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Copyright © 2014 Marco Aldinucci et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support
the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming
framework, are shown on a simulation tool to perform themodeling, the tuning, and the sensitivity analysis of stochastic biological
models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be
analysed by statistic and datamining tools. In the considered approach the two stages are pipelined in such away that the simulation
stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result.
The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological
systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies
include pattern-based parallel programming and data streaming that provide key features to the software designers such as
performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological
systems exhibiting multistable and oscillatory behavior are used as a testbed.

1. Introduction

This paper presents a critical rethinking of the parallelization
of biological computational tools in the light of multicore
platforms, which nowadays equip all scientific laboratories.

We will focus on the features that are required to derive
an efficient simulator of stochastic processes considering,
in particular, performance and easy engineering. This latter
aspect will be of crucial importance for next generation of
biological tools that will be largely designed by bioinformat-
ics scientists, who are likely to be more interested in the
accurate modeling of natural phenomena rather than on the
synchronisation protocols required to build efficient tools on
multicore platforms.

The stochastic simulation of biological systems is an
increasingly popular technique in bioinformatics as either an
alternative or a complementary tool to ordinary differential
equations (ODEs). This trend, starting from Gillespie’s sem-
inal work [1], has been supported by a growing number of
formalisms aiming to describe stochasticmodels of biological
systems [2–7].

The stochastic modeling approach is computation-
ally much more expensive than ODEs. Nevertheless, this
approach is quite attractive for its superior ability to describe
transient and multistable behaviors of biological systems.
In particular it allows studying rare or divergent behaviors,
spikes, and discriminate families of possible behaviors that
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are typically hidden in the averaged behavior described by
ODEs.

The high computational cost of stochastic simulation can
also be very annoying in the tuning of biochemical models in
which some quantitative parameters are unknown or scarcely
known and need a set of tests to be fixed.

This has led, in the last two decades, to a number
of attempts to accelerate them up using several kind of
techniques, such as approximate simulation algorithms and
parallel computing [8, 9]. In this work, this latter approach is
taken into account.

Since stochastic simulations rely onMonte Carlomethod,
many independent simulation instances should be computed
and analysed to achieve statistically meaningful results. The
computation of these independent instances has been tradi-
tionally exploited in an embarrassingly parallel fashion, exe-
cuting a partition of the instances on different machines.This
approach naturally couples with the distributed execution
of a batch of tasks that require large infrastructures (e.g.,
grids and clouds) and suffers from slow time-to-solution
as each experiment requires to enqueue the simulations in
shared environment, deploy initial data, simulate the model,
gather results from a distributed environment, postprocess
them (often sequentially), then eventually access results.This
process is typically repeated several times to fine tune the
initial conditions and simulation parameters.

This approach, when transferred on multicore platform,
which nowadays equips the large majority of computing
platforms, fails shortly to produce actual application speedup,
especially for I/O and memory-bound applications, since all
the cores usually share the same memory and I/O subsystem.
Indeed, the simulation of biological systems produces a large
amount of data, which can be regarded as streams of data
resulting from the on-going simulations. The management
of these streams is not trivial on multicore platforms, as
the memory bandwidth cannot usually sustain a continuous
flux of data coming from all the cores at the same time. A
related aspect concerns the filtering and the analysis of raw
results, which require the merging of data obtained from
different simulation instances, and possibly their statistical
description or mining, with data reduction techniques. Even
in a distributed computing environment this phase is often
demoted to a secondary aspect in the computation and
treated with offline postprocessing tools, frequently not even
disclosed in performance results.

This approach is no longer practical, especially on multi-
core platforms, because of a number of reasons:

(i) the ever-increasing size of produced data burdens on
the main weaknesses of multicore platforms, that is
memory bandwidth and core synchronisations;

(ii) the “sequentialisation” of simulation and analysis
phases slow down the design-to-result process, which
is particularly annoying during the tuning of the
biological model, especially in the cases where the
simulation outcome could show very soon an incor-
rect behavior;

(iii) the design of the simulator is often specifically opti-
mised for a specific parallel platform, eithermulticore
or distributed (or not optimised at all).

Since the frequency and size of data moved across sim-
ulation workflows strictly depend on the required accuracy,
the simulation and analysis of biological systems at high-
precision happen to be a serious issue on modern shared-
memory multicore platforms. Indeed it involves the merging
of results from different simulation instances and possibly
their statistical description or mining with data reduction
techniques.

The design of simulation-analysis workflow encompass-
ing a parallel simulator stage and a parallel data analysis
stage is presented along with its experimental validation.
The two stages are pipelined in such a way that, at each
observed simulation time 𝑡

𝑖
, the simulation stage stream out

the partial results of all simulation trajectories (aligned at
𝑡
𝑖
) to the analysis stage that immediately produces a partial

result. Analysis stage, which can be equipped with user-
defined statistic and mining operators, works on sliding data
window and does not require keeping inmemory the full data
set with both performance and response time benefits.

The advocated design methodology is validated on inter-
esting classes of biological problems, for which the classical
modelization via ODE is quite problematic, if not impossible,
while a stochastic model can be more proficuous. As we shall
see, despite the whole simulation-analysis being performed
on partial data, that is, on temporal sliding window of
simulation results, the dynamics of the system is effectively
approximated and can be shown to bioinformatics scientist
during a simulation.

The technical challenges for the parallelisation of simu-
lation and analysis stages and their pipelining are discussed
(among these, the exploitation of high-level pattern-based
parallel programming approaches to decrease design and
implementation time). Eventually the proposed approach can
be used as a fully reusable methodology that can be exploited
in the design or parallelisation of other tools for systems
biology.

The evaluation of the integrated approach will be focused
on the efficiency and speedup of the tool in executing the sim-
ulation and online analysis workflow onmulticore platforms.
In this respect, paradigmatic examples of two challenging
classes of biological systems, that is, bistable/multistable, and
oscillatory systems, are discussed. The key behavior of these
systems are represented by way of different classes of online
analysis tools introduced in the previous section, respectively,
statistical description, clustering, and frequency detection.

