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Regulated changes in mRNA stability are critical drivers of gene expression adaptations to
immunological cues. mRNA stability is controlled mainly by RNA-binding proteins (RBPs)
which can directly cleave mRNA but more often act as adaptors for the recruitment of the
RNA-degradation machinery. One of the most prominent RBPs with regulatory roles in the
immune system is tristetraprolin (TTP). TTP targets mainly inflammation-associated
mRNAs for degradation and is indispensable for the resolution of inflammation as well
as the maintenance of immune homeostasis. Recent advances in the transcriptome-wide
knowledge of mRNA expression and decay rates together with TTP binding sites in the
target mRNAs revealed important limitations in our understanding of molecular
mechanisms of TTP action. Such orthogonal analyses lead to the discovery that TTP
binding destabilizes some bound mRNAs but not others in the same cell. Moreover,
comparisons of various immune cells indicated that an mRNA can be destabilized by TTP
in one cell type while it remains stable in a different cell linage despite the presence of TTP.
The action of TTP extends from mRNA destabilization to inhibition of translation in a
subset of targets. This article will discuss these unexpected context-dependent functions
and their implications for the regulation of immune responses. Attention will be also payed
to new insights into the role of TTP in physiology and tissue homeostasis.

Keywords: tristetraprolin (TTP), zinc finger protein 36 (Zfp36), RNA binding protein, mRNA stability/decay,
inflammation, immune system, immune homeostasis
INTRODUCTION

It is now well accepted that regulation of mRNA stability by RNA-binding proteins (RBPs) is
indispensable for healthy immune responses. RBPs orchestrate the immune system by modulating
gene expression through mRNA destabilization or stabilization, or by controlling translation (1–3).
Although this basic knowledge is established, many important questions remain unresolved.
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These include mechanistic explanations of the phenotype caused
by an RBP deletion in mice and the selective functions of RBPs in
specific cell types despite ubiquitous expression. Improved
models of the molecular mechanisms of RBP action are needed
to answer the open questions. These models will likely abandon
the linear schemes in which RBP binding to a target mRNA
inevitably results in a canonical consequence, e.g. mRNA decay.
The aim of this review is to provide a framework for updated
models of RBP action in immune responses.

The history of mRNA decay research, both at the level of
mechanisms and functions, is tightly connected to the immune
system. The first evidence that selective mRNA degradation is
driven by a cis-acting element was reported for the mRNA
encoding the granulocyte/monocyte growth factor GM-CSF
(4). This study established that an adenylate-uridylate-rich
element (AU-rich element; ARE) in the 3’ untranslated region
(3’ UTR) of the GM-CSF mRNA (encoded by the CSF2 gene)
confers mRNA instability if introduced into the 3’ UTR of a
stable mRNA. The autonomous effect of AREs on mRNA
stability has been subsequently documented for many other
mRNAs. The key role of ARE-dependent mRNA decay in vivo
was revealed by the deletion of the ARE in the mouse Tnf gene
which resulted in a spontaneous development of gut and joint
inflammation (5). However, genome sequencing and
transcriptome-wide mRNA stability assays indicated that the
initial model of an autonomous function of 3’UTR-located AREs
in mRNA destabilization was too simple. Approximately 20% of
human genes contain AREs in their 3’ UTRs, yet most of the
corresponding mRNAs are stable (6, 7). The medium half-life of
mRNA in human HepG3 cells is approximately 10 h with
mRNAs of metabolic genes having on average the highest half-
lives (6). In comparison, inflammation-associated mRNAs
belong to those with the shortest average half-lives. For
illustration, the decay rate of TNF mRNA is in the range of 20
– 40 min, depending on the cell type and stimulus (8, 9).
Although inflammation-induced mRNAs are enriched in
AREs, it is now accepted that the presence of an ARE is not
sufficient to destabilize the mRNA. Hence, new and more
comprehensive models of regulation of mRNA decay by cis-
acting elements are needed.
MECHANISMS OF RBP-DRIVEN
CHANGES IN mRNA STABILITY

