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Hyperammonemia is a deleterious and inevitable consequence of liver failure. However, no
adequate therapeutic agent is available for hyperammonemia. Although recent studies
showed that the pharmabiotic approach could be a therapeutic option for
hyperammonemia, its development is clogged with poor identification of etiological
microbes and low transplantation efficiency of candidate microbes. In this study, we
developed a pharmabiotic treatment for hyperammonemia that employs a symbiotic pair
of intestinal microbes that are both able to remove ammonia from the surrounding
environment. By a radioactive tracing experiment in mice, we elucidated how the
removal of ammonia by probiotics in the intestinal lumen leads to lower blood ammonia
levels. After determination of the therapeutic mechanism, ammonia-removing probiotic
strains were identified by high-throughput screening of gut microbes. The symbiotic
partners of ammonia-removing probiotic strains were identified by screening intestinal
microbes of a human gut, and the pairs were administrated to hyperammonemic mice to
evaluate therapeutic efficacy. Blood ammonia was in a chemical equilibrium relationship
with intestinal ammonia. Lactobacillus reuteri JBD400 removed intestinal ammonia to shift
the chemical equilibrium to lower the blood ammonia level. L. reuteri JBD400 was
successfully transplanted with a symbiotic partner, Streptococcus rubneri JBD420,
improving transplantation efficiency 2.3×103 times more compared to the sole
transplantation while lowering blood ammonia levels significantly. This work provides
new pharmabiotics for the treatment of hyperammonemia as well as explains its
therapeutic mechanism. Also, this approach provides a concept of symbiotic pairs
approach in the emerging field of pharmabiotics.
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INTRODUCTION

Ammonia is produced as a byproduct of amino acid catabolism
in the body. The kidney also produces ammonia from glutamine
in the proximal tubule, which is released into the blood
circulation system or excreted after concentration in the
medullary interstitium (Weiner et al., 2015; Liu et al., 2018).
When the glucose level is decreased by starvation or intense
exercise, the skeletal muscle and other peripheral tissues also
generate a significant amount of ammonia through amino acid
catabolism (Kamei et al., 2020). Ammonia is a highly neurotoxic
compound at even sub-millimolar concentrations (Jin et al.,
2018). The strong toxic ity of ammonia makes the
detoxification pathways of ammonia indispensable in animals.
Ammonia in mammals is rapidly converted to a nontoxic
nitrogenous compound, urea, in the liver through the urea
cycle for its eventual excretion in the urine (Jover-Cobos et al.,
2014; Meng and Wang, 2018).

When the urea cycle does not function properly by either an
inherited genetic disease or liver damages, the blood ammonia
level elevates to cause hyperammonemia (Liu et al., 2018; Soria
and Brunetti-Pierri, 2019). The elevated ammonia seriously
damages the brain, leading to severe consequences in the
central nervous system (CNS) (Oja et al., 2017;, Butterworth,
2020). The consequences of the CNS damaging by ammonia
typically are represented as alteration on mood and personality,
cognitive impairment, ataxia, convulsions, and coma
(Karanfi l ian et al . , 2020). Considering such strong
neurotoxicity of ammonia even at a sub-millimolar
concentration, it would be reasonable to suspect ammonia as a
possible etiological agent for Alzheimer’s Disease (Jin
et al., 2018).