To perform these experiments, a simulator for the calcu-
lus of wrapped compartments (CWC), built with the above
technology, will be used as test-bed. CWC [10] is a recently
proposed formalism for the representation of biological
systems. CWC extends the known stochastic simulators by
adding a nested structure of labeled compartments delimited
by membranes. However, to better focus on the proposed
methodology and make the paper self-contained, we will
write all examples of the paper in the basic subset of CWC
in which biochemical reactions are denoted in a standard
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chemical notation. We only remark that a distinguished
feature of CWC, which will be used in this paper, is the
possibility of associating each reaction with an arbitrary rate
function depending on the overall content of the ambient
in which the reaction takes place. This allows to tailor the
reaction rates on the specific characteristics of the system,
as for instance when representing nonlinear reactions as
Michaelis-Menten kinetics.

2. Methods

The methods for the stochastic simulation of biological
systems, including Gillespie’s algorithm [1], are typically
based on theMonte Carlomethod. An individual simulation,
which tracks the state of the system at each time-step, is
called trajectory. Many thousands of independent trajectories
might be needed to get a representative picture of how the
system behaves on the whole. This behavior springs from the
collective analysis of trajectories, which is typically carried
out by way of statistical or data mining estimators.

Thanks to their independence, the different instances
needed to simulate a biological model that can be easily
computed in an embarrassingly parallel fashion. However, the
complete simulation workflow needed to derive simulation
result including additional phases, such as the dispatching
and scheduling of simulations, result gathering, trajectory
data assembling, and analysis phases, which exhibit data
dependencies (thus requires communications and/or syn-
chronisations). Often, to simplify the design of the simulation
tool, these phases are neither parallelized nor considered in
the performance evaluation. As a matter of a fact, a parallel
simulation is often considered an “embarrassingly parallel”
problem, whereas it is if data distribution, gathering, filtering,
and analysis are not considered as part of the whole simula-
tion workflow.These phases, often (questionably) considered
as preprocessing and postprocessing phases, may result to
be as expensive as the simulation itself. Moreover, the full
sequentialization of the phases inhibits the early detection of
badly tuned simulations and makes the model tuning spiral
annoyingly slow.

As an example, a simulation of theHIV diffusion problem
(computed using the StochKit toolkit for 4 years of simulation
time) may easily produce over 5GBytes of raw data per
instance [11]. As clear, the data size is 𝑛-folded when 𝑛

instances are considered. Eventually, this data should be
gathered and often reduced to a single trajectory via statistical
methods or analysed with data mining methods, that can
be much more time expensive to be figured out than bare
statistical estimators.

These potential performance flaws are further exacer-
bated inmulticore andmany-core platforms.These platforms
do not exhibit the same degree of replication of hardware
resources that can be found in distributed environments and
even independent processes actually compete for the same
hardware resources within the single platform, such as main
and secondarymemory, the performances of which represent
the real challenge of the forthcoming parallel programming
models (a.k.a. memory wall problem). While simulation is

substantially a CPU-bound problem on distributed platform,
it may become prevalently an I/O-bound problem on a
multicore platform due to the need to store and postprocess
many trajectories. The finer the observed simulation time-
step the strongest the computational problem is characterized
as I/O-bound.

To be effective, stochastic methods in systems biology
require many trajectories with a fine grain resolution in
order to make observable deviant trajectories, peaks, high
variance of results and multistable behaviors, which often
represent the real nature of the phenomena that is not well
captured by traditional approaches, such as ODEs. These
events are often not immediate to detect in the bulk of gross
simulation results. Several techniques for analyzing such data,
for example, principal components analysis, linear modeling,
and canonical correlation analysis have been proposed. It can
be imagined that next generation software tools for natural
sciences should be able to perform this kind of processing in
pipeline with the running data source, as a partially or totally
online process because:

(i) it will be needed to manage an ever-increasing
amount of experimental data, either coming from
measurement or simulation, and

(ii) it will substantially improve the overall experimental
workflow by providing the natural scientists with an
almost real-time feedback, enabling the early tuning
or sweeping of the experimental parameters and,thus,
scientific productivity.

The flexibility given by the possibility of running many
different analysis modules in parallel is of particular interest,
as in many biological case studies the searched pattern in
experimental results is unknown and might require to try
different kinds of analysis since modules can be swept in
parallel.

The parallel analysis of the system dynamics (e.g., along
time) is more challenging since online data processing
requires statistic and data mining operators to work on
streamed data and, in general, random access to data is guar-
anteed only within a limited window of the whole dataset,
while already accessed data can be only stored in synthesized
form. When data description techniques, requiring to access
the whole data set in random order, cannot be used, online
data description and mining requires novel algorithms. The
extensive study of these algorithms is an emerging topic in
data discovery community and is beyond the scope of this
work.

We advocate the parallelization of both simulations and
analysis by pipelining them in a two-stage workflow, where
both stages are also parallel. We also advocate the high-level
design of the whole workflow to enhance both productivity
and efficiency on different platforms (i.e., performance porta-
bility).

2.1. A Parallel Simulation-Analysis Workflow for CWC. The
intrinsic complexity in the parallelization of the single step
has traditionally led to the exploitation of parallelism in the
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Figure 1: CWC simulator with online parallel analysis: architecture.

computation of independent instances of the same simula-
tion, which should anyway be computed to achieve statistical
convergence of simulated trajectories (as in all Monte Carlo
methods). The problem is well understood; it has been
exploited in the last two decades inmany different flavors and
distributed computing environments, from clusters to grid to
clouds [8, 11–16]. Notwithstanding that the problem has been
often approached either neglecting to consider the cost of
analysis or assuming that output data has a negligible size; this
is not likely to happen in this and next generations biological
simulations.

