of valuable healthcare

resources, we propose prediction models based on EHRs data

to forecast the DVT presence before any further diagnosis. First

of all, repeat screening may not be necessary for all patients.

Schellong et al22 concluded that the compression ultrasound is

safe to exclude DVT, thereby, reducing the diagnostic workup

process of patients with suspected DVT to only one single

ultrasound screening. Some other studies had also proved that

it is safe to withhold repeated ultrasound in patients who have a

low pretest probability with a normal result of compression

ultrasound.23 Therefore, we made the first adjustment in the

Figure 3. ROC curves using FE-RF feature extraction methods for (A) GLM, (B) Xgboost, (C) RF, and (D) SVM.
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repeated ultrasound screening procedure, i.e. if the probability

of DVT is predicted relatively low for a patient, we can with-

hold repeated ultrasound screening. Second, many studies have

shown that there is an associated risk of bleeding due to stan-

dard DVT prophylaxis in many common NICU diseases.24

In another word, it may do more harm than the benefit to give

all patients diagnosed negative standard DVT prophylaxis.

Therefore, we made the second adjustment in the indiscrimi-

nate DVT prophylaxis, i.e. only when the presence probability

of DVT of a patient is relatively high, prophylaxis is provided.

The new proposed process is shown in Figure 4.

To examine the performance of the proposed approach,

simulation experiments have been conducted. In Table 3, we

summarize the notations we used to calculate the expected cost

for every patient in the simulation. All parameters in Table 3

are obtained from either the hospital historical information or

other literature. In the new diagnosis process, all patients still

go through the first compression ultrasound within the first

week of admission to the NICU. However, if a patient’s pre-

dictive probability of DVT is lower than P1 and the first ultra-

sound is normal, then no repeated ultrasound testing is needed.

And if a patient’s predictive probability of DVT is lower than

P2 but higher than P1, no intervention is needed. Only when a

patient’s predictive probability of DVT is higher than P2, both

repeated ultrasound testing and intervention are needed.

We compared the performance of the current diagnosis and

intervention process and the proposed approach. Cost analysis

has also been taken, aiming to establish necessary screening

and intervention at a more reasonable cost. Besides the

machine learning model adopted in this paper, we also included

a D-dimer test scenario.23 The optimum cut-point (P1 and P2)

was the point which minimized the expected cost for every

patient. The results are shown in Table 4.

Discussion

Since the current diagnosis and intervention process of DVT

has many limitations, we adopted predictive models to reduce

some unnecessary tests and treatment by forecasting the prob-

ability of developing DVT of patients in NICU. In this paper,

statistical analysis, FE-RF, and Lasso are used to analyze the

candidate risk factors that influence the risk of DVT.

The development of machine learning model should base on

Figure 4. Proposed new diagnosis and intervention process of suspected DVT.

Table 3. Mathematical Notations Summary.

Notation Description

Parameters a The total treatment cost pre-day
t1 The number of days for treatment
u The cost of a single ultrasound screening
t The times of ultrasound screening
y The success rate for the intervention
i The cost of intervention pre-day
t2 The number of days for intervention
P The actual current prevalence of DVT

Variables P The predictive probability of a patient
P1 and P2 The 2 thresholds for the predictive model

Table 4. Estimated Effect of the Current Diagnostic Process and the
Proposed One on DVT Screening and Interventions.

Scenario P1 P2 Expected cost pre-person

Actual (current) ¥6456.2
Optimized 0 (D-Dimer) .51 .8 ¥3856.5
Optimized 1 (GLM) .532 .626 ¥3143.3
Optimized 2 (SVM) .583 .723 ¥3272.7

Luo et al 7



the characteristics of the data on hand and the proper condition.

We used the 2 models with the AUC of 0.77 and 0.78 to

conduct the simulation, through which the new process was

proved to be cost-effective.