Because of the high incidence rate of hyperammonemia
resulting from liver diseases, kidney diseases, and genetic
defects in the urea cycle, therapeutic approaches to treat
hyperammonemia are being actively investigated (Huh and
Farrell, 2011; Machado and da Silva, 2014; Ghallab et al.,
2016; Li et al., 2019; Matsumoto et al., 2019). One target of
the current therapeutic methods is the reduction of
ammoniagenesis and its absorption in the gastrointestinal
(GI) tract by using lactulose, sodium benzoate, and
rifaximin. Another is the activation of ammonia removal by
upregulating ureagenesis either through treatment with N-
carbamylglutamate or through supplementation of urea cycle
intermediates and synthesis of glutamine using sodium
phenylacetate, sodium phenylbutyrate, l-arginine, l-citrulline,
and carglumic acid (Wright et al., 2011; Liu et al., 2018).
However, these medications do not provide a satisfactory
result in terms of efficacy. Also, these medications have been
shown to cause serious adverse effects, including abdominal
cramping, flatulence, bloating, electrolyte imbalance, nausea,
diarrhea, and acute GI bleeding (Liu et al., 2018). Therefore,
pursuits to an efficient treatment for hyperammonemia
remain active.
Abbreviations: CNS, Central nervous system; GI, gastrointestinal; CFU, colony-
forming unit; HA, hyperammonemia; TAA, thioacetamide.
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Recently, an increasing amount of evidence has shown the
critical roles of metabolisms in the gut for maintaining human
health (Chen et al., 2013). The intestine is the site where the
digested nutrients are absorbed through intestinal capillaries and
lymphatic vessels (Sommer and Bäckhed, 2013; Lee and Hase,
2014; Chung et al., 2018). However, some molecules such as
ammonia do not flow unidirectionally. The intestine secretes and
absorbs ammonia through passive diffusion and specific
transporters such as RhBG and RhCG (Handlogten et al.,
2005; Gruswitz et al., 2010). Based on the bidirectional
movement of ammonia in the gut, it is theoretically possible
that the removal of ammonia in the intestine could facilitate its
transportation from blood to the intestine, lowering blood
ammonia concentration through a chemical equilibrium
(Rahimi and Rockey, 2016). In this regard, the administration
of Lactobacillus strains showed some degree of efficacy for
hyperammonemia in animal experiments although its
therapeutic mechanisms have not been elucidated (Nicaise
et al., 2008; Ott and Vilstrup, 2014; Shen et al., 2015; Singh
et al., 2018; Saeedi et al., 2020).

In this work, after elucidating the therapeutic mechanism of
probiotic approaches for lowering blood ammonia levels, we
developed a pharmabiotic treatment for hyperammonemia that
employs symbiotically-related intestinal microbes that remove
ammonia from its surrounding environment. This work not only
provides a new approach for effective treatment of
hyperammonemia but also explains why probiotics are effective
in lowering blood ammonia levels. More importantly, this
approach takes the advantage of the symbiotic interactions
between gut microbes rather than using genetic engineering of
microbial genes, providing safer clinical applications in
the future.
RESULTS

Blood Ammonia Is in an Equilibrium
Relationship With Intestinal Ammonia
Nonpolar small molecules such as ammonia could potentially be
in equilibrium between intestinal lumen and blood. Blood
ammonia generated within tissues would enter the intestinal
lumen. On the same principle, intestinal ammonia generated by
bacterial fermentation should move to blood. Considering
ammonia’s nonpolar nature and its small molecular weight, we
first tested the equilibrium relationship between blood ammonia
and intestinal ammonia by intravenously injecting the
radiolabeled ammonia, 15NH4Cl, to mice. The concentrations
of ammonia (14NH4Cl, Figure S1) as well as radiolabeled
ammonia (15NH4Cl, Figure 1) in the blood, urine, feces,
intestine (jejunum and ileum), and colon (anterior and
posterior) were measured using an ultrahigh-resolution LC/
MS/MS to trace to where the body ammonia travels. It was
observed that the blood concentration of the injected 15N-
ammonia rapidly dropped (Figure 1A) as the administered
ammonia was diffused to other parts of organs, converted into
urea, and released into the urine (Figures 1B–H). Unlike 15NH4,
January 2022 | Volume 11 | Article 696044
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the concentrations of 14NH4 did not change significantly in each
organ as expected because 14N is the main element of nitrogen
(Figure S1). The concentrations of 15N-ammonia of the
intestinal lumen from the jejunum to the anterior colon
reached the plateau of 4~6% after small fluctuation within 64
hours after the injection of ammonia unlike that in the stomach
(Figures 1B–E). This suggests that blood ammonia is in an
equilibrium relationship with intestinal ammonia. The
unabsorbed ammonia in the colon was shown to be released
through feces (Figure 1H). Since the blood ammonia is in
equilibrium with intestinal ammonia from the jejunum to the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
anterior colon, removal of intestinal ammonia would result in a
drop of blood ammonia by shifting the chemical equilibrium.