The previous considerations have led to the design of a
simulation tool that includes both parallel simulation and
data analysis in a single workflow.These phases are pipelined
rather than sequential. To make it possible, it is needed that
all the logical phases of the process (i.e., data distribution,
parallel simulation result gathering, parallel trajectory data
assembling, and analysis) can be effectively pipelined. This
implies that all phases can effectively work on data streams.
Ideally, an efficient and portable implementation of the
simulation-analysis workflow should be able to represent
streams as first-class concept and provide the designers
with high-level programming constructs to manage them
efficiently (also in multicore platforms).

To date, application programming for bioinformatics
(and other sciences) has not embraced much more than low-
level communication and synchronization libraries. In the
hierarchy of abstractions, it is only slightly above toggling
absolute binary in the front panel of the machine. The
advent and the pervasiveness of multicore platforms are
pushing parallel programming outside its historical niche.
Next generation software should be designed not only to be
efficient on these platforms, but also to be developed and
tuned with high-productivity and reduced time-to-market.
This is particularly important when parallel computing serves
as a tool for other sciences since nonexpert designers should
be able to experiment different algorithmic solutions for both
simulations and data analysis.

Attempts to reduce the programming effort by raising
the level of abstraction through the provision of parallel
programming frameworks date back at least three decades
and have resulted in a number of significant contribu-
tions. Notable among these is the skeletal approach [17]

(a.k.a. pattern-based parallel programming), which appears
to become increasingly popular after being revamped by
several successful parallel programming frameworks [18–20].
Skeletons (a.k.a. patterns) capture common parallel program-
ming paradigms (e.g., Map, Reduce, MapReduce, Pipeline,
Farm, and Divide&Conquer) and make them available to the
programmer as high-level programming constructs equipped
with well-defined functional and extrafunctional semantics
[21]. Some of them are specifically designed tomanage stream
as first-class objects, such as pipeline, farm (a.k.a. master-
worker pattern), and loop patterns.

A particularly efficient implementation of the described
patterns is provided by the FastFlow parallel programming
framework [22]. FastFlow is a C++ open-source template
library aimed at simplifying the development of efficient
applications for multicore platforms. FastFlow eases the
development and guaranteed runtime efficiency by raising
the abstraction level of the design phase, thus providing
developers with a set of optimised parallel programming
patterns [22, 23]. Run-time efficiency is mainly achieved
by way of a lock-less implementation of patterns exhibiting
a speed edge against other popular parallel programming
frameworks (also see performance comparisons in [24]).
The FastFlow implementation of the pipeline, loop, and
farm patterns is exploited to design the CWC simulation
workflow. The effectiveness of the FastFlow framework in
high-frequency synchronizations (i.e., fine-grained tasks) at
a high-level of abstraction is the key features to devise
a portable and efficient implementation of the simulation
workflow, which is CWC simulator with online parallel
analysis: architecture, composed by a three-stage pipeline:
simulation, analysis, and display of results. The former two
stages are in turn pipelines of other stages, whereas the display
of results is realized by way of a graphical user interface
(GUI). The big picture of the simulation workflow is shown
in Figure 1. In the picture, all the grey boxes as well as all the
code needed for synchronization anddata streaming (double-
headed arrows) are automatically generated by the FastFlow
framework. The implementation of the whole software actu-
ally consists in declaring the structure of the workflow in
terms of FastFlow objects (i.e., farm and pipelines) and filling
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white boxes with sequential code. All data is passed by using
their references, in such a way that no data copies in memory
are needed.

2.1.1. The Simulation Pipeline. The simulation pipeline, as
shown in Figure 1, is composed by three main stages: (i)
generation of simulation tasks, (ii) farm of simulation engines,
and (iii) alignment of trajectories.

The input of the simulation pipeline (from the GUI or
a file) is the model to be simulated and the parameters of
the simulation. The output is a stream of simulation results,
each of them being an array holding a point for each of
the trajectories of all (independent) simulations aligned at a
given simulation time. Actually, each array represents a cut
at a given simulation time of the whole dataset of results.
This does not necessarily represent the current status (at a
given point in wall-clock time) of all running simulations.
By their very nature, stochastic processes exhibit an irregular
behavior in space and time, since different simulations may
cover the same simulation timespan followingmanydifferent,
randomly chosen, paths and number of iterations. Therefore,
parallelization tools should support the dynamic and active
balancing of workload across the involved cores. This mainly
motivates the structure of the simulation pipeline. The first
stage generates a number of independent simulation tasks,
each of them wrapped in a C++ object. These objects are
passed to the farm of simulation engines, which dispatch
them (on-demand) to a number of simulation engines (sim
eng). Each simulation engine brings forward a simulation
for a given simulation time (simulation quantum) then
reschedules back the simulation along the feedback channel.
Simulation results produced in this quantum are streamed
toward the next stage which sorts out all the received results
and aligns them according to simulation time. Once all
simulation tasks overcome a given simulation time, an array
of results is produced and streamed to the analysis pipeline.

In this process, the farm schedule prioritizes “slow”
simulation tasks, in such a way that the simulation tasks
proceed with simulation times the more aligned as possible.
This solves the load balancing problem by keeping all sim-
ulation engines always busy and reduces to the minimum
the transient storage of incomplete results, thus reducing the
shared memory traffic.

2.1.2. The Analysis Pipeline. By design, each snapshot at a
given simulation time of all simulation trajectories (i.e., an
array of simulation results) can be analyzed immediately
and independently (thus concurrently) on each other. For
example, the mean and variance (as well as other statistical
estimators) can be immediately computed and streamed out
to the display stage. More complex analyses, that is, the
ones aimed to understand system dynamics, have further
requirements. In the most general case, they require the
access to the whole dataset. Unfortunately this can be hardly
done with a fully online process. In many cases, however,
it is possible to derive reasonable approximations of these
analyses from a sliding window of the whole dataset (e.g.,
for trajectory clustering). For this, the stream incoming in

the analysis pipeline is passed through a stage that creates a
stream of (partially overlapping) sliding windows of trajec-
tories cuts. Each sliding window can be eventually processed
in parallel and therefore is dispatched to a farm of statistic
engines. Results are collected and reordered (i.e., gathered)
and streamed toward the user interface and the permanent
storage.

