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1  | INTRODUC TION

Eggplant (Solanum melongena L.) is a native plant from Southeast Asia 
that was domesticated more than 4,000 years ago (Das et al., 2011). 
The world production of eggplant in 2019 was approximately 55.2 
million tons, with China being the main producer (http://www.fao.
org/). Eggplant fruit is rich in vitamins, dietary fiber, and phytonutri-
ents, especially phenolic compounds, such as caffeic acid and chlo-
rogenic acid, and flavonoids. Eggplant has highly beneficial effects 
on human health due to its high content of phenolic acids (Salerno 

et al., 2014; Toppino et al., 2016). These phenolic acids are important 
due to their various health- promoting effects (Kaushik et al., 2015).

Fresh eggplant fruits deteriorate rapidly after harvesting and 
have a very limited shelf life at ambient temperature. In addition, 
postharvest problems include softening, browning, flavor loss, and 
disease infections that negatively affect the quality of eggplant 
fruits during storage or transportation. Many reports have demon-
strated that elevated phenolic acid levels in fruit flesh increase the 
risk of eggplant browning (Taranto et al., 2017). Depending on the 
mechanism, browning reactions in food products are generally 
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Abstract
Eggplant is a popular vegetable in Asia; however, it has a short storage life and con-
siderable economic losses have resulted from eggplant browning. Calcium has been 
reported to play a key role in the postharvest storage of plants. Here, we found 
that exogenous calcium application could delay eggplant fruit browning and main-
tain higher storage quality. The increased browning index (BI), relative electrolytic 
leakage (REL), and water loss were suppressed by calcium treatment during stor-
age. Delayed browning with calcium treatment might result from a higher phenolic 
level and suppressed the activity of polyphenol oxidase (PPO). Less H2O2 and O2

-  but 
more activated reactive oxygen species (ROS) scavenging enzymes accumulated in 
calcium- treated fruits than in H2O- treated fruits. Moreover, the nonenzymatic an-
tioxidant, ascorbic acid (AsA), was accumulated more in calcium- treated eggplant 
fruits. Taken together, our data demonstrated that exogenous calcium application 
delayed eggplant fruit browning by regulating phenol metabolism and enhancing an-
tioxidant systems.
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divided into enzymatic and nonenzymatic browning. Enzymatic 
browning is the main form that occurs during harvesting, transpor-
tation, storage, and processing of eggplant fruit (Concellón, CAñón, 
& RChaves, 2004). Due to tissue damage, phenolic compounds and 
polyphenol oxidase (PPO) are exposed to oxygen, which triggers the 
oxidation of phenols into quinones. Subsequently, these quinones 
and their derivatives polymerize through alternating reactions to 
form a relatively insoluble brown pigment called melanin (Moon 
et al., 2020; Taranto et al., 2017). Additionally, changes in antioxidant 
and nonenzymatic systems have been reported to play a role in the 
browning of fruits (Hodges et al., 2004; Maioli et al., 2020; Zhang 
et al., 2015). Therefore, extending the storage life and delaying the 
decrease in storage quality, especially suppressing browning in egg-
plant fruits, has become a research hot spot.

As a second messenger, calcium (Ca2+) was reported to have a pos-
itive function in response to abiotic stresses, including drought, cold, 
heat, heavy metal, and oxidative stresses (Aldon et al., 2018; Nasir Khan 
et al., 2009). Recently, postharvest application of calcium was reported 
to maintain the quality of fresh fruits and vegetables (Li et al., 2020; 
Xiong et al., 2021). Postharvest application of Ca2+ reduced the sever-
ity of chilling damage by increasing the calcium in the pulp, thereby de-
laying browning of the fruit after cold storage (Manganaris et al., 2007). 
Wang et al. found that exogenous calcium treatment increased cherry 
firmness and reduced pitting (Wang et al., 2014). 4% Ca2+ can improve 
the postharvest quality and shelf life of bananas, indicating that coat-
ing bananas with calcium improves the postharvest quality and shelf 
life of fruits (Elbagoury et al., 2021). However, little is known about 
the function of calcium in the eggplant fruit. The objective of this work 
was, first, to explore the effect of calcium on the browning of eggplant 
fruit and, second, to investigate the effects of calcium on ROS, pheno-
lics, and antioxidants in eggplant fruits under storage.