The Blood Ammonia-Lowering Lactobacilli
Strains Which Remove Ammonia From
Their Surrounding Environments Were
Identified
Although it has been reported that Lactobacillus strains lowered
blood ammonia levels efficiently in animal experiments (Singh
et al., 2018), the effect of feeding Lactobacilli on blood ammonia
levels was not known. Since the equilibrium relationship between
A B

D

E F

G H

C

FIGURE 1 | Distribution of intravenously injected 15NH4 in mouse organs. After intravenous injection of 15NH4Cl into 4-week-old C57BL/6 mice (n=5 per group) at a
dose of 250 mg/kg of body weight, samples of blood, contents of the intestine (jejunum and ileum), contents of the colon (anterior colon and posterior colon), urine,
and feces were collected at the indicated time. The migration of 15NH was traced by analyzing with high-resolution LC-MS/MS in serum (A), stomach (B), jejunum
(C), ileum (D), anterior colon (E), posterior colon (F), urine (G), and feces (H). The quantities in Y-axis were represented in a relative quantity of 15NH4 in total
ammonia. All data were expressed as the mean ± SD, as indicated.
January 2022 | Volume 11 | Article 696044

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Liu et al. Treatment of Hyperammonemia by Intestinal Microbes
intestinal ammonia and blood ammonia (Figure 1) suggested
that the removal of ammonia in the intestine would lower blood
ammonia level, we tested the possibility. A total of 50
Lactobacillus and Lactococcus species were obtained as the
candidate strains after the preliminary screening of gut
microbes (www.gutmicrobiotabank.com) based on their
capability to absorb ammonia in a culture medium (Table S1).
As shown in Figure 2A, most Lactobacilli efficiently removed
ammonia in the medium by absorption. Among the tested
candidate strains, four Lactobacillus strains, L4 (L. amylovorus
JBD401), L12 (L. reuteri JBD400), L17 (L. plantarum JBD402),
L26 (L. rhamnosus JBD406), and one Lactococcus strain, L34 (L.
lactis JBD404) displayed an efficient removal of ammonia. Until
now, only two Lactobacillus species, L. amylovorus and L.
plantarum, were reported to have a therapeutic efficacy on
hyperammonemia (Nicaise et al., 2008; Singh et al., 2018). It is
worth noting that our screening experiments included all of the
previously known Lactobacilli with ammonia-lowering
capabilities. The experimental results in Figures 1, 2A together
with the previous reports indicate that the removal of intestinal
ammonia by intestinal Lactobacilli could reduce blood ammonia
levels through the shift of chemical equilibrium from blood
to intestine.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Co-Culturing Lactobacilli With Their
Symbiotic Partner Strains Boosted
Their Ammonia-Removing Ability
Based on the nature of microbes, it is likely that most intestinal
microbes maintain a symbiotic relationship with others in the
gut. Since Lactobacilli are one of the main intestinal microbes
constituting gut microbiota, we aimed to find symbiotic
intestinal microbes for the identified Lactobacilli that can
further enhance its capability in lowering blood ammonia
levels. The cultures of L. amylovorus JBD401, L. reuteri
JBD400, L. plantarum JBD402, L. rhamnosus JBD406, and L.
lactis JBD404 were used to find symbiotic intestinal microbes for
Lactobacilli. From the screening of 697 species (1,378 strains) of
the intestinal microbes from Gut Microbiota Bank (https://www.
gutmicrobiotabank.com), 6 Streptococcus species, S. mutans
JBD423, S. ratti JBD428, S. intermedius JBD429, S. rubneri
JBD420, S. lutetiensis JBD421, and S. pneumoniae JBK1-00101,
were identified to be symbiotically related to the Lactobacilli and
Lactococcus strains. We tested the ammonia-removing ability of
Lactobacilli or Lactococcus strains by co-culturing with the
symbiotic Streptococcus species (Figure 2B).