mRNA-destabilizing RBPs bind and facilitate the target mRNA
degradation in two ways, depending on the properties of the
particular RBP (1, 2, 10, 11). One class of RBPs possesses an
endonuclease activity which allows the RBP to cleave the target
mRNA and generate ends devoid of the 5’ m7G cap and the 3’
poly(A) tail. These unprotected ends serve as substrates for
exonucleases which process the mRNA in 3’ – 5’ direction via
the exosome and 5’ - 3’ direction via XRN1 (12, 13). The best
characterized endonucleolytic RBP relevant for the immune
system is Regnase-1 (gene name Zc3h12a) which destabilizes
mRNAs of transcription factors and cytokines such as Icos,
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Ox40, c-Rel, IL-2 and IL-6 (14). Regnase-1-deficient mice show
severe systemic inflammation associated with T and B cell
activation. The phenotype is largely recapitulated by a T cell-
specific deletion (14). The second class of RBPs destabilize the
target mRNA by promoting the recruitment of the CCR4-NOT
deadenylase and the DCP1/DCP2-containing decapping
complexes (15, 16). A number of RBPs in this class are known
to regulate the immune system. Tristetraprolin (TTP), as one of
the most prominent members, will be described in detail below.
Other well characterized members are Roquin-1 (gene name
Rc3h1), Roquin-2 (Rc3h2), Zfp36l1, Zfp36l2 and Auf1. The
Roquin proteins redundantly target the mRNAs of Icos and
Ox40 to control T cell activation. Deletion of both Roquin-1 and
Roquin-2 genes specifically in CD4 T cells results in an
autoimmune phenotype resembling systemic lupus
erythematosus while deletion of the single genes remains
without severe consequences (17). The proteins Zfp36l1 and
Zfp36l2 are members of the TTP family but, in contrast to TTP,
have more pleotropic functions as demonstrated by embryonic
or postnatal lethality of the respective knockouts in mice (18, 19).
Zfp36l1 and Zfp36l2 are involved in the regulation of immune
system in multiple ways. They control the expression of
proliferative cell cycle regulators during B and T cell
development: double deletion of Zfp36l1 and Zfp36l2 in T cells
results in lymphopenia and malignant transformation of
immature CD8 T cells while similar deletion in pro-B cells
causes a block in B cell development owing to a failure in
entering quiescence hence genome safeguarding prior to VDJ
recombination (20, 21). The protein Auf1 exhibits anti-
inflammatory functions by promoting the degradation of
cytokine mRNAs as revealed by the hypersensitivity of Auf1-
deficient mice to endotoxic shock (22). Auf1 has been
subsequently found to regulate many other processes in
addition to immune responses including telomere maintenance
and muscle regeneration (23, 24).

mRNA-stabilizing RBPs are less well understood and their
functions are more pleiotropic as compared to the destabilizing
RBPs such as TTP. The general opinion is that mRNA-stabilizing
RBPs act by preventing the destabilizing proteins from binding
to the target. As a consequence, the target mRNAs are more
stable and/or more efficiently translated. mRNA-stabilizing RBPs
regulating immune responses include HuR (gene name
Elavl1) and Arid5a. Deletion of HuR or Arid5a in mice
resulted in increased resistance to experimental autoimmune
encephalomyelitis (25, 26). Furthermore, HuR is required for
antibody production by B cells (27). HuR is involved in
regulation of other processes including liver metabolism, cell
proliferation and cancer (28–30).
RNA BINDING OF RBPs CONTROLLING
mRNA STABILITY

RBPs bind to RNA through interactions of their RNA-binding
domains with specific sequences or defined structural elements in
the target mRNA. The most frequent RNA-binding domain in the
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immunoregulatory RBPs is the C3H1 (Cys-Cys-Cys-His) zinc
finger domain present for example in TTP, Zfp36l1 and Zfp36l2
(2, 31). Regnase and Roquin contain a C3H1 zinc finger and an
additional RNA-binding domain: a PIN domain and a ROQ
domain, respectively (32, 33). Auf1 and HuR bind to RNA
through the RNA recognition motif (RRM) domains which occur
in 2 or 3 repeats in these proteins (34, 35). Arid5a interacts with
RNA via an ARID domain which is known to recognize DNA in
other ARID domain-containing proteins (26, 36).