2  | MATERIAL S AND METHODS

2.1 | Fruit materials and treatments

Eggplant fruits (Solanum melongena L. cv. “Heilong”) were harvested 
at a commercially ripe stage (physiologically immature), when the 
length of the eggplant fruits reached 20 cm, in an orchard in Nanjing, 
Jiangsu, China. Fruits with uniform size and color and nonvisible 
damage spots were selected. After removal from the filed heat, the 
fruits were immersed in 0.05% Tween- 20 solutions containing 0%, 
1%, 2%, 3%, and 4% CaCl2 for 20 min and then naturally air- dried for 
2 hr at 25°C. In total, 60 eggplant fruits were used for each treat-
ment. All samples were then subjected to room temperature (25°C 
with 80%– 85% relative humidity) storage. Fifteen fruits were sam-
pled randomly on each sampling day.

2.2 | Browning index detection

Fruit flesh browning was measured as previously described 
(Kaushik, 2019). The parameters L*, a*, and b* were measured using 

a Cr- 400 Chroma Meter (Konica Minolta, Japan). The parameters L*, 
a*, and b* were measured 10 min after the fruit was cut, with 5 fruits 
per treatment. The value of the browning index (BI) was determined 
as previously described by using the values of L*, a*, and b* (Palou 
et al., 1999).

2.3 | Total calcium content detection

The total calcium content was measured as described previously 
(Codling et al., 2007; Sun et al., 2020). Over dried fruit tissue (1 g) 
from 5 fruits was used to determine the calcium content using an 
Optima 4,300 DV Inductively Coupled Plasma Optical Emission 
Spectrometer (PerkinElmer) with strontium as an internal standard.

2.4 | Determinations of storage quality

Fruits from each treatment of 15 fruits per replicate were weighed at 
each point. For relative electrolytic leakage detection, 15 disks from 
the pulp tissues of 15 fruits were obtained with a 1 cm- diameter 
puncher and incubated in 50 ml ddH2O. The electrolytic leakage 
was first measured at 25°C. Then, the solutions were transported to 
boiling water for 20 min, and the electrolytic leakage was measured 
after quick cooling.

After removing the 2 mm- thick peel, a pressure tester (Effegi 
Model FT32, Italy) with a 12 mm tapered probe was used to measure 
the firmness of 15 fruits in each replicate. The maximum force was 
recorded and expressed in newtons (N).

2.5 | Determinations of total phenolic and 
antioxidant metabolite contents

The total phenolic content was detected as previously described 
(Habibi & Ramezanian, 2017; Shao et al., 2020). One gram of pulp tis-
sue from 5 fruits was ground in liquid nitrogen. Phenolic compounds 
were extracted in 50 ml of methanol containing 1% (V/V) HCl for 
20 min at 4°C in darkness. After centrifugation at 12,000 g at 4°C 
for 15 min, the absorbance of the supernatant at 280 nm was de-
tected using a spectrophotometer (UV- 1800, MAPADA). Gallic acid 
was used to construct a standard curve.

H2O2, O2
- , CAT, PPO, POD, SOD, and AsA detection assays were 

performed according to the manufacturer's instructions (Comin).

2.6 | Statistical analysis

Three biological replicates were performed in each experiment. The 
experimental data are presented as the means ± standard deviations 
of three independent replicates. Data were analyzed via analysis 
of variance (ANOVA), and mean values were compared by Tukey's 
multiple range test (p < .05). All statistical analyses were performed 
using SPSS18 statistical software package (IBM SPSS Statistics).
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3  | RESULTS

3.1 | Effect of different calcium concentrations on 
eggplant under storage

“Heilong” eggplant (Solanum melongena L.) fruits were treated with 
different concentrations of CaCl2. As shown in Figure 1, treatment 
with 1%– 3% CaCl2 significantly decreased the values of L*, b*, and 
the browning index (BI) and increased the value of a*. As the Ca2+ 
concentration increased (2%– 4%), the values of L*, b*, and BI in-
creased (Figure 1). At these concentrations, the effect of 2% Ca2+ 
treatment was the most significant. The BI of 2% Ca2+- treated egg-
plant fruits was 53.38% that of H2O- treated fruits. However, the BI 
of 4% Ca2+- treated fruits was not significantly higher than that of 
H2O- treated fruits.