After considering ammonia-removing abilities as well as the
potential for safe human consumption, the co-culture of L.
A

B

FIGURE 2 | In vitro identification of a symbiotic pair of ammonia removal microbes. (A) The in vitro screening result of Lactobacillus strains (Gut Microbiota Bank)
having an ability to absorb ammonia from its surrounding environment. X-axis showed untreated control (C) and 50 tested Lactobacillus as shown in Table S1 while
Y-axis is the ammonia concentration in the media. The top 5 Lactobacillus strains with strong ammonia-removal capacity were indicated as *. (B) The representative
figure of the ammonia-removing ability of Lactobacilli with symbiotic partners (Gut Microbiota Bank) in vitro. X-axis indicated untreated control (C) and L. amylovorus
JBD401 (No. 1~7), L. reuteri JBD400 (No. 11~17), L. plantarum JBD402 (No. 21~27), L. rhamnosus JBD406 (No. 31~37), and L. lactis JBD404 (No. 41~47) alone
(1, 11, 21, 31, 41) or with symbiotic partner S. mutans JBD423 (No. 2, 12, 22, 32, 42), S. ratti JBD428 (No. 3, 13, 23, 33, 43), S. intermedius JBD429 (No. 4, 14,
24, 34, 44), S. rubneri JBD420 (No. 5, 15, 25, 35, 45), S. lutetiensis JBD421 (No. 6, 16, 26, 36, 46), or S. pneumoniae JBK1-00101 (No. 7, 17, 27, 37, 47) while Y-
axis is the ammonia concentration in the media. The symbiotic pair with the best ammonia-removal capacity was indicated as *. All data were expressed as the
mean ± SD, as indicated.
January 2022 | Volume 11 | Article 696044
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reuteri JBD400 and S. rubneri JBD420 was further investigated in
this study (Figure S2). If two species are in a symbiotic
relationship, they should prefer being together even in an
intestine. We investigated the possibility of a mouse-feeding
experiment. As shown in Table 1, co-feeding the two strains
into mice showed 2.3×103 times more colonization efficiency,
confirming the presence of the dramatic symbiotic relationship
between the two species in the intestine.

The Symbiotic Pair of the Intestinal
Bacteria Treated Hyperammonemia More
Efficiently Than the Individual Species Did
in Animal Experiments
Since the symbiotic pair of L. reuteri JBD400 and S. rubneri JBD420
showed much higher potential as a therapeutic agent for
hyperammonemia in both in vitro and in vivo colonization
experiments, we investigated the therapeutic efficacy of the
symbiotic pair for hyperammonemia using a hyperammonemia
animal model. The hyperammonemia animal model was made by
injecting NH4Cl similarly to a previously described method (Singh
et al., 2018). In accordance with the in vitro and in vivo experiments,
the symbiotic pair treated hyperammonemia with a much higher
efficacy (Figure 3A). In normal mice, mice treated with the
symbiotic pair of L. reuteri JBD400 and S. rubneri JBD420
showed a significant reduction in the level of blood ammonia
although L. reuteri JBD400 caused no changes (Figure 3A left).
In hyperammonemic mice, the degree of reduction in the level of
blood ammonia was much more significant with the symbiotic pair
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
of L. reuteri JBD400 and S. rubneri JBD420 compared to L. reuteri
JBD400 treatment (Figure 3A right). In agreement with blood
ammonia level, fecal ammonia levels of normal mice and
hyperammonimia mice were significantly reduced compared to
the control group in the treatments of the symbiotic pair of L. reuteri
JBD400 and S. rubneri JBD420, but not in L. reuteri JBD400 group
(Figure 3B). The fecal and blood ammonia levels further validated
the experimental results of equilibrium between blood and intestinal
ammonia (Figure 1).