In some of the previous studies,25-27 the univariate filtering

was used, and those factors with a P-value of less than .05 was

considered statistically significant. Multiple logistic regres-

sions were used to identify the cross association between the

possible risk factors affecting the presence of DVT.28-30 Simple

scoring systems had been used as DVT risk assessment model

in practice as well.31-33 Artificial intelligence, and more nar-

rowly known as machine-learning (ML), is beginning to

expand humanity’s ability to analyze increasingly large and

complex datasets, including in medical research and clinical

practice.34 A lot of research did predictive analytics using ML

techniques to shed some lights on better decision making in

suspected DVT patients.10,35,36 Nwosisi et al37 proposed binary

decision trees to predict DVT. Their results showed that the risk

probability can well indicate whether a patient would develop

DVT, which aids in the early diagnosis of DVT. Khorana et al38

developed a logistic regression (LR) model to predict

chemotherapy-associated VTE using patient’s clinical and

laboratory information. Marquez et al39 also used LR and

recursive partitioning methods to develop risk prediction mod-

els with predictors from catheterized patients in PICU. Roche-

fort et al40 assessed the accuracy of statistical NLP technique

using SVM models. Ferroni et al41 proposed multiple kernel

learning based on SVM and random optimization models,

which were used to identify VTE risk predictors yielding the

best classification performance. The performance of other

commonly used tools is also reviewed to compare with our

machine learning tools. Eichinger et al31 developed scoring

systems with AUCs (cross-validated discrimination indices) for

prediction of the cumulative recurrence risk after 5 years cal-

culated from baseline, 3, 9, and 15 months were 0.63, 0.61,

0.61, and 0.58, respectively. Brateanu et al35 developed a mul-

tiple logistic regression model to predict the probability of

developing proximal DVT and/or PE within 3 months after

an isolated episode of distal DVT. Their final model had a

bootstrap bias-corrected c-statistic of 0.72 with a 95% CI

(0.64 to 0.79). Their model might also be used to choose

between anticoagulation intervention and monitoring with

serial ultrasounds. De Haan et al36 explored whether the inclu-

sion of established thrombosis-associated SNPs in a venous

thrombosis risk model could improve their risk prediction. In

their study, the AUC of the risk model based on known non-

genetic risk factors was 0.77 (95% CI 0.76-0.78).

The optimization of the diagnostic strategy for ruling out

DVT is another popular research topic. Given the high degree

of heterogeneity and competing risks of thrombosis and hemor-

rhage among neurocritical care patients, prevention of DVT in

this group is challenging.42 Predicting the probability of DVT

presence in an individual patient is of utmost importance since

DVT can be prevented by thrombosis intervention (also known

as thromboprophylaxis). Furthermore, the classification of

patients at lower risk of DVT can minimize the need of a large

number of expensive radiological tests for such patients. Tick

et al43 evaluated a new noninvasive diagnostic strategy for

ruling out DVT. Oudega et al44 showed the possibility to safely

rule out DVT in a large number of patients in primary care,

using 8 simple indicators from patient physical examination,

the D-dimer test and history, which can reduce the burden on

both patients and health care costs. However, there is a paucity

of evidence addressing thromboprophylaxis in neurocritical

care patients and should call for additional research in this

unique care setting.45

Data-mining and ML provide great opportunities and pro-

mising results to predict future health risk from current health

predictors.46 However, all risk predictive models have their

own merits and pitfalls, depending on the characteristics of the

data at hand and the proper condition. This study has some

limitations and some further researches can be done. This is

a retrospective study and the limitations of this methodological

approach appropriately addressed. The major limitation of this

study is that we could not implement our proposed pretest

strategy in the actual setting of patients so far. Although simu-

lation is widely reported upon in health care,47 it is not clear

whether the actual implementation is good or not. Moreover,

the small and unitary sample source is not overwhelmingly

robust for broad usage, thus large sample comparative studies

are needed to validate the results. Another limitation brought

by insufficient data is that the time-varying process is not cap-

tured in the study. Although some variables included in EHR

can be time-varying and the risk of DVT should be varying

over the treatment course,48 our data contains only the first-

time lab results. Also, the incidence of DVT may vary between

countries and region. Our analysis is based on the available

regional data, which may not explain the situation on national

level. Moreover, in calculating the effect of the intervention,

we only used one type of intervention, i.e. IPC. In future

research, we should consider more personalized interventions

with different success rates, side effects, and costs, i.e. phar-

macological thromboprophylaxis49 which can further improve

the quantity years of life for patients.

The public health service of China is developing rapidly

while facing many problems, such as a shortage of money and

resources. The old mode of DVT diagnosis and interventions is

obsolete and over-costing. The possible gains of risk assess-

ment models may be weighed against the costs of unnecessary

tests, unnecessary follow-ups and even unnecessary interven-

tions of incidental findings. In this study, the results of

cost-effect analysis support the implementation of this risk

assessment model. If implemented this way, a new diagnostic

mode utilizes less resources for one health care unit as well as

manpower, compared to the traditional one. All the saved

resources can be allocated elsewhere for patients who need

them more.

Conclusion

Since the current diagnosis and intervention process of DVT

has many limitations, we adopted predictive models to reduce

8 Clinical and Applied Thrombosis/Hemostasis



some unnecessary tests and treatment by predicting the prob-

ability of developing DVT of patients in NICU. Prediction tool

utilizing the information contained in EHR systems is helpful

to the clinical decision and could help those healthcare practi-

tioners to achieve improvements in clinical efficiency. Specif-

ically, the use of such pre-test probability with risk assessment

model provides physicians an easily identification of NICU

patients with suspected DVT, and therefore can decrease med-

ical costs and reduce the waste of valuable healthcare resource.

The simulation results indicate that our approach is effective

and efficient with real data from WCH.
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