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Modulating proteasome inhibitor tolerance in multiple
myeloma: an alternative strategy to reverse inevitable
resistance
Maolin Ge 1, Zhi Qiao2, Yan Kong3, Hongyu Liang4, Yan Sun1, Hui Lu3, Zhenshu Xu 4 and Han Liu 1

BACKGROUND: Resistance to proteasome inhibitors (PIs) is a major obstacle to the successful treatment of multiple myeloma (MM).
Many mechanisms have been proposed for PI resistance; however, our mechanistic understanding of how PI resistance is inevitably
acquired and reversed remains incomplete.
METHODS: MM patients after bortezomib relapse, MM cell lines and mouse models were used to generate matched resistant and
reversed cells. RNA sequencing and bioinformatics analyses were employed to assess dysregulated epigenetic regulators. In vitro
and in vivo procedures were used to characterise PI-tolerant cells and therapeutic efficacy.
RESULTS: Upon PI treatment, MM cells enter a slow-cycling and reversible drug-tolerant state. This reversible phenotype is
associated with epigenetic plasticity, which involves tolerance rather than persistence in patients with relapsed MM. Combination
treatment with histone deacetylase inhibitors and high-dosage intermittent therapy, as opposed to sustained PI monotherapy, can
be more effective in treating MM by preventing the emergence of PI-tolerant cells. The therapeutic basis is the reversal of
dysregulated epigenetic regulators in MM patients.
CONCLUSIONS: We propose an alternative non-mutational PI resistance mechanism that explains why PI relapse is inevitable and
why patients regain sensitivity after a ‘drug holiday’. Our study also suggests strategies for epigenetic elimination of drug-
tolerant cells.
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BACKGROUND
The development of proteasome inhibitors (PIs) for the treatment
of multiple myeloma (MM) has dramatically increased treatment
responses and improved survival.1,2 The first-in-class PI, bortezo-
mib, was administered intravenously (i.v.) twice-weekly as a
sustained single or combination regimen.3,4 Bortezomib was
originally used to treat relapsed MM and has subsequently been
used for newly diagnosed MM. Increasing familiarity with toxicity
and the optimising of dose schedules have led to the current use
of PIs as key components in promoting response and eliminating
resistance. Combination therapies and schedule adaptation to
once-weekly use of PIs have been shown to be more tolerable and
highly efficacious.5–9 However, the relatively rapid acquisition of
drug resistance to PI treatment remains a crucial obstacle.
Innate resistance as well as acquired resistance that can arise

during treatment prevents cancer therapies from achieving stable
and complete responses.10,11 Cancer drug resistance can result
from genetic mutations, but increasing evidence emphasises the
contribution of non-mutational epigenetic mechanisms.12–14 The
high frequency of epigenetic change in cancers generates a rich

diversity in gene expression patterns and a heterogeneous
subpopulation of cells; thus a small fraction of the cancer cell
population is able to survive drug treatment as drug-tolerant
cancer cells, inevitably leading to acquired drug resistance.15–19

Furthermore, epigenetic alterations are implicated in the loss of
resistance after a ‘drug holiday’.19–22 However, our mechanistic
understanding of PI resistance, especially the role of epigenetic
regulation in the development and elimination of PI resistance, is
minimal.
Initial studies have established mutations in PSMB5 (encoding

proteasome subunit β5) as the underlying cause of bortezomib
resistance in vitro. However, somatic mutations of PSMB5 are
rarely detected in patients.1,23 Moreover, patients may display
sensitivity to PIs with a relapse following initial therapy,24–26

implying that PI resistance is reversible. The inevitability and
reversibility of PI resistance suggest a previously unrecognised
drug resistance mechanism that may be intrinsic to PI treatment
and regulated via epigenetic changes. However, the mechanisms
underlying the reversibility of PI resistance and the effectiveness
of combination and intermittent therapies have not been
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investigated in MM. Of particular curiosity is whether these
therapies lead to the elimination of drug-resistant cells in MM.

METHODS
Patient samples
Primary MM samples were obtained from the bone marrow of
patients with diagnosed MM. Bone marrow plasma cells of
patients were sorted by fluorescence-activated cell sorter with the
standard method, using human CD269 (B cell maturation antigen
(BCMA))-allophycocyanin (APC) antibody (Miltenyi Biotec). The
purified cells were co-cultured with mesenchymal stem cells using
the MesenCult-ACF Culture Kit (STEMCELL Technologies). Human
primary MM samples were obtained from Ruijin Hospital
(Shanghai, China) with written informed consent from each
patient and research ethics board approval in accordance with
the Declaration of Helsinki. The characteristics of these patients
are summarised in Supplementary Table S1.