3.2 | Phenotype of 2% calcium- treated fruits and 
endogenous calcium content

Because the effect of the 2% calcium treatment was the most signifi-
cant among the different calcium concentrations, we chose 2% Ca2+ 
for further investigation. As shown in Figure 2 2% Ca2+ significantly 

delayed the browning and softening of the fruits (Figure 2a). The L*, 
b*, and BI values of calcium- treated fruits were significantly lower 
than those of H2O- treated fruits (Figure 2c,e,f) at 4 and 6 days 
post- treatment (dpt). To examine whether exogenous Ca2+ applica-
tion increased the fruit total calcium content, we also detected the 
total calcium content in eggplant fruits during storage. As shown in 
Figure 2b, the calcium content in the treated fruits was significantly 
higher than that in the H2O- treated fruits during storage. The cal-
cium content of treated fruits was more than 65% higher than that 
of H2O- treated fruits.

3.3 | Effect of calcium on storage quality in 
eggplant fruits

It has been well established that weight loss is an important marker 
of the storage quality of horticultural products (Gao et al., 2015). 
Here, our data showed that weight loss in all treated eggplant fruits 
increased during storage (Figure 3). However, calcium treatment 
significantly suppressed this increase. The water loss from calcium- 
treated fruits was 76.27% that of H2O- treated fruits at 6 dpt (Figure 3). 
The cell membrane is damaged first during storage. Relative electro-
lytic leakage (REL) is an important indicator of integrality of the cell 

F I G U R E  1   The L*, a*, b*, and browning index (BI) of eggplant fruits with different concentrations of calcium. Data are means of three 
replicates with SD. Different letter indicated significant differences, according to one- way ANOVA and Tukey's multiple range tests (p < .05)
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membrane. In the present study, the REL gradually increased during 
storage. However, calcium significantly delayed the increase in REL 
during storage. At 6 dpt, the REL of H2O- treated fruits was 37.49% 
higher than that of calcium- treated fruits (Figure 3). Moreover, calcium 
treatment delayed the reduction of the firmness of eggplant fruits 
during storage (Figure 3). These results suggested that calcium treat-
ment maintains the storage quality of eggplant fruits during storage.

3.4 | Effect of calcium on the activity of 
PPO and the phenolic content in eggplant fruits

As shown in Figure 2, calcium significantly delayed the browning 
of fruits. Many studies have reported that PPO and phenolics play 
an important role in the browning of fruits (Concellón et al., 2004; 
Maioli et al., 2020). Here, we detected the activity of PPO and the 
level of total phenolics after calcium treatment during eggplant fruit 
storage. As shown in Figure 4, the PPO activity of calcium- treated 
fruits was lower than that of H2O- treated fruits. Decreased total 
phenolic contents were detected in all treatments during storage. 
However, calcium treatment delayed the decrease in total phenolics, 
especially at 6 dpt (Figure 4). These results indicated that calcium 
delayed the increase in PPO activity and decrease in total phenolic 
production, which resulted in a reduction in browning.