The Symbiotic Pair of the Intestinal
Bacteria Protected Body Damages by
Hyperammonemia in Animal Experiments
Hyperammonemia provokes body damages, especially in the brain.
Following up with the treatment of hyperammonemia by the
symbiotic pair, L. reuteri JBD400 and S. rubneri JBD420, the pair’s
effect on hyperammonemia-related body damages was investigated.
Inour results, adiet constituting the symbioticpair loweredammonia
levels of the hyperammonemia C57BL/6 mice to normal ranges in
blood, brain, and feces (Figure 4A). Histological examination on the
livers of the above mice group displayed normal lobular architecture
with radiating hepatic cords and clear central veins without
inflammation or necrosis, which was almost identical to that of the
control mice group (Figure 4B). In contrast, the thioacetamide-
induced acute hyperammonemia mice suffered significant damages
to the liver. Severe infiltration of inflammatory cells around the
central vein and centrilobular regions, as well as hemorrhage and
hepatocyte apoptosis, was observed (Figure 4B). Histological
TABLE 1 | Comparative analysis of the transplantation efficiency of L. reuteri JBD400 with the assistance of the symbiotic partner S. rubneri JBD420.

Fed microbes Counted microbes Value Day 0 Day 10 Day 20 Day 40

Single culture of L. reuteri JBD400 L. reuteri JBD400 Individual value n.d. 3.2E+03 4.2E+03 4.8E+03
n.d. n.d. n.d. 2.6E+02
n.d. n.d. 2.4E+02 9.3E+02
n.d. n.d. n.d. 4.1E+02
n.d. 7.0E+04 n.d. n.d.

average n.d. 1.47E+04 8.81E+02 1.27E+03
Single culture of S. rubneri JBD420 S. rubneri JBD420 Individual value n.d. 2.4E+02 1.1E+03 5.5E+03

n.d. n.d. n.d. 1.4E+02
n.d. 1.2E+03 n.d. n.d.
n.d. n.d. 9.7E+02 7.7E+03
n.d. n.d. 3.3E+03 2.6E+03

average n.d. 2.87E+02 1.08E+03 3.18E+03
Symbiotic pair of L. reuteri JBD400 &
S. rubneri JBD420

L. reuteri JBD400 Individual value n.d. 2.2E+04 3.6E+06 8.6E+06
n.d. 7.5E+05 4.2E+05 9.2E+05
n.d. 6.3E+02 7.0E+04 3.4E+05
n.d. 3.1E+03 3.3E+04 4.4E+06
n.d. 6.5E+05 6.2E+04 2.2E+05

average n.d. 2.86E+05 8.40E+05 2.91E+06
S. rubneri JBD420 Individual value n.d. 1.4E+03 8.9E+04 5.9E+04

n.d. 7.1E+05 2.2E+05 7.5E+04
n.d. 3.4E+04 6.8E+04 3.5E+05
n.d. 6.4E+05 8.1E+03 8.5E+04
n.d. 7.0E+04 5.3E+04 5.5E+04

average n.d. 2.90E+05 8.68E+04 1.24E+05
January 2022
 | Volume 11 | Artic
C57BL/6 mice were daily administered L. reuteri JBD400, S. rubneri JBD420, or symbiotic pair of L. reuteri JBD400 and S. rubneri JBD420, at a dose of 109 colony-forming unit (CFU) for
40 days (n = 5). The fecal samples were collected at the indicated days to quantify the bacterial CFU by serial dilution on MRS for L. reuteri JBD400 or TSA agar medium for S. rubneri
JBD420. Results of CFU for the indicated species are expressed as the logarithm of CFU/mL. n.d. indicates bacterial CFU is lower than 100. The bacteria were further identified by 16s
rDNA sequencing.
Bold Values emphasized the average value from 5 individual values.
le 696044
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A