Cell culture and generation of drug-resistant cells
Human MM cell lines MM1.S (RRID: CVCL_8792) and RPMI-8226
(RRID: CVCL_0014) were purchased from Stem Cell Bank, Chinese
Academy of Sciences. Cells were authenticated using STR profiling
within the past 2 years and routinely tested for mycoplasma, and all
tested negative for mycoplasma. Cells were cultured in Gibco RPMI
1640 containing 10% foetal bovine serum at 37 °C with 5% CO2 and
were maintained between a density of 5 × 105 and 2 × 106 cells/ml.
Induced drug-tolerant cells were generated by continuously
exposing parental cells to a sublethal dose of bortezomib or
carfilzomib for at least 4 weeks. Cells were passaged and the
inhibitors were replenished every 3 days. The half-maximal
dosage effect (IC50) values were measured intermittently until the
drug resistance was acquired. The remaining cells after the
treatment were considered as ‘Tolerant’ cells and were collected
for analysis. ‘Reversed’ cells were generated from bortezomib- or
carfilzomib-tolerant cells by culturing without the inhibitors for a
minimum of 4 weeks.

Reagents
Bortezomib (Velcade), carfilzomib (PR-171), panobinostat
(LBH589), and vorinostat (SAHA, MK0683) were obtained from
Selleck Chemicals.

Cell viability and cell proliferation assays
The CellTiter 96 MTS assay (Promega) was used to determine the
cytotoxicity of the relevant drugs and cell proliferation according
to the manufacturer’s instructions. For cell proliferation detection,
cells were plated at the appropriate density (1 × 104 cells per well
of a 96-well plate), and the proliferation of the indicated cells for
5 days was detected.

Apoptosis and cell cycle assays
Apoptosis and cell cycle were measured using the PE Annexin V
Apoptosis Detection Kit and APC BrdU Flow Kit from BD
Pharmingen as described by the manufacturer, respectively. Cell
staining with fluorochromes were acquired using flow cytometer
and data were analysed using the FlowJo software.

Mouse studies
NOD-SCID mice were purchased from Vital River Laboratory. In all,
1 × 107 MM1.S cells were subcutaneous injected into NOD-SCID
mice (6–8 weeks, male or female) in the right flank. Mice were
allocated randomly into different experimental groups and
then administered bortezomib i.v. at 0.8 mg/kg on a twice-
weekly schedule (Bortezomiblow) or 1.3 mg/kg on a once-weekly
intermittent schedule (Bortezomibhigh-I) or administered SAHA
intraperitoneally at 5 mg/kg five times per week, beginning when
tumours were measurable. Mice undergoing bortezomib or SAHA

monotherapy also received the vehicle. No adverse events were
observed. Mice were treated for 4 consecutive weeks and
monitored for tumours by calliper. Mice were sacrificed by
inhalation of CO2 when they became moribund or when their
tumour diameters reached 2 cm. Animal care and sacrifice were
conducted according to methods approved by the Animal Care
and Use Committee, the Center for Animal Experiments of
Shanghai Jiao Tong University.

Total RNA sequencing
Total RNA was extracted from Trizol according to the manufac-
turer’s instructions. The mRNA-seq library was performed using
the Illumina TruSeq Library Construction Kit and sequenced using
BGISEQ-500RS for 100-bp paired-end sequencing. Quality control
of mRNA-seq data was performed using Fatsqc, and then low-
quality bases were trimmed. After quality control, clean reads
were aligned to the human genome (UCSC hg19) by Tophat2.1.0
with maximum of 2 mismatches for each read. After data
mapping, cufflinks were used to analyse significant differential
expression genes. Gene ontology analysis was performed using
the KEGG database and DAVID (http://david.abcc.ncifcrf.gov) for
pathway analysis.

Cancer hallmark analysis
We downloaded cancer hallmark data from the MSigDB database
(http://software.broadinstitute.org/gsea/msigdb/). The P value is
corrected to assess the significance of enrichment.

Statistical analysis
Student’s t test was used to analyse the differences between the
groups. Means were illustrated using a histogram with error
bars representing ±the standard deviation (SD), and statistical
relevance was evaluated using the following P values: P < 0.05 (*),
P < 0.01 (**), or P < 0.001 (***).