3.5 | Effect of calcium on antioxidant system 
activity in eggplant fruits

ROS scavenging systems play a key role in reducing ROS and sta-
bilizing the cell membrane structure during fruit storage (Hodges 
et al., 2004; Shao et al., 2020). To analyze the oxidation status dur-
ing storage, we examined the contents of H2O2 and O2

−, which are 
two major stable ROS. As shown in Figure 5, the H2O2 and O2

− lev-
els gradually increased during storage. However, calcium treatment 
obviously delayed this increase. At 6 dpt, the H2O2 and O2

− con-
tents of calcium- treated fruits were significantly lower than those 
of H2O- treated fruits (Figure 5). We also detected the activities of 
peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD). 
After calcium treatment, the activities of POD, CAT, and SOD were 
significantly higher than those under H2O treatment. For example, 
the activity of CAT in calcium- treated fruits was 1.28- fold that in 
H2O- treated fruits at 6 dpt. In addition, ascorbic acid (AsA) plays a 
key role in the nonenzymatic antioxidant system (Gallie, 2013; Sun 
et al., 2018). We also analyzed the change in AsA content during egg-
plant fruit storage. The AsA level was elevated under all treatments 
during storage. The AsA content under calcium treatment was sig-
nificantly higher than that under H2O treatment at 6 dpt. These re-
sults suggest that calcium treatment improves the ability to produce 
and maintain higher levels of beneficial antioxidants during storage.

F I G U R E  2   Calcium treatment delayed the browning of eggplant during storage. (a) Phenotypes of H2O-  and calcium- treated fruits. Upper 
part: the appearance of H2O-  and calcium- treated fruits, bar = 5 cm. Lower part: the browning phenotypes of transection of H2O-  and 
calcium- treated fruits, bar = 2 cm. (b) The calcium content in H2O-  and calcium- treated fruits. (c) The L* in H2O-  and calcium- treated fruits. 
(d) The a* in H2O-  and calcium- treated fruits. (e) The b* in H2O-  and calcium- treated fruits. (f) The BI in H2O-  and calcium- treated fruits. Data 
are means of three replicates with SD. Asterisks denote statistically significant differences between calcium-  and H2O- treated fruits (p < .05, 
ANOVA)
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4  | DISCUSSION

Calcium was established to play a key role in horticultural fruit stor-
age (Elbagoury et al., 2021; X. Kou et al., 2015). However, there are 
few studies about the effects of calcium application on eggplant 
fruits. In the present research, we sprayed 0%– 4% CaCl2 on eggplant 
fruits to detect the effects of calcium on fruit storage quality. We 

found that 2% CaCl2 application significantly alleviated the browning 
of eggplant fruits. The calcium- treated fruits had significantly higher 
calcium content and lower BI, water loss, and REL values during stor-
age. The lower BI in calcium- treated fruits may result from a higher 
phenolic content and lower POD activity. Fewer ROS and enhanced 
antioxidative activity were detected in the calcium- treated fruits 
during storage. These results indicated that exogenous calcium ap-
plication maintained higher storage quality of eggplant fruits.

Previous studies have shown that an appropriate calcium con-
centration is beneficial to plant development and adaptation to 
stress, but excessive calcium application may disrupt the normal 
metabolism of plants (L. Kou et al., 2014; Sun et al., 2020). A con-
sistent phenotype was observed in our research. The 3%– 4% CaCl2 
treatment showed a decreased effect on the BI of eggplant fruits 
at 6 dpt (Figure 1), indicating that the effect of exogenous calcium 
on fruit browning is dose- dependent. As a secondary messenger, 
calcium transmits signals received from the cell surface to the cell 
interior by changing the cytoplasmic concentration, thereby partic-
ipating in multiple cellular processes, which are decoded by a series 
of Ca2+ sensors (Ranty et al., 2016; Yang & Poovaiah, 2003). Under 
normal conditions, the intracellular calcium concentration can be 

F I G U R E  3   Changes in the storage quality of eggplant fruits 
during storage. Changes in water loss (a), relative electrolytic 
leakage (b), and firmness (c) during storage. Data are means of three 
replicates with SD. Different letter indicated significant differences, 
according to one- way ANOVA and Tukey's multiple range tests 
(p < .05)

F I G U R E  4   Changes in the total phenolic content and PPO 
activity during storage. (a) Changes in PPO activity in H2O-  and 
calcium- treated fruits during storage. (b) Changes in total phenolic 
content in H2O-  and calcium- treated fruits during storage. Data 
are means of three replicates with SD. Different letter indicated 
significant differences, according to one- way ANOVA and Tukey's 
multiple range tests (p < .05)
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well controlled by the mechanism of calcium inflow and outflow in 
the cell membrane, but a high dose of calcium affects the balance of 
calcium inflow and outflow, leading to intracellular calcium disorder 
(Kudla et al., 2010; Steinhorst & Kudla, 2014). These uncontrolled 
calcium disorders ultimately lead to cell damage.