The target site in the RNA is defined by the RNA-binding
domain. The C3H1 zinc finger present in TTP, Zfp36l1 and
Zfp36l2 binds preferentially to AREs with the core sequence
UAUUUAU although divergent target sites have been identified
as well (9, 21, 37). A preference for AU-rich sequences shows also
the ARID domain of Arid5a (26). The RRM domain of Auf1
recognizes U- and GU-rich stretches and, albeit less frequently,
AREs (38). The RRM motif of HuR prefers U-rich sequences (9,
39, 40). The preference of these binding domains for AREs or U-
rich sequences reflects the unstructured nature of such
sequences: AREs and U-rich sequences in general do not adopt
a secondary structure. In contrast, Regnase and Roquin bind to
RNAs exhibiting stem-loop folds with the loop part formed by
three bases with a pyrimidine–purine–pyrimidine sequence
while the stem is more variable both in length (5 – 8 bases in
each half of the stem) and sequence (41, 42).

Transcriptome-wide binding assays revealed that most of
these RBPs bind frequently to 3’ UTR and, unexpectedly,
introns (9, 21, 38–40). Binding to introns regulates splicing in
case of HuR (40, 43). However, it appears that functional
interactions are largely confined to elements located in the 3’
UTRs as intronic binding in general does not result in changes in
stability or splicing of the transcript.
THE TTP PROTEIN FAMILY:
EVOLUTIONARY CONSERVED RBPs WITH
DIVERSE FUNCTIONS FROM YEAST
TO MAMMALS

TTP contains an RNA-binding domain formed by a characteristic
tandem C3H1 zinc finger in the middle part and protein-protein
interaction domains at the N- and C-termini (31). The tandem zinc
finger and the overall domain structure are conserved in similar
RBPs from yeast to plants and mammals hence these RBPs
constitute the TTP protein family (44). Interestingly, no TTP
protein members are found in birds despite their presence in
reptiles (44). Although all these proteins facilitate mRNA
degradation their functions in cells and/or organisms are diverse.
For example, the yeast TTP family member Cth2 regulates mRNA
stability upon iron deficiency while the Xenopus TTP proteins act
during embryonic development and the C. elegans homologues are
required for meiosis and oocyte production (45–47). Humans
contain three TTP family members (Zfp36, Zfp36l1 and Zfp36l2)
andmice express the Zfp36l3member in addition.Much of what we
now know about the functions of the TTP protein family has been
learned from knockouts in mice carried out by the Blackshear
Frontiers in Immunology | www.frontiersin.org 3
laboratory. Deletion of Zfp36l1 (also known as BRF1 and TIS11b) is
embryonic lethal because of failure in umbilical circulation resulting
from absent fusion of the allantois with the chorion (18). Mice
lacking Zfp36l2 (also known as BRF2 and TIS11D) die within a few
weeks after birth due to a marked deficiency in hematopoiesis (19).
Zfp36l3 is a paternally imprinted X chromosome gene which is
likely involved in regulation of iron metabolism in the placenta;
Zfp36l3 deletion results in decreased neonatal survival rates without
obvious morphological aberrances in surviving offspring (48).
TTP: A TTP FAMILY MEMBER WITH
UNIQUE SELECTIVITY FOR THE
REGULATION OF IMMUNE RESPONSES

TTP (Zfp36) is an outstanding member of the TTP family as its
function is remarkably specific and related to the regulation of
immune responses. TTP knockout in mice results in systemic
inflammation characterized by arthritis , dermatitis ,
conjunctivitis and cachexia (49). This so called TTP deficiency
syndrome develops within approximately 8 weeks of birth and
progressively worsens leading to death of most animals at around
6-8 months of age. TTP-deficient mice do not show any
developmental abnormalities or health defects at birth; the
mice are not fertile presumably owing to their poor health
(49). The TTP deficiency syndrome was shown to be
dependent on TNF signaling and mechanistically explained by
increased stability of Tnf mRNA (49, 50). Subsequent studies
established that the inflammatory disease of TTP-deficient mice
is caused, albeit to variable extent, by increased stability of other
cytokine and chemokine mRNAs as well, notably Il23, Ccl3, Il1a
and Il1b mRNAs (51–53).