RESULTS
PIs induce reversible drug resistance in MM cells
To determine whether PI resistance is reversible in MM patients, we
evaluated the cell sensitivity of primary MM cells. We obtained bone
marrow cells from patients who relapsed after bortezomib
treatment (Table S1), collected BCMA-positive MM cells,27 and
cultured them in drug-free medium (Fig. 1a). Compared with the
original relapsed cells, the cells cultured without bortezomib
exhibited a remarkably enhanced sensitivity and resistance to
bortezomib in these cells diminished over time (Fig. 1b), suggesting
that PI resistance is reversible in MM patients. To gain insights into
the molecular mechanisms underlying the reversible phenotype, we
performed global mRNA expression profiling. Hierarchical clustering
of the differentially expressed genes (DEGs) between the relapsed
and reversed cells revealed distinct clusters of gene expression
patterns (Fig. 1c). Cancer hallmark analysis showed significant
enrichment of genes involved in inflammatory response pathways
and cell cycle pathways (Fig. S1A). The enrichment of gene sets
showed that release of inflammatory cytokines and chemokines
were notably enriched (reflecting T cell activation, cell chemotaxis,
cytokine–cytokine receptor interactions, and the nuclear factor-κB
signalling pathway). Furthermore, there was enrichment of cell
adhesion molecules (affecting regulation of cell–cell adhesion,
extracellular matrix (ECM)–receptor interactions, and cell adhesion
molecules; Fig. 1d and Tables S2 and S3). These biological processes
and pathways correspond to soluble factor-mediated drug resis-
tance (SFM-DR) and cell adhesion-mediated drug resistance
(CAM-DR),28 respectively. This indicates that these resistant forms
concurrently and synergistically occurred in patients with reversible
relapse of MM.
To gain a more comprehensive understanding of the acquisition

of this transient and reversible PI resistance, we sought to uncover
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the common regulatory pathways in MM patients, MM cell lines,
and MM mouse models. Parental bortezomib-sensitive MM cells
developed resistance to the drug when challenged with
bortezomib or carfilzomib, and subsequent removal of PIs
restored these cells to a relatively PI-sensitive state (Figs. 1e and
S1B). These data indicate that PI treatment-refractory cells are not
inherently resistant to PI but rather exist in a transient and
reversible drug-resistant state. Next, we transplanted MM1.S cells
into three groups of NOD-SCID mice; one group received vehicle,
one group received continuous treatment with bortezomib, and
the third group received bortezomib for 2 weeks and then
received vehicle for 2 weeks. We further performed total RNA-seq
in these MM1.S cell lines and xenograft tumours and then
analysed the gene sets that changed most significantly (Fig. S2A,
B). Cancer hallmark analysis revealed significant dysregulation of
genes related to tumour microenvironment (TME), cell cycle
pathways, and inflammatory response pathways in the PI-tolerant
MM1.S cells and PI-treated MM mouse tumours (Fig. S2C, D). These
dysregulated gene sets have been previously well established to
be regulatory factors involved in the survival and proliferation of
myeloma cells and to be associated with chemoresistance in MM
patients.28,29 We further analysed the overlap of DEGs and gene
sets in these three sequencing groups (Fig. S2E, F). On functional
annotation clustering using DAVID, the 32 highest scoring clusters
contained gene ontology biological process terms and KEGG
pathways involving ECM organisation, ECM–receptor interaction,
and cell adhesion molecules (CAMs) (Fig. S2F, G and Table S4).
These data suggest that MM cells share common regulatory
pathways for drug resistance in different models, including SFM-
DR and CAM-DR.

Reversible resistant MM cells are derived from slow-cycling
tolerance
An expanding body of literature emphasises the contribution of
drug-tolerant or persister cancer cells in the development
of inevitable drug resistance.19 We next sought to determine
whether the reversible MM cells were derived from a fraction of
pre-existent persister cells or whether, alternatively, they were
induced by PI treatment (Fig. 2a). In support of the latter
hypothesis, when single cells were isolated from a naive MM1.S
cell population, we found that they failed to grow in the
presence of a persister-tolerant dose of bortezomib (50 nM),19

even after extended periods of time (Fig. 2b). In contrast, when
exposed to a sublethal dose of bortezomib (5 nM), a small
fraction of the single cells (~20%) survived and expanded into PI-
resistant populations (Fig. 2b). In addition, pretreatment of cells
with the sublethal dose of bortezomib significantly increased the
frequency of PI-tolerant single cells (Fig. 2b). These data suggest
that the reversible MM cells are PI-tolerant cells that are acquired
de novo during PI treatment and are distinct from pre-existent
persister cells.
It is well recognised that under therapy stress cancer cells

primarily acquire a drug-tolerant state, which is often achieved by
slowing down an essential cellular process.19 To further character-
ise these PI-tolerant cells, we examined cell cycle and proliferation.
Compared with parental MM cells, PI-tolerant cells exhibited a
remarkably decreased proliferation and percentage of S-phase
cells, and cell proliferation was significantly restored in reversed
cells (Fig. 2c–f). These results suggest that PI-tolerant MM cells
were slow cycling with a low S-phase fraction and were consistent
with the enriched cancer hallmark analysis above (Figs. S1 and S2),
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indicating that MM cells enter the quiescent and tolerant state by
slowing down cell cycle processes.