The analysis pipeline is provided with three families of
predefined estimators covering the most common instru-
ments of statistical analyses. Thanks to high-level modular
design of the simulation pipeline, it can be easily extended
with new filters. Current filters included in the system are as
follows.

(1) Mean, Standard Deviation, and Quantiles. These standard
statistical estimators are typically used to evaluate, both
qualitatively and quantitatively, the behavior of stable systems
and the reliability of the stochastic models used for their
simulation. Quantiles are also often useful to approximate
the distribution of simulation trajectories over time as it per-
forms a histogram which summarizes the involved quantities
without the effects of long-tailored asymmetric distribution
or outliers. In fact, in those cases, descriptive statistics could
not underline a central tendency.

(2) Trajectory Clustering. The clustering of trajectories helps
the analysis of biological systems exhibiting a multistable
behavior. Each cluster can automatically separate and dis-
tinguish different cases which can be eventually analyzed by
statistical estimators. Concentrations of elements, in a given
instant, from all simulations, are numerically filtered from
stochastic noise and the global trends are extrapolated from
clusters. In this work we employed two clustering techniques:
K-means [25] and quality threshold (QT) [26] clustering.
The clustering procedure collects the filtered data contained
into a sliding time window Δ

𝑊
centered in the current

data point 𝑥
𝑖

≡ 𝑓(𝑡
𝑖
) where 𝑡

𝑖
≡ 𝑡
0

+ 𝑖Δ
𝑆
(where Δ

𝑆

is a constant sampling time) for all simulation trajectories
and the extrapolated forecast point, 𝑥𝐸

𝑖
, referred to the local

trend, using the information of the Savitzky-Golay filter
[27], that is, a low-pass filter suitable for data smoothing.
The main idea underneath Savitzky-Golay filtering is to find
filter coefficients 𝑐

𝑛
that preserve higher moments, that is,

to approximate the underlying function within the moving
window not by a constant (whose estimate is the average)
but by a polynomial of higher order. This schema also allows
the computation of numerical derivatives considering the
coefficient of the derived polynomial.

(3) Peak/Frequency Detection. Many processes in living
organisms are oscillatory. For these kinds of systems the
analysis must be focused on the recurrence of phenomena,
for instance concentration spikes or peaks of biological
quantities, which also make it possible to determine the
frequency of occurrence of a given phenomenon. The peak
detection is basically performed by way of the analysis of
the local maximum in a continuous curve, which is in
turn detected through the analysis of the derivatives of the
curve estimated by the Savitzky-Golay filter. From the period
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Figure 2: Screenshots of the simulation tool interface.

between successive peaks, the frequency of the related event
is then inferred.

The usage examples of each family of filters will be
discussed in the “results” section.

2.1.3. The Graphical User Interface. The CWC simulation-
analysis pipeline is wrapped in a back-end tool that can be
steered either via a command line tool or via a graphical
user interface. This makes it possible to design the biological
model, to run simulations and analysis, and to view partial
results during the run. Also, the front-end makes it possible
to control the simulation workflow from a remote machine.
Two screenshots of the graphical front-end are reported in
Figure 2.

3. Experiments and Results

The evaluation of the integrated approach will be focused
on the efficiency and speedup of the tool in executing
the simulation and online analysis workflow on multicore
platforms. In this respect, paradigmatic examples of two
challenging classes of biological systems are discussed, that
is bistable/multistable, and oscillatory systems. The key
behavior of these systems is studied by way of the different
classes of online analysis tools introduced in the previous
section, in particular, statistical description, clustering, and
peak/frequency detection.

3.1. Expressivity and Effectiveness

3.1.1. Multistable Biological System (Schlögl Model). One of
the most studied examples of bistability is the Schlögl model
[28]. The simplicity of this network makes it an ideal
prototype to show the effectiveness of the online clustering
techniques on the filtered trajectories in the presence of
bimodality.The set of reaction rules modeling this system are

𝐴 𝐴
0.03

󳨃󳨀→ 𝐴 𝐴 𝐴 𝐴 𝐴 𝐴
0.0001

󳨃󳨀→ 𝐴 𝐴

𝐵
200

󳨃󳨀→ 𝐵 𝐴 𝐴
3.5

󳨃󳨀→ ∙,

(1)

where the rules are decoratedwith the kinetic constants of the
corresponding reactions and all reaction rates are evaluated
according to the mass action law.

The number of molecules of the species 𝐵 is kept constant
(buffered), while at equilibrium, the species 𝐴 displays a
noise-induced switching between the two stable steady states
(see Figure 3). This case is paradigmatic to show that simple
mean and standard deviation are not significant to summa-
rize the overall behavior and the mean is not representative
of any simulation trajectory.

Figure 3 shows the resulting clusters computed online
using K-means on the Schlögl model for species 𝐴 over 480

stochastic simulations starting with the term 𝐵 250 ∗ 𝐴. The
lines width of theK-means plot is proportional to each cluster
size.