Given this multiple evidence for its indispensable role in the
immune system, it comes with no surprise that TTP has become
one of the best studied RBPs. However, many important questions
remain open. For example, it is not well understood which cell
types drive the inflammatory disease in TTP-deficient mice. Mice
bearing LysM-Cre-mediated TTP deletion in the myeloid
compartment are healthy which is unexpected given that
myeloid cells are cells with arguably the highest TTP expression
(54, 55). Although these mice exhibit lethal hypersensitivity to
endotoxic shock, the absence of a spontaneous inflammation
suggests that deletion of TTP in myeloid cells alone is not
sufficient to cause the TTP deficiency syndrome. Similarly, mice
with CD11c-Cre-driven deletion of TTP in dendritic cells remain
without a spontaneous phenotype (56). Surprisingly, systemic
inflammation arises upon deletion of TTP in keratinocytes (56).
The inflammatory disease in these mice develops from psoriasis-
like focal skin lesions containing neutrophilic infiltrates, indicating
that persistent local inflammation can become systemic with time.
The model of keratinocyte-specific TTP deletion suggests that
TTP expression is particularly critical in barrier tissues, i.e. tissues
constantly exposed to environmental cues. However, it is
remarkable that the full-body TTP knockout mice remain
without pathology in the intestinal or lung epithelium, i.e. the
most prominent mucosal barriers. The absence of mucosal
September 2021 | Volume 12 | Article 751313
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inflammation in TTP-deficient mice suggests that TTP has more
complex roles in these tissues. Such functional complexity is
supported by findings showing that the lack of intestinal
pathology in TTP knockout mice is associated with a local
expansion of regulatory T cells (57). Moreover, Villin-Cre-
driven TTP deletion in intestinal epithelial cells increases the
resistance against dextran sulfate-induced colitis suggesting, that
the lack of TTP might enhance the robustness of the intestinal
barrier (58). Although the mechanism is yet to be determined, the
improved mucosal barrier might be caused by accelerated tissue
regeneration since these mice exhibit higher numbers of Goblet
cells. These findings suggest that the absence of TTP augments
proliferation signals that are commonly associated with
inflammatory conditions. In agreement, skin inflammation
caused by TTP deficiency in keratinocytes promotes
tumorigenesis that appears to be causally associated with
overproduction of the growth factor amphiregulin (59).
Consistently, amphiregulin mRNA is a TTP target. However,
TTP deficiency can cause increased cell numbers also by means
of decreased apoptosis as shown for TTP-deficient neutrophils:
neutrophils devoid of TTP express higher levels of the TTP target
Mcl1 mRNA which codes for an anti-apoptotic factor particularly
relevant for neutrophils (60). Interestingly, this effect pertains only
to immunostimulated (e.g. pathogen-engaged) neutrophils, not to
the circulating dormant neutrophil pool.

Cumulatively, the available animal models of TTP deficiency
clearly indicate that the major function of TTP is to control the
immune response. Although TTP restricts cell numbers in some
cases, this function is also largely related to control of
inflammation: (i) by ameliorating inflammation TTP prevents
the expression of inflammation-associated growth factors or
anti-apoptotic proteins, (ii) TTP directly targets the mRNAs of
several inflammation-associated growth or anti-apoptotic
factors. More studies directly investigating cells from tissues
are needed to complete our understanding of TTP effects in vivo.
mRNA DESTABILIZATION BY TTP