B

C

FIGURE 4 | The therapeutic efficacy of the symbiotic pair of L. reuteri JBD400 and S. rubneri for Hyperammonemia. The symbiotic pair of L. reuteri JBD400 and S.
rubneri JBD420, 109 CFU each in the total volume of 200 mL PBS, was daily administered into each C57BL/6 mice (n = 3 per group) for 40 days. (A) Acute
hyperammonemia were induced by the injection of TAA at the dose of 250 mg/kg body weight of mice, and ammonia levels were quantitated in the tissue from mice
which fed either saline control (open column) or fed symbiotic pair (black column). Normal mice without hyperammonemia induction were analyzed for saline control
(open column) or fed symbiotic pair (black column). All data were expressed as the mean ± SD, as indicated. The statistical comparisons were analyzed using
ANOVA (one-way). All differences were considered statistically significant if p < 0.05. (B, C) After inducing hyperammonemia, the sampled tissues were also analyzed
by histological examinations on the H&E-stained section of livers (B) and brains (C) from control mice without hyperammonemia induction (Control), the
hyperammonemic mice (HA), and the hyperammonemic mice fed the symbiotic pair (HA+L/S). Magnifications were × 200. Bar =200 µm. * indicates significant
difference compared to the control.
A B

FIGURE 3 | In vivo ammonia-removal efficacy of L. reuteri JBD400 with the assistance of the symbiotic partner S. rubneri JBD420. C57BL/6 mice were daily
administered saline (Control), pure culture of L. reuteri JBD400 (L), or symbiotic pair of L. reuteri JBD400 and S. rubneri JBD420 (L/S), as indicated at dose of 109

CFU (n=5 per group) for 2 weeks. After administration of the indicated culture for 2 weeks, each group of mice was injected either saline as control (Normal) or
NH4Cl at the dose of 100 mg/kg body weight for inducing Hyperammonemia (HA). The ammonia levels in the blood (A) and feces (B) were collected after 1 hour
and quantitated by using a commercial ammonia assay kit. All data were expressed as the mean ± SD, as indicated. The statistical comparisons were analyzed
using ANOVA (one-way). All differences were considered statistically significant if p < 0.05. * indicates significant difference compared to the control.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org January 2022 | Volume 11 | Article 6960446
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examination on the brains of the symbiotic pair group also showed
that treatment with the pair prevented neuropathophysiology.
Perineuronal vacuolations that indicate brain damages were
obvious in the hyperammonemia mice (Figure 4C). However, it
was obvious that the symbiotic pair prevented brain damages.
Labeling of the brain tissues with a fluorescent inhibitor probe
FAM-LEHD-FMK showed that the brain damages were caused by
the caspase 9-dependent apoptotic pathway (Figure 5). The caspase
inhibitor-labelling experiment also confirmed that the symbiotic pair
prevented ammonia-induced neurotoxicity.
DISCUSSION

Ammonia is the most common and toxic metabolic waste in the
human body. Despite various tissue damages associated with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
ammonia, neurotoxicity is the most notable complication of
hyperammonemia that is clinically represented as encephalopathy
(Teperman and Peyregne, 2010) as well as possibly Alzheimer’s
disease (Adlimoghaddam et al., 2016; Jin et al., 2018). Both
exogenous and endogenous sources are responsible for increased
blood ammonia levels (Chen, 2016; Jin et al., 2018). These are some
of the endogenous sources: activation of hydrolysis of proteins,
degradation of amino acids, deamination of amino-purines, and
oxidative deamination of primary amines (Lin et al., 2017; Liu et al.,
2018). Malfunction of the urea cycle in the liver (van de Logt et al.,
2016; Diez-Fernandez and Häberle, 2017) and excretion of
ammonia in kidney are also important players (Nagami and
Hamm, 2017; Pourafshar et al., 2018).