3.1.2. Multistable System (Bacteriophage 𝜆 Life Cycle). One of
the best studied examples of multistability in genetic systems
is the bacteriophage 𝜆 life cycle [29]. This process involves
two different biological entities delimited by membranes, the
phage, and the bacterium. Lambda phage is a virus consisting
of a head, containing a double-stranded linear DNA and a
tail. The phage recognizes and binds to its host, Escherichia
Coli, causing the DNA in the head of the phage to be ejected
through the tail into the cytoplasm of the bacterial cell. After
this, it can enter into one of two alternative stages called
lysogeny and lysis. The lysogenic stage is a dormant stage
in which the phage DNA is inserted into the host DNA
and passively reproduces with the host. The only protein
expressed in this phase is the 𝜆 repressor 𝐶𝐼. When the
host becomes stressed, the phage is more likely to go into
lysis, in which case it reproduces more phages, kills the host,
and spreads to other bacteria. The decision between lysis
and lysogeny can be thought of as a switching mechanism.
A simplified model for the bacteriophage was proposed in
[30]. In their model, the gene cI expresses the 𝜆 repressor
(𝐶𝐼) which dimerises (𝐶𝐼2) and binds to DNA (𝐷) as a
transcription factor at either of the two binding sites. The
binding of the transcription factor to the site enhancing
the transcription of 𝐶𝐼 (positive feedback) is represented by
𝐷
+
𝐶𝐼2. The phagic DNA in state 𝐷

+
𝐶𝐼2 leads the lysogenic

stage. The binding of the transcription factor to the site
repressing the transcription of 𝐶𝐼 (negative feedback) is
denoted by 𝐷

−
𝐶𝐼2. The notation 𝐷

+
𝐶𝐼2𝐷

−
𝐶𝐼2 models the

phagic DNA when both sites are bound (𝐶𝐼2 can bind to the
repressing site also when another 𝐶𝐼2 dimer is bound to the
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Figure 3: Simulation results on the Schlögl model. The figures report the mean and standard deviation, two exemplificative raw simulation
trajectories, and the clustering results using K-means during the simulation runs (a) and at the end of the simulation runs (b).

promoting site, with a global repressing effect). The reaction
rules in this system are

𝐶𝐼 𝐶𝐼
0.05

󳨃󳨀→ 𝐶𝐼2 𝐶𝐼2
0.5

󳨃󳨀→ 𝐶𝐼 𝐶𝐼

𝐶𝐼2 𝐷
0.026

󳨃󳨀→ 𝐷
+
𝐶𝐼2 𝐷

+
𝐶𝐼2
0.026

󳨃󳨀→ 𝐶𝐼2 𝐷

𝐶𝐼2 𝐷
0.026

󳨃󳨀→ 𝐷
−
𝐶𝐼2 𝐷

−
𝐶𝐼2
0.026

󳨃󳨀→ 𝐶𝐼2 𝐷

𝐷
+
𝐶𝐼2 𝐶𝐼2

0.13

󳨃󳨀→ 𝐷
+
𝐶𝐼2𝐷

−
𝐶𝐼2

𝐷
+
𝐶𝐼2𝐷

−
𝐶𝐼2
0.13

󳨃󳨀→ 𝐷
+
𝐶𝐼2 𝐶𝐼2

𝐷
+
𝐶𝐼2 𝑃

40

󳨃󳨀→ 𝐷
+
𝐶𝐼2 𝑃 𝐶𝐼2 𝐶𝐼2 𝐶𝐼

0.0007

󳨃󳨀→ ∙,

(2)

where 𝑃 represents the RNA polymerase, assumed here to
be constant, and two proteins per mRNA transcript were
considered. In this model, the stochastic time trajectories of
𝐶𝐼 switch between two stable equilibria if the noise amplitude
is sufficient to drive the trajectories occasionally out of the
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Figure 4: Simulation results on the 𝜆-phagemodel. (a) Reports (approximatively) the 480 raw trajectories and (b) shows the online clustering
results using QT.

basin of attraction of one equilibrium into the basin of
attraction of the other equilibrium (see Figure 4(a)).

Figure 4(b) shows the resulting clusters (gray circles)
computed online using QT on the 𝜆-phage model for species
𝐶𝐼 over 1200 stochastic simulations starting with the term
10 ∗ 𝐶𝐼 𝐷 𝑃. Circles diameters are proportional to each
cluster size and arrows display the local trends of the clustered
trajectories.

K-means is suitable for stable switch systems where
the number of clusters and their tendencies are known in
advance, in the other cases QT, although more computation-
ally expensive, can build accurate partitions of trajectories
giving evidence of instabilities with a dynamic number of
clusters.

3.1.3. Oscillatory System (Circadian Oscillations of Neu-
rospora). We examine here the theoretical model for circa-
dian oscillations based on transcriptional regulation of the
frequency (frq) gene in the fungus Neurospora. The model
relies on the feedback exerted on the expression of the frq
gene by its protein product FRQ ⋅ FRQin represents the FRQ
protein inside the nucleus. In this model, sustained rhythmic
variations in protein andmRNA (𝑀) levels occur in the form
of limit cycle oscillations [31]. In describing this system we
exploit a feature of CWC which allows computing the rate
of some reaction with an ad hoc function used to represent
nonstandard kinetics. The reaction rules modeling this case
are

FRQin
𝑓FRQin(𝑡)
󳨃󳨀→ FRQin 𝑀

𝑀
0.5

󳨃󳨀→ 𝑀 FRQ

𝑀

𝑓𝑀

󳨃󳨀→ ∙ ⊤ : FRQ
𝑓𝑑

󳨃󳨀→ ∙

FRQ 0.5󳨃󳨀→ FRQin

FRQin
0.6

󳨃󳨀→ FRQ.

(3)

The model is based on the negative feedback exerted by
the protein FRQ on the transcription of the frq gene; the rate
of gene expression is enhanced by light. The model includes
gene transcription in the nucleus, accumulation of the cor-
responding mRNA in the cytosol with the associated protein
synthesis, protein transport into and out of the nucleus, and
regulation of gene expression by the nuclear form of the FRQ
protein. The function 𝑓FRQ(𝑡) = V

𝑠
(𝑡)(𝐾
𝑛

𝐼
/(#FRQ𝑛 + 𝐾

𝑛

𝐼
))

denotes the rate of frq transcription where #FRQ denotes the
number of FRQelements at themoment inwhich the reaction
takes place. The parameter V

𝑠
(𝑡) defined by:

V
𝑠 (𝑡)

= {
160 when 2𝑛𝑇 ≤ 𝑡 < (2𝑛 + 1) 𝑇

200 when (2𝑛 + 1) 𝑇 ≤ 𝑡 < (2𝑛 + 2) 𝑇
(𝑛 ≥ 0)

(4)

increases in light conditions of the current time of the
simulation, where 𝑇 represents the period of the dark-light
phases. The constant 𝐾

𝐼
is related to the threshold beyond

which nuclear FRQ represses frq transcription; the Hill
coefficient, 𝑛, characterizes the degree of cooperativity of the
repression process. In the functions, the name of an atom
indicates its multiplicity. The mRNA degradation is given
by the Michaelis rate function 𝑓

𝑀
= V
𝑚
(#𝑀/(𝐾

𝑀
+ #𝑀)).