TTP promotes mRNA decay through the recruitment of the
CCR4-NOT deadenylase and the DCP1/DCP2 decapping
complexes to the bound target. The N- and C-termini of TTP
represent the protein-protein interaction domains in this
process. The CCR4-NOT deadenylase complex interacts with
the N- and C-terminal domains with the CNOT1 subunit being
directly involved in binding to TTP (61–64). The DCP1 and
DCP2 decapping protein complexes interact with the N-terminal
TTP domain (62). Following decapping and deadenylation, the
target mRNA is degraded through the 5′-3′ exonuclease Xrn1
and the 3′-5′ exonuclease of the exosome, respectively. The
identification of these interactions suggested that TTP-
mediated mRNA degradation is governed by a protein
recruitment cascade. However, this model does not explain
why many TTP-bound RNAs (including mRNAs and introns)
are stable as shown by more recent studies (9, 65–67).
The surprising findings of these studies delineate that the
Frontiers in Immunology | www.frontiersin.org 4
process of mRNA destabilization by TTP is more complex and
dependent on yet unidentified regulatory mechanisms.
TTP BINDING TO RNA

Both zinc finger domains are required for interaction of TTP
with RNA as mutation of either of them abrogates RNA binding
(68). Moreover, mutation of the first zinc finger in the TTP locus
in mice phenocopied the complete TTP deletion (69). This was a
significant finding as it definitively proved that the function of
TTP is entirely dependent on its RNA binding activity. Initial
characterization of the motif recognized by TTP focused on the
TNF mRNA, the first known TTP target: the motif is a 9-mer
with the sequence UUAUUUAUU which is repeated several
times in the TNF 3’ UTR (37, 70). Subsequent analysis of RNAs
enriched in RNA immunoprecipitation assays suggested that
TTP binds to AREs also in other target mRNAs (71). A precise
genome-wide mapping of target sequences was generated by
several CLIP-Seq (cross-linking immunoprecipitation-high-
throughput sequencing) studies employing immune cells.
Although these nucleotide resolution analyses confirmed the
preference of TTP for the UAUUUAU sequence, they also
provided several unexpected findings (9, 65–67). The studies
showed that TTP binds also to sites that were divergent from the
canonical TTP binding sequence as visualized in the searchable
TTP Atlas (https://ttp-atlas.univie.ac.at) (9). Moreover, TTP
binding was not limited to 3’ UTRs but was detected at sites
located in 5’ UTRs, coding sequences and introns as well
(Figure 1). Particularly striking was the high incidence of TTP
binding to introns. Although the number of identified intronic
binding sites was dependent on the CLIP-Seq method, the peak
finding algorithm and experimental cell system, the studies
convincingly established that TTP interacts with pre-mRNA in
addition to mRNA. This finding implies that TTP can engage
RNA interactions in the nucleus. The biological significance of
the intronic binding remains to be determined as no effects on
splicing or stability of the intron-bound RNA has so far been
observed (9). Given the high frequency of TTP binding to introns
it is possible that introns act as sponge to titrate away TTP
molecules. This mechanism was reported for circular RNAs that
function as sponge molecules for micro RNAs (72, 73). Similar to
intronic binding, it is currently unclear whether interactions of
TTP with 5’ UTRs or coding sequences entail changes in
RNA processing.

The CLIP-Seq data show that functional TTP bindings sites
are located in 3' UTR. Remarkably, binding of TTP to 3’ UTR
does not always cause destabilization of the target mRNA, as
revealed in recent studies. This enigmatic and probably
significant property of TTP is discussed further below.
REGULATION OF TTP

TTP function is regulated in multiple ways with many of them
remaining poorly understood. Moreover, it is likely that some key
September 2021 | Volume 12 | Article 751313
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regulatory events are still not known. Comprehensive knowledge
about the regulation of TTP is critical for our understanding of the
remarkably selective function of TTP in the immune system and
for the control of inflammation in general. TTP is regulated at the
level of transcription, mRNA stability, protein stability and by
posttranslational modifications (31, 74–76). As far as we can say,
all these mechanisms are critical for the appropriate extent, timing
Frontiers in Immunology | www.frontiersin.org 5
and selectivity of TTP-driven mRNA degradation. They act in
concert to allow the immune system launching an efficient but not
exaggerated inflammatory response.