Other than endogenous sources of blood ammonia, blood
ammonia can be originated exogenously (Lin et al., 2017; Singh
et al., 2018). However, the exogenous sources of blood ammonia
FIGURE 5 | The neuroprotective effect of the symbiotic pair of L. reuteri JBD400 and S. rubneri in hyperammonemia. The symbiotic pair of L. reuteri JBD400 and S.
rubneri JBD420, 109 CFU each in the total volume of 200 mL PBS, was daily administered into each C57BL/6 mice (n = 3 per group) for 40 days. After inducing
Hyperammonemia by injection of TAA at the dose of 250 mg/kg body weight into the mice, histochemical analysis by using the fluorescent inhibitor probe FAM-
LEHD-FMK on the brains was performed. HA represents the hyperammonemic mice. HA+L/S represents the hyperammonemic mice fed the symbiotic pair. DAPI
represents DAPI staining for nucleus detection and FAM-LEHD-FMK represents the histochemical reaction to detect caspase 9 activation by the fluorescence dye.
Magnifications were × 200. Bar =50 µm.
January 2022 | Volume 11 | Article 696044
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which originate from bacterial degradation of urea and deamination
of amino acids in the GI tract have not received attention because
the equilibrium relationship of ammonia between blood and the GI
tract was not recognized. In this regard, this work not only
contributes to our understanding of mammalian physiology but
also provide a new approach to develop a therapeutic agent for
hyperammonemia. It should be noted that, however, further
investigation is needed to demonstrate the clinical efficacy of the
identified microbes due to the limit of induced hyperammonemia
using animals in this study.

The equilibrium relationship of ammonia between blood and
the GI tract as shown in Fig 1 indicates that ammonia can
traverse back and forth between blood and the GI tract, meaning
that exogenous sources could contribute a significant amount of
ammonia in our body. Furthermore, these results also indicate
that the exogenous ammonia generated by intestinal bacteria
could lead to hyperammonemia. Although the exogenously
supplied ammonia through i.v. injection was found in all
locations at the GI tract, the peak times of detection were
different each other (Fig 1). The peak times were 4 ~ 8 hours
after ammonia injection in each location of the GI tract except
for the anterior colon (Fig 1E). Interestingly, the peak time and
the diminishing pattern of the injected ammonia at anterior
colon were same as those of blood (Fig 1A & 1E). This result
suggests that anterior colon of the GI tract is the area where
traversing of ammonia between body and the GI tract occurs
most actively.

In addition, this work could serve to investigate the mystery of
the Mediterranean diet which is correlated with a lower risk of
Alzheimer’s disease and slower cognitive decline (Estruch et al.,
2013; Lourida et al., 2013). Although it is known that the
Mediterranean diet is beneficial for brain health, scientific
reasoning is unclear. Mediterraneans consume an extraordinary
quantity of Lactobacilli (Jin et al., 2018; Nagpal et al., 2018). Since
ammonia is a highly neurotoxic compound at even a sub-
millimolar concentration (Jin et al., 2018), it would be very
interesting to investigate the possibility that reduction of the
neurotoxic compound, i.e. blood ammonia, by consuming
certain Lactobacilli in the Mediterranean diet could play a
neuroprotective role to lower the risk of Alzheimer’s disease and
slower cognitive decline.

The human gut microbiota is a massive and complex microbial
community consisting of 100 trillion microbes in the intestine,
contributing significantly to human traits as much as our genes,
especially in the case of atherosclerosis, hypertension, obesity,
diabetes, metabolic syndrome, inflammatory bowel disease, GI
tract malignancies, hepatic encephalopathy, allergies, behavior,
intelligence, autism, neurological diseases, and psychological
diseases (Pandeya et al., 2012; Chen et al., 2013; Chung et al.,
2016; Chung et al., 2018). After the realization of the significant
role of gut microbiota, pharmabiotic approaches to transplant
intestinal bacteria are currently being actively investigated
(D’Souza et al., 2012; Chaluvadi et al., 2015; Nguyen et al.,
2017). However, sparse transplantation efficiency of candidate
microbes is one of the main obstacles in developing efficient
pharmabiotics (Nguyen et al., 2017). This work showed that the
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administration of a symbiotic pair of bacterial strains resulted in a
significantly improved transplant efficiency compared to
individual administration. This method of transplantation was
successful even with strains that have never been fully colonized
into the host before (Table 1). In this context, we believe that the
administration of symbiotic pairs should be actively pursued when
developing pharmabiotic medications.
MATERIALS AND METHODS

Materials
Ammonia solution (28%-30%) was purchased from Samchun
Pure Chemical CO., Ltd, Korea. Acetonitrile, Urea, Glutamic
acid, Ammonium-15N Chloride (98% 15N), Urea-15N2(98%
15N), Camphanic chloride and Ammonia assay kit were
purchased from Sigma Chemical Co., St. Louis, Mo, USA.
Ethyl alcohol was purchased from Daejung Chemical & Metals
CO., Ltd, Korea. The nutrient media used in the research for
screening bacteria were Man–Rogosa–Sharpe (MRS, Becton
Dickinson, NJ, USA) and Tryptic soy broth (TSB) (Difco,
Franklin Lake, NJ).