PI tolerance is associated with epigenetic alterations and can be
eliminated with combination and intermittent therapies
Drug tolerance is a dynamic survival strategy in which individual
cells transiently assume a reversible state to protect the
population from eradication resulting from potentially lethal
exposures. Conceivably, this reversible phenotype of drug
tolerance implicates epigenetic plasticity rather than a genetic
mechanism. Therefore, we analysed the differentially expressed
epigenetic regulators30 in the expression profile of MM patients
and identified a list of 239 genes (Fig. 3a). This list of genes
contained many chromatin regulators, including histone methyl-
transferases and demethylases, histone acetyltransferases and
deacetylases, as well as several other histone modification and
chromatin remodelling genes (Fig. 3a). Interestingly, there were

significant differences in the expression levels of several
previously reported tolerance-related gene targets in cancer
cells, such as EZH2, KDM5, KDM6, and HDACs.14,17,19 Moreover,
gene sets involved in histone modification and chromatin
remodelling were significantly enriched (Fig. 3b and Table S5),
indicating that epigenetic alterations mediate the reversible
phenotype in MM patients.
While it is widely reported that drug resistance is genetic in

nature, emerging evidence in cancer biology suggests that
epigenetic alterations are involved in resistance and in the loss
of resistance after a ‘drug holiday’.19 Furthermore, in some cases,
refractoriness to treatment can be reversed by epigenetic
reprogramming; combination and intermittent therapies, as
opposed to sustained monotherapy, appear more effective in
attenuating refractoriness. The combination of PIs and histone
deacetylase (HDAC) inhibitors produces synergistic cytotoxicity in
preclinical MM models and in a variety of other haematological
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malignancy therapies.31,32 The HDAC inhibitors panobinostat
(LBH589) and vorinostat (SAHA) are currently being tested in
combination with various anticancer therapies.31,32 In addition,
increased dosage to once-weekly use of PIs in MM patients was
tested in recent clinical trials.8 To investigate the therapeutic basis,
we further examined the effect of intermittent bortezomib-based
therapy or treatment in combination with HDAC inhibitors on the
drug-tolerant cells. The in vitro results demonstrated that co-
treatment of MM1.S-tolerant cells with bortezomib and LBH589 or
SAHA led to a strong reduction in cell viability (Fig. 3c). Next, we
transplanted the MM1.S cells into NOD-SCID mice and evaluated
the in vivo efficacy of the combination and intermittent therapies
(Fig. 3d). Compared with the control group or SAHA single-agent
treatment, engrafted mice treated with an increased dosage of
bortezomib or in combination with SAHA showed notably
improved responsiveness (Figs. 3e and S3A). We further analysed
BCMA-positive cells by flow cytometry, and the percentage of
Annexin V+ cells in different treatment conditions showed
that the combination and intermittent therapies significantly
decreased the number of resistant cells (Fig. 3f). Notably,
intermittent bortezomib therapy reduced the number of residual
cells in mice and gave the residual cells a longer time to recover,

resulting in a significantly slower progression (Fig. 3e, f). These
data indicate that a combination of PI with HDAC inhibitors and
high-dosage intermittent therapy can prevent the emergence of
PI-tolerant cells.
We next performed total RNA-seq to reveal the underlying