TTP mRNA levels are low under steady state conditions but
dramatically induced in response to inflammatory stimuli which
are mostly associated with stress signaling. The increase in TTP
mRNA levels is achieved mostly by transcriptional induction and
A B

DC

FIGURE 1 | Position of TTP binding sites identified in reported CLIP-Seq experiments employing immune cells. (A) CLIP-Seq experiment carried out using bone
marrow-derived macrophages isolated from wild type mice (i.e. expressing solely endogenous TTP). Cells were stimulated for 3 h with LPS prior to CLIP-Seq which
was based on thiouridine (4sU)-mediated crosslinking allowing crosslinking with 365 nm UV, i.e. mild conditions [Reference (9)]. (B) CLIP-Seq experiment performed
using immortalized bone marrow-derived macrophages isolated from TTP knockout mice and engineered to express doxycycline-inducible TTP. Cells were treated
with doxycycline and stimulated for 1 h with LPS prior to CLIP-Seq [Reference (65)]. (C) CLIP-Seq experiment carried out using bone marrow-derived macrophages
isolated from mice expressing V5-tagged TTP from the endogenous locus (knock-in mice). Cells were stimulated for 4 h with LPS prior to CLIP-Seq [Reference (67)].
(D) CLIP-Seq experiment carried out using CD4+ T cells from wild type mice [(i.e. expressing solely endogenous TTP)]. CD4+ T cells were polarized under Th1
conditions prior to CLIP-Seq [Reference (66)]. 3’ UTR, 3’ untranslated region; 5’ UTR, 5’ untranslated region; CDS, coding sequence; ORF, open reading frame;
ncRNA, non-coding RNA; DOX, doxycycline.
September 2021 | Volume 12 | Article 751313
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to some extent also through mRNA stabilization. As an
immediate early gene, TTP is transcriptionally activated
rapidly after stimulation. The activation signals include growth
factors, cytokines such as TNF, IL-4, IL-10, or IFN-g, and
bacterial products e.g. LPS (50, 77–80). The transcription
factors involved in the transcriptional upregulation were
characterized in few instances: IFNs, IL-10 and IL-4 drive TTP
expression through STAT1, STAT3 and STAT6, respectively
(78–80). STAT1 employs a GAS (Gamma interferon activation
site) element which is conserved in the TTP promoter in mice
and humans (78). This GAS element is likely involved also in
response to IL-4 and IL-10. The activating signals often synergize
to achieve maximal induction of TTP (78, 79).

Stabilization of TTP mRNA by p38 MAPK signaling
contributes to induction of TTP expression (81). TTP mRNA
contains AREs which interact with TTP protein suggesting that
autoregulation is the mechanism underlying the low TTP mRNA
stability. TTP mRNA is indeed moderately more stable in TTP
knock-in mice expressing the zinc finger-inactivated
mutant (69).

A central aspect of the regulation of TTP levels in cells is the
control of TTP protein stability. TTP is continuously degraded in
a proteasome-dependent way which appears to proceed without
ubiquitination and is likely to involve the intrinsically unfolded
N- and/or C-terminal domains (82, 83). The mechanism of this
important process is not resolved and its elucidation would
significantly advance our understanding of protein degradation
in general. TTP protein stability increases by orders of
magnitude upon phosphorylation of S52 and S178 (in mouse
coordinates) (82, 84). Phosphorylation of these two residues is
brought about by MK2, a kinase that is activated by p38 MAPK.
Although the p38 MAPK/MK2-driven phosphorylation of S52
and S178 increases TTP protein stability and thereby positively
regulates TTP levels, it inhibits the mRNA-destabilization
activity of TTP. This phosphorylation-dependent TTP
inhibition probably results from a combination of several
processes: (i) S52 and S178 phosphorylation causes association
of TTP with 14-3-3 proteins thereby preventing relocation of
TTP to stress granules and processing bodies, (ii) 14-3-3 protein
binding promotes export of TTP from the nucleus, (iii) S52 and
S178 phosphorylation decreases association of TTP with the
CCR4-NOT deadenylase, and (iv) MK2-dependent TTP
phosphorylation diminishes TTP binding to RNA (85–88).
Although the mechanistic details of the function of S52 and
S178 phosphorylation are not fully understood, the biological
consequences have been convincingly revealed by generation of
double knock-in mice bearing S52A and S178A mutations in the
TTP locus (89). These mice are unable to express high TTP
protein levels, consistent with a rapid TTP protein degradation.
Nevertheless, the mice are protected against LPS-induced
systemic inflammation indicating that the S52A/S178A mutant
acts as hyperactive TTP in vivo. The double knock-in mouse
confirmed the previously proposed model of TTP function
according to which p38 MAPK leads to accumulation of
inactive (i.e. phosphorylated) TTP in the initial phase
of inflammation. Later, i.e. in the resolution phase of
Frontiers in Immunology | www.frontiersin.org 6
inflammation, the gradual decrease of p38 MAPK activity
releases TTP from its inhibited state thereby facilitating
degradation of TTP target mRNAs (9, 55). In parallel, the
diminishing phosphorylation accelerates proteasomal
degradation of TTP rendering the cells responsive to a new
inflammatory stimulus.