The FRQ degradation is given by the Michaelis rate function
𝑓
𝑑
= V
𝑑
(#FRQ/(𝐾

𝑑
+ #FRQ)), where V

𝑑
is the maximum rate

of FRQ degradation and theMichaelis constant related to this
process is 𝐾

𝑑
.

As in [31] wemodeled the oscillations under two different
conditions: (i) constant dark conditionand (ii) alternate light
and dark phases. Following [31], the values of the parameters
are set as V

𝑚
= 50.5, V

𝑑
= 140, 𝑘

𝑠
= 0.5, 𝑘

1
= 0.5, 𝑘

2
= 0.6,
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Figure 5: Simulation results of the cytosolic FRQ protein of the Neurosporamodel.

𝐾
𝑚

= 50,𝐾
𝐼
= 100,𝐾

𝑑
= 13, and 𝑛 = 4. Concentrations have

been made discrete by scaling 1 nM to 100 atomic elements.
In the constant dark condition, parameter V

𝑠
is equal to

160, in the alternate condition, V
𝑠
is equal to 160 during the

dark phase and to 200 during the light phase. Figure 5(a)
shows an extract of a single stochastic simulation of the
circadian oscillations in the dark/light alternate condition,
plotting the number of FRQ proteins within the nucleus, the
total number of FRQ proteins in the cell and the number of
mRNA molecules leading the synthesis of FRQ. Figure 5(b)
shows the outcome of the peak detection tool which is able
to summarize the frequency of the peak events over time.
The plot results after capturing the peaks in the curve of the
cytosolic mRNA for the FRQ protein synthesis. Measuring
the distance between two consecutive peaks, we compute the
period of each oscillation and then plot the moving average,
over 5000 simulations, of the local periods. In the constant
dark condition, the circadian period is close to 21 and a half
hours, but increases, producing damping oscillations with a
period of approximately 24 hours, in the dark/light alternate
condition.

3.2. Performances. All reported experiments were run on
an Intel workstation equipped with 4 eight-core E7-4820
Nehalem (32 cores, 64 contexts) @2.0GHz with 18MB L3
cache and 64GBytes of main memory with Linux x86 64.

The analysis pipeline is configured with 3 statistic engines
executingmean, standard deviation, quantiles,K-means, QT,
and frequency detection filters. For each experiment the total
number of FastFlow nodes, that is, the boxes depicted with
solid lines in Figure 1, is

# (sim eng) + # (stat eng) + # (other nodes)

+ # (FastFlow support nodes) = # (sim eng) + 3 + 3 + 4,

(5)

where other nodes are “generation if simulation tasks,” “align-
ment of trajectories,” and “generation if sliding windows of
trajectories” nodes, whereas FastFlow support nodes are the
two couples of dispatch-gather nodes in Figure 1. Each node
in the FastFlow run-time support is implemented by a POSIX
(portable operating system interface for uniX) thread using a
nonblocking execution model.

As we shall see, the number of statistical engines has
been chosen according to a simple but effective performance
model, which is made possible by the high-level approach of
the design. According to the samemodel, themost interesting
sensitivity analysis under performance viewpoint concerns
the number of simulation engines.

As a case study, we consider the simulation workflow for
the transcriptional regulation of the Neurospora.

Figure 6 shows the speedup obtained for the whole
workflow on varying the number of concurrent simulation
engines, where the simulation points (or samples) per trajec-
tory is set to be 10

4 and 10
6 simulation points.

The speedup on the total execution time achieved in
the former case (Figure 6(a)) scales ideally with respect to
the number of simulation engines, whereas a performance
penalty is paid in the latter case (Figure 6(b)) for the highest
degree of parallelism and number of produced trajectories.

The very same speedup behaviour is achieved for other
test cases and it is worth a detailed discussion. For each
performance experiment all the runs are executed by fixing
random seeds. Thus, given a set of simulation parameters,
it can be verified that each stochastic simulation of a single
trajectory requires exactly the same number of iterations and
the simulated time progress identically across random walks
irrespectively of the number of simulation/statistic engines
and observed simulation points, which can be considered
a (synchronized) sampling at fixed simulation times of
trajectories. These observations imply the following.
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Figure 6: Speedup of the workflow of the Neurospora model on the Intel platform against number of simulation engines with 3 statistical
engines, for different number of trajectories, each of them counting 104 points (a) and 105 points (b).

(i) The parallelism strategy does not break determinism
and reproducibility of results (correctness).

(ii) As reflected in the speedup results, the design of the
simulator ensures effective load balancing and low
synchronization overheads.

(iii) The efficiency of parallel executions depends on the
order of magnitude of the observed simulation points
and by the number of produced trajectories.

This latter point specifically exploits the working hypoth-
esis: stochastic methods are particularly informative when
used to simulate the model at high resolution, that is, high
number of samples and trajectories. In this case, the main
bottleneck of the simulation software is data movement and
management since the computation/data-movement ratio
may easily reach the limits of modern multicore platforms.