Phenolics are localized in vacuoles and participate in the brown-
ing of eggplant (Holderbaum et al., 2010; Mishra et al., 2012). In a 
previous study, exogenous calcium alleviated pericarp browning of 
pears in cold storage (Li et al., 2020). This delayed browning may 
result from increased endogenous γ- aminobutyrate (GABA) content, 

GABA- related gene expression, and enzyme activity (Li et al., 2020). 
In addition, calcium treatment reduced the brown spots of pear 
fruits under cold storage by inhibiting PPO and POD activities and 
delaying phenolic compound losses (X. Kou et al., 2015). These re-
sults indicated that calcium could delay fruit browning by inhibiting 
PPO activity and phenolic decreases. In our study, the content of 
phenolics gradually decreased during storage, and calcium treat-
ment significantly delayed this decrease. This suggested that calcium 
treatment suppressed the decrease in phenolic compounds and fruit 
browning. This delayed browning may be due to the lower activity of 

F I G U R E  5   Changes in ROS levels and antioxidant activities during storage. Changes in H2O2 (a), O2
− (b), and AsA (f) content during 

storage. Change in POD (c), SOD (d), and CAT (e) activities during storage. Data are means of three replicates with SD. Different letter 
indicated significant differences, according to one- way ANOVA and Tukey's multiple range tests (p < .05)
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PPO (Figure 4), which could catalyze the phenolic compounds into 
highly reactive quinones by its oxidizability (González et al., 2019; 
Plazas et al., 2013).

During fruit storage, ROS were stimulated when the plant cells 
suffered stress. Extremely high levels of intracellular ROS can dam-
age various components of the cell or activate specific signaling path-
ways that remove ROS before they can cause cell damage (Asensio 
et al., 2012). Kou et al. found that the activities of CAT and SOD in 
exogenous calcium- treated pear fruits were significantly higher than 
those in the control treated pear fruits (X. Kou et al., 2015). In fresh 
fruits and vegetables, the higher activities of enzymes may inhibit the 
accumulation of ROS, stabilize the cell membrane, and reduce phenolic 
oxidation by ROS (Li et al., 2020; Moon et al., 2020). Thus, the resulting 
lower level of ROS may result in delayed browning of pear fruits. Here, 
less H2O2 and O2

− accumulated in the calcium- treated fruits than in 
other fruits during storage. Moreover, the activities of the enzymatic 
ROS scavenging antioxidants CAT, POD, and SOD were significantly 
higher in calcium- treated fruits than in H2O- treated fruits. Moreover, 
the level of the nonenzymatic ROS scavenging antioxidant AsA was 
also significantly higher in calcium- treated fruits than in H2O- treated 
fruits. These results indicated that calcium may elevate the ROS scav-
enging system to protect cells from oxidative damage.

5  | CONCLUSION

Exogenous calcium application delayed browning and maintained 
the quality of eggplant fruits during storage. The lower BI may have 
resulted from a higher phenolic content and lower POD activity. 
Higher calcium contents and firmness were detected after calcium 
treatment. The REL and water loss were suppressed by calcium 
treatment. Moreover, the calcium- treated fruits accumulated lower 
levels of ROS and showed higher SOD, POD, and CAT activities. 
Additionally, the AsA level was higher in calcium- treated fruits than 
in H2O- treated fruits. These results provide further insight into the 
function of calcium in eggplant fruits storage. Thus, spray applica-
tion of exogenous calcium onto eggplant fruits can be used to main-
tain storage quality.
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