TTP contains more than 30 phosphorylation sites out of
which only S52 and S178 have been functionally annotated in
cells and animals (90). A recent quest for a better understanding
of TTP phosphorylation has revealed MK2-dependent
phosphorylation of T84, S85, T250, and S316 out of which the
phosphorylation of S316 is the most robust one (91). Notably,
S316 phosphorylation in not involved in regulation of TTP
protein stability; instead, it appears to regulate interactions of
TTP with the translation inhibition proteins (91). It will be
exciting to see the progress in functional characterization of
other phosphorylation sites as they likely impinge on TTP in
unexpected ways.
TO DEGRADE OR NOT TO DEGRADE THE
BOUND mRNA?

Transcriptome-wide mRNA stability studies coupled to CLIP-
Seq analyses revealed that, surprisingly, TTP does not always
cause degradation of the bound target. This has been
convincingly demonstrated by employing bone marrow-
derived macrophages expressing solely endogenous TTP (9).
The study showed that 71% of mRNAs bound by TTP in their
3’ UTR are stable. A similar conclusion was drawn from CLIP-
Seq and mRNA stability assays in HEK293 cells overexpressing
TTP (92). These observations were supported by other CLIP-Seq
studies employing primary cells (i.e. cells not overexpressing
TTP) although the evidence was indirect as it was based on
differential expression analysis (RNA-Seq) but not on
transcriptome-wide mRNA stability assessments (66, 67).
These unexpected results indicate that a more complex model
of TTP action needs to be developed. The model will probably
involve proteins acting in cis with TTP which prevent
recruitment of the RNA degradation machinery to stable
transcripts or facilitate such recruitment to unstable transcripts
(Figure 2). This new concept could also involve yet
uncharacterized TTP phosphorylation events; in this scenario a
particular phosphorylation (activating or inactivating) would
occur only on certain target mRNAs and/or subcellular
locations. The advanced concept of TTP function might also
consider a recently reported hypothesis that TTP stabilizes
mRNA under certain circumstances: The dramatic induction
of TTP following an inflammatory stimulus was proposed to
generate a pool of free TTP that sequesters the RNA degradation
machinery thereby preventing mRNA decay, but a direct
evidence for this hypothesis was not provided (93).

Related to the question of whether TTP destabilizes or not a
specific subset of bound mRNAs are ribosome profiling data
showing that TTP can affect mRNA stability but also inhibit
translation (65–67). Particularly conclusive were studies
September 2021 | Volume 12 | Article 751313
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employing primary macrophages and T cells, i.e. experimental
systems expressing solely endogenous and naturally regulated
TTP (66, 67). All these studies revealed transcript-selective effects
of TTP on translation: some TTP target mRNAs were less
abundant at polysomes while others were not depleted from
polysomes. Negative regulation of translation has been also
implicated in control of inflammatory gene expression in
tumor-associated macrophages (94). All these data are
consistent with an updated model of TTP function in which
cis-acting and transcript-specific RBPs determine the final
consequence of TTP binding to the target mRNA (Figure 2).
This updated model is supported by the finding that TTP binds
to the cytoplasmic poly(A)-binding protein and that such
interactions are required for inhibition of translation by TTP
in primary macrophages (67). The model will become more
complex once data on tissue/cell type-specific functions of TTP
are included. First data on biologically relevant cell type-specific
effects of TTP have only recently become available: The mRNA
coding for the IL-1b cytokine (Il1b mRNA) is destabilized by
TTP in bone marrow-derived dendritic cells but not in bone
marrow-derived macrophages despite strong binding to TTP
(53). The regulation of Il1b expression by TTP is important
Frontiers in Immunology | www.frontiersin.org 7
in vivo as TTP-deficient mice show higher Il1b mRNA levels in
several tissues. Moreover, genetic inactivation of IL-1 signaling in
TTP-deficient animals ameliorates the TTP deficiency
syndrome (53).