In multicore platforms, “observing” the phenomena is
a key issue in the simulation-analysis workflow as the fre-
quency of observation determines both the quality of results
and, inversely, the overall speedup. As shown in Figure 6 and
Table 1, the proposed design and implementation effectively
cope with this trade-off and succeed to exploit high rates
of data movement. Thanks to merging many independent
trajectories happening in the simulation pipeline, the output
size, and, thus, the required disk throughput is greatly
reduced (unless the storage of raw simulation results, happen-
ing among the two pipelines, is requested by the user).

The proposed simulation architecture is not only fast but
also highly predictable in term of performance. This latter
aspect is mainly due to the high-level structured design [32].
The whole workflow is a pipeline of two pipelines (i.e., a
pipeline), whose performance can be modeled by means of
the service time (𝑇𝑠) of each stage 𝑆

𝑖
. In particular

𝑇𝑠 (pipeline (𝑆
1
, . . . 𝑆
𝑘
)) = max {𝑇𝑠 (𝑆

1
) , . . . 𝑇𝑠 (𝑆

𝑘
)} , (6)

Table 1: Performance on 1200 simulation instances of the Neu-
rospora model (Intel 32 core platform).

Single trajectory information Overall data
(20 sim eng, 3 stat eng)

Number of
samples Interarrival time Throughput Output size

10
4 25.86 𝜇s 2.70MB/s 82.40MB

10
5 2.78 𝜇s 28.59MB/s 823.98MB

10
6 232.68 ns 303.86MB/s 8.24GB

where 𝑇𝑠(𝑆
𝑖
) models the average interdeparture time of

stream items of the stage 𝑖 of the pipeline, which actually
matches the average computation time of 𝑆

𝑖
to produce one

stream item. In turn, some of the stages are farm, which
exploit 𝑛 independent replicas of a (sequential or parallel)
worker, for example simulation and static engines. Its service
time can be modeled as

𝑇𝑠 (farm (𝑊, 𝑛)) =
𝑇𝑠 (𝑊)

𝑛
. (7)

Given the service time of each sequential stage, for
example, measured in the sequential code, these equations
can be also used to tune the optimal number of workers 𝑛

for any new simulation problem and to understand its upper
bound in term of speedup. As an example, in the Neurospora
with 10

5 samples test case the sequential code exhibits the
following timing per trajectory: 𝑇𝑠(generation)∼0, 𝑇𝑠(sim
eng) = 5.3 s,𝑇𝑠(alignment) = 0.11 s,𝑇𝑠(windows generation) =
0.02 s, and𝑇𝑠(stat eng) = 0.33 s, with a total execution time for
each trajectory of ∼5.8 s (∼120 minutes for 1200 trajectories).
Among those, sim eng and stat eng are used within a farm,
thus their service time can be reduced by increasing the
number of workers. Therefore, the maximum performance
and efficiency of the whole workflow are reached when the
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two farms are tuned to match the service time of the slowest
sequential stage, that is, the alignment stage 0.11 s. For this,
the farm in the simulation pipeline should be configuredwith
𝑛 = 5.3/0.11 ≈ 48 workers, whereas the farm in the analysis
pipeline with 𝑛 = 0.33/0.11 = 3workers.The overall speedup
upper bound can be obtained using the total execution
time and the slowest stage service time, that is, maximum
speedup achievable for this test case is ≈5.8/0.11 = 53, which
includes the contributes from both pipeline and farm. The
analysis, despite being approximated since it does not include
synchronization overheads and memory bandwidth limits,
is adherent of results depicted in the left plot of Figure 6.
The speedup linearly grows with the number of simulation
engines in the 𝑛 = [1 ⋅ ⋅ ⋅ 32] range.The primary reasons of the
slight performance drop in the right end of the plots is due to
the fact that more virtual cores (i.e., hyperthread contexts)
than physical core are used and the increased memory
traffic for high numbers of trajectories. Furthermore, the
performance analysis highlights that the bottleneck of the
architecture for high throughput problems, which is in the
alignment of trajectory stage. Its parallelization, which can
be addressed by pipelining simulation engines and a partial
alignment stage within the farm, is among future works.

However, this simple reasoning does not apply when a
big number of trajectories are modeled. In fact, in such cases,
the main architecture bottleneck when using a high number
of simulation engines is the memory bandwidth limit of the
underlying platform. Such effect can be seen in the right plot
of Figure 6 for the case of 1200 trajectories.

4. Discussion and Related Works

In the field of biological modeling, tools such as SPiM [33,
34] and Dizzy [35] have been used to capture first order
approximations to system dynamics using a combination of
stochastic simulation and differential equation approxima-
tion. SPiM has long been the standard tool for simulating
stochastic 𝜋 calculus models.

Bio-PEPA [36] is a timed process algebra designed for
the description of biological phenomena and their analysis
through quantitative methods such as stochastic simulation
and probabilistic model-checking. Two software tools are
available for modeling with Bio-PEPA: the Bio-PEPA Work-
bench and the Bio-PEPA Eclipse Plugin [37].

The parallelization of stochastic simulators has been
extensively studied in the last two decades. Many of these
efforts focus on distributed architectures. Our work differs
from these efforts in three aspects (see discussion below):
(1) it addresses multicore-specific parallelization issues; (2)
it advocates a general parallelization schema rather than
a specific simulator, and (3) it addresses the online data
analysis, thus it is designed to manage large streams of data.
To the best of our knowledge, many related works cover some
of these aspects, but few of them address all three aspects.

The Swarm algorithm [38], which is well suited for
biochemical pathway optimisation, has been used in a dis-
tributed environment. An example is Grid Cellware [39], a
grid-based modeling and simulation tool for the analysis of

biological pathways that offers an integrated environment for
severalmathematical representations ranging from stochastic
to deterministic algorithms.

DiVinE is a general distributed verification environment
meant to support the development of distributed enumerative
model checking algorithms including probabilistic analysis
features used for biological systems analysis [40].