mechanism. The gene set enrichments showed that sustained PI
monotherapy was involved in inflammatory response pathways,
which correspond to SFM-DR, whereas the gene sets involved in
CAM-DR were enriched in both combination and intermittent
therapy groups (Fig. S3B). These results indicate that intermittent
bortezomib therapy or bortezomib in combination with SAHA
changes the expression of downstream resistance-related genes.
Moreover, the gene set enrichments and Venn diagram revealed
that under the combination and intermittent therapies, a large
proportion of altered epigenetic regulators in PI-tolerant cells
were notably reverted (Fig. S3C, D). This indicated that these
therapy strategies partly prevented or recovered epigenetic gene
expression patterns. The gene set enrichments and epigenetic
regulator heatmap also suggest different regulatory conditions
between combination and intermittent therapies. These results
strongly suggest that, with PI therapy, MM cells may have
characteristic tolerant gene signatures that lead to a reversible
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(10 nM), or SAHA (2 μM) for 20 h. Cell viability was detected by MTS assay 24 h after the addition of bortezomib. The IC50 of different cells was
quantified. d Treatment schedule for administration of bortezomib, SAHA, or vehicle. NOD-SCID mice were inoculated with 1 × 107 MM1.S cells
by subcutaneous injection in the right flank. Mice were then administered bortezomib intravenously or SAHA intraperitoneally once tumours
were measurable. e Effect of different treatments on myeloma cell growth in vivo. Calliper measurements to estimate the tumour volume,
using the following formula: 4π/3 × (width/2)2 × (length/2). f Tumours were obtained from sacrificed mice and were incubated with BCMA and
Annexin V antibodies. Flow cytometric assays for Annexin V-positive cells in tumours are shown. *P < 0.05; **P < 0.01; two-tailed t test. Data are
represented as mean ± SD.
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drug resistance phenotype. Moreover, these tolerant gene
signatures are no longer present in the combined or increased
dosage intermittent treatment. Compared with sustained PI
monotherapy, a combination therapy strategy using PIs and
HDAC inhibitors or an increased dosage intermittent therapy can
be more effective in treating MM by preventing the emergence of
tolerant cancer cells.

DISCUSSION
MM is an incurable B cell malignancy because most patients
eventually relapse or become refractory to current treatments.
Cancer cell populations employ a dynamic survival strategy to
chemotherapeutic treatments, involving a small population of
drug-tolerant persister cells or cancer stem cells (CSCs) in the
development of inevitable drug resistance.15,22,33,34 Targeting MM-
CSCs is clinically relevant, and different approaches have been
suggested. Currently reported drug-tolerant cells are mostly rare
subpopulations that pre-existed before therapy due to transcrip-
tional variability or epigenetic heterogeneity at the single-cell
level.17–19 In contrast, our results confirm that PI tolerance in MM
cells can be acquired de novo by bulk cancer cells through
epigenetic reprogramming. Our findings suggest that drug-
resistant cells can not only emerge from the treatment-
mediated selection of subpopulations that present at the start
of therapy but also from a general adaptation process under
therapy stress. Our study also reveals the emergence and
elimination of PI tolerance under treatment from an epigenetic
perspective and emphasises the importance of preventing the
emergence of treatment-induced drug-tolerant cells in cancer
therapy. Conceivably, attenuating the acquisition of drug toler-
ance before the completion of the hardwiring process would be
an effective way to prevent treatment failure and relapse. To this
end, combination and intermittent therapy strategies, as opposed
to sustained monotherapy, should be utilised to prevent cancer
cells from adapting a drug-tolerant state.35,36

The efficacy of retreatment suggests that the reversibility of PI
resistance is general in MM.25 However, we also need to note that
our study has a limited sample quantity, especially considering the
huge heterogeneity among different patients. Further studies are
needed to elucidate the characteristics and discrepancies of
hallmark epigenetic regulators. Moreover, despite highly encoura-
ging preclinical data, clinical studies in patients with solid tumours
failed to demonstrate any efficacy of bortezomib.1 Whether our
proposed mechanism may extend to other cancers beyond MM
remains an interesting topic requiring further investigation.
Increasing familiarity with toxicity and the optimising of

dose schedules has led to the current application of PIs as

key components in promoting response and eliminating
resistance.5,6,9 Furthermore, the inevitability and reversibility of
PI resistance suggest a previously unrecognised drug-resistant
mechanism that may be intrinsic to PI treatment and regulated
via epigenetic alterations. More convenient and effective PI
administration schedules have been reported to improve cancer
outcomes, including MM and other haematological malignan-
cies. Nevertheless, the reason why PI resistance is reversible and
the mechanisms underlying combination and intermittent
therapies have remained elusive. In this study, we propose that
the appearance of drug-tolerant cells is a novel causal factor
underlying reversible PI resistance in MM (Fig. 4). Our study
revealed that the therapeutic basis for SFM-DR as well as
for CAM-DR is the dysregulation of epigenetic regulators in
MM patients during treatment. This can be eliminated by
combination treatment with HDAC inhibitors and high-dosage
intermittent therapy and has implications for clinical strategies
to prevent the emergence of drug tolerance. Thus our study
explains why combination and intermittent therapies are more
effective and provides new insights that will enable more
precise therapeutic strategies.
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