The extent of cell type-specific regulation of TTP activity can
be indirectly estimated from a number of RNA-seq studies
comparing mRNA levels in wild-type versus TTP knockout
cells. For example, the levels of Tnf mRNA, the bona fide TTP
target, are comparable in wild-type and TTP-deficient T cells,
suggesting that TTP does not target Tnf mRNA for degradation
in T cells in contrast to most other cell types (66). Similarly, Il6
mRNA, which is known to be bound and destabilized by TTP in
bone marrow-derived macrophages (BMDMs) (55), is more
highly expressed also in TTP-deficient dendritic cells (upon
3 h or 6 h LPS stimulation) and T cells (upon 4 h activation)
but not in peritoneal neutrophils (53, 60). Reported RNA-seq
expression data for selected TTP targets in primary immune cells
(BMDMs, BMDCs, peritoneal neutrophils and T cells) from
wild-type and TTP-deficient mice are summarized in Table 1.
These data convincingly visualize that a comparison of mRNA
levels does not provide a definitive information about the
destabilization of a particular mRNA by TTP since indirect
FIGURE 2 | Model of functional and silent binding of TTP to mRNA. Model of possible mechanisms explaining how mRNA-bound TTP destabilizes some mRNAs
but not others.
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(possibly cell type-specific) effects of transcription can mask
differences in mRNA stability. A good example is Il6 mRNA in
T cells: while a short (4 h) activation results in 50% higher Il6
mRNA levels in TTP-deficient T cells as compared to controls,
consistent with Il6 mRNA being destabilized by TTP, a 3-day
activation causes TTP-deficient T cells to express 15% less Il6
mRNA than the control cells [Table 1 and (66)]. Thus, mRNA
stability assays combined, whenever possible, with TTP binding
analyses are required when defining a TTP target in a given cell
type. A combination of transcriptome-wide mRNA stability and
TTP binding assays has been so far reported only for BMDMs so
that a comprehensive TTP target collection (searchable at
https://ttp-atlas.univie.ac.at/) is available only for this cell type
(9). Future studies should include transcriptome-wide mRNA
stability analyses in other cell types.

In summary, these findings implicate that cell type-specific
RBPs act together with TTP to stabilize or destabilize select TTP
targets. Comprehensive biochemical studies including
reconstitution assays are needed to precisely determine the
underlying mechanisms. The results of these studies will be
relevant for the entire TTP family, as the functional versus
silent binding to target mRNA is important also for Zfp36l1
and Zfp36l2 (21, 95).
OUTLOOK

Despite more than 25 years of research, TTP continues to
represent an important and fruitful model for studies on RBPs
in general and on the regulation of immune responses by RBPs in
particular. Technological progress in recent years and advanced
animal models were instrumental for the identification of novel
regulatory facets and functional consequences of TTP which
fundamentally improved our understating of physiological and
pathological inflammation. Most of these new findings remain
mechanistically poorly defined and represent challenging topics
for future research. This will include analyses of TTP-containing
protein complexes and yet uncharacterized phosphorylation sites
which will help addressing the mechanism of functional versus
silent binding of TTP to RNA. An underexplored area are tissue-
and cell type-specific functions of TTP in vivo to answer the still
incompletely understood phenotype of TTP-deficient mice.
Finally, an attractive avenue is the exploitation of TTP and
mRNA decay in therapy of inflammatory diseases and cancer.
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