StochKit [41] is a C++ stochastic simulation framework.
Among othermethods, it implements the Gillespie algorithm
and in its second version it targets multicore platforms, it is
therefore similar to our work. It does not implement online
trajectory reduction that is performed in a postprocessing
phase. A first form of online reduction of simulation trajec-
tories has been experimented within StochKit-FF [11], which
is an extension of StochKit using the FastFlow runtime.

In [14] a parallel computing platform has been employed
to simulate a large biochemical network in hundreds different
cellular volumes using Gillespie stochastic simulation algo-
rithm on multiple processors. Parallel computing techniques
made it possible to run massive simulations in reasonable
computational times. However, the analysis of the simulation
results to characterize the intrinsic noise of the network
has been done as a postprocessing step. We believe our
parallelization framework could further improve those kinds
of analyses.

Hy3S software package [13] that includes hybrid stochas-
tic simulation algorithms and SRSim [42] that performs rule-
based spatial modeling are both embarrassingly parallelized
by way of the MPI (message passing interface) library. In
this case, high latencies and communication connection
problems of the computing clusters could decrease the speed
efficiency.

An efficient parallelization of Gillespie’s SSA on GPGPU
has been presented by Li and Petzold [43], where paral-
lelization is obtained by distributing the computation of
each trajectory to a distinct unit. Online data analysis has
not been addressed; segmentation of threads and online
alignment of outputs seem difficult to achieve owing to
the sharing restrictions imposed by GPGPU. StochSimGPU
[44] exploits GPGPU for parallel stochastic simulations of
biological systems. The tool allows computing averages and
histograms of the molecular populations across the sampled
realizations on the GPGPU.The tool leverages on a GPGPU-
accelerated version of the MATLAB framewosrk that can
be hardly compared in flexibility and performance with
a C++ implementation. A GPGPU implementation of the
CWC simulator is actually under development. In particular,
GPGPU exploitation appears to be particularly suitable for
the analysis of spatial models (see [45–48]).

A schematic comparison of the main features of the
biological simulation tools cited above is reported in Table 2.

This paper does not provide computational comparisons
with other systems. Actually, a comparative analysis of the
performance of the presented framework with respect to
other simulators would not be particularly informative for
the following reasons: (1) the computational cost of the
simulations presented in this paper is mainly dependent
on the parameters of the output sampling (time needed
to write on disk); (2) the performance of our system is
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Table 2: Biological simulation tools comparison.

Tool Calculus Simulation schema Parallelism Data analysis
SCWC CWC Gillespie FastFlow Online statistics
SPiM 𝜋-calculus Gillespie None None
Dizzy Reaction model Gillespie, Gibson-Bruck, Tau-Leap, ODE None None
BioPEPA Process algebra ODE, Gillespie None None
Cellware Reaction model Gillespie, Gibson-Bruck, ODE None None
DiVinE Model checker ODE MPI None
StochKit Reaction model Gillespie, Tau-leaping MPI Postprocessing
StochKit2 Reaction model Gillespie, Tau-leaping Multithread Postprocessing
StochKit-FF Reaction model Gillespie, Tau-leaping FastFlow Online statistics
Hy3S Reaction model Gibson-Bruck, Hybrid MPI Postprocessing
Li and Petzold’s Reaction model Gillespie GPGPU None
StochSimGPU Reaction model Gillespie, Gibson-Bruck, Li GPGPU Postprocessing

partially affected by the computational cost of the run time
statistics, which the other simulators do not provide (this
accounts, e.g., of about 6% of the total simulation cost in the
Neurospora example with 10

5 samples); (3) CWC, presented
in this paper in a simplified form for the sake of readability
uses a pattern matching algorithm in a compartmentalised
setting (this makes it more expressive but computationally
more expensive when compared with stochastic simulators
implementing the Gillespie’s algorithm in a flat scenario); and
(4) another feature of CWC is the use of complex functions
for computing the rate of reactions. So, for example, the
model for the analysis of circadian oscillations of Neurospora
cannot be directly simulated by Gillespie’s algorithm.

5. Conclusions

In this paper we focused on a methodology to accelerate the
simulation of stochastic models and analysis of simulation
results on multicore platforms. We advocate a fully parallel
simulation-analysis workflow as way to accelerate the sim-
ulation of stochastic model, to improve the likely to detect
unknown system behaviors and to shorten the model tuning
process thus improving tool usability.

We applied our methodology on a simulator for the
calculus of wrapped compartments (CWC), a formal frame-
work for modeling biological systems and their stochastic
behavior. Even if we focused here on the integration of
the simulation/analysis phases we demonstrate its efficiency
and effectiveness by modeling three simple but paradigmatic
examples of biological systems which are representative of
different system dynamics, that is, multistable and oscillatory.
All considered cases are representative of the kind of behav-
iors for which stochastic simulations have an expressivity
edge onto classic ODEs. The ability of detecting interesting
but unknown system behaviors is enhanced by the possibility
of plugging in the workflow a set of user-defined statistic and
mining tools that can be executed in parallel and while model
simulation is still ongoing. In this respect our approach is, as
far as we know, completely new.

Concerning the parallelization problem, we propose a
fully parallel simulation-analysis tool that copes with several

challenging problems, inter alia: close to ideal speedup and
efficiency coupled with low code development effort; capa-
bility to manage high data throughput thus enhancing the
precision of simulated models; and interactivity and reduced
data size produced with respect to classic simulation-analysis
sequential execution.

Many of these results are achieved by means of the Fast-
Flow programming framework that provides a high-level of
abstraction parallel programming methodology that exempt
the programmer fromdirectmanagement of synchronization
and orchestration of concurrent activities. FastFlow provides
low synchronization overhead and performance predictabil-
ity, which makes it possible to design and tune a complex
autobalancing, fully online simulation-analysis workflow that
can produce data at a very high frequency and filter them
in memory before being stored out-of-core avoiding the disk
bottleneck.

The FastFlow framework and the CWC simulation-
analysis workflow are open source software under LGPL
license [23, 49].
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