Bacterial Strains, Media and
Growth Conditions
The bacterial strains used in this study were bought from the
Korean Collection for Type Cultures (KCTC), Korean
Agricultural Culture Collection (KACC). Lactobacillus and
Lactococcus strains were grown in De Mann Rogosa Sharpe
(MRS) broth (Difco™) and Streptococcus strains were grown in
tryptic soy broth (TSB) (Difco, Franklin Lake, NJ) medium at
37°C anaerobically unless otherwise indicated. Lactobacillus and
Lactococcus strains maintained on MRS agar plates while
Streptococcus strains maintained on TSB agar plates with
routine subculturing at a regular interval of 15 days. After the
first screening of Lactobacillus, Lactococcus, and Streptococcus,
the high ammonia assimilation ability strains were selected and
different probiotics strains were co-cultured in MRS to select the
co-culture with the ammonia assimilation ability.

Animals
All animal care and use protocols were performed strictly in
accordance with the ethical guidelines of the Ethics Committee
of the Chonbuk National University Laboratory Animal Center,
and the animal study protocol was approved by the institution
(Approved Number: CBNU 2012-0040) in accordance with the
“Guide for the Care and Use of Laboratory Animals,” published
by the National Research Council and endorsed by the NIH
Office of Laboratory Animal Welfare. Specific-pathogen-free
four-week-old female C57BL/6 mice were used in the study.
Mice were housed individually in wire-mesh cages in an animal
room at a controlled temperature (20 ± 2°C), with a relative
humidity of 50%–55%, and exposed to a 12:12 h light/dark cycle.
Animals had ad libitum access to standard laboratory rodent
chow and fresh sterile water. Five or three mice were included in
each group for animal studies as indicated.
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Tracing of Ammonia Distribution in
Mice Using 15NH4Cl
For tracing of radioactivity, 15NH4Cl at the dosage of 250 mg/kg
of body weight was intravenously injected into the tail vein of the
mice (n=5 per group). Mice blood, urine, feces, intestine
(jejunum and ileum), and colon (anterior colon and posterior
colon) were collected at 2 h, 4 h, 8 h, 16 h, 32 h, and 64 h after
injection of 15NH4Cl. The collected samples in an amount of 200
mg or 200 µL were mixed with 400 µL ammonia-free water. After
overnight incubation at 4°C, the tubes were vortexed vigorously
for 2 min at 13,000 rpm and followed by sonication for 10 min.
The mixture was centrifuged for 30 min at 4°C and the
supernatants were transferred to new tubes. According to the
manufacturer’s protocol, the concentration of ammonia can be
quantified by checking the change of glutamate acid. For
quantitation of ammonia, 100 µL of assay sample was added to
1 mL ammonia assay reagent, containing 3.4 mM a-ketoglutaric
acid and 0.23 mM NADPH. After mixing, it was incubated for 5
min at 18-35°C. The blank glutamate acid samples were
obtained. It was mixed with 10 µL of L-Glutamate
Dehydrogenase solution and incubated for 5 min at 18-35°C.
The total glutamate acid samples were obtained. The glutamate
concentration was detected by LC-MS/MS as described
previously (Eckstein et al., 2008). The ammonia concentration
of the sample was calculated according to the kit protocol.

In Vitro Screening of the Ammonia-
Removal Lactobacilli
The fresh culture was prepared from the stock of each
Lactobacillus, Streptococcus, and Lactococcus strain and was
incubated anaerobically at 37°C for 12 h. Cultures with OD600

0.2-1.0 were obtained at their log/stationary phase. One mL of
each culture was transferred into a tube and absorbance was
measured at 600 nm using a biophotometer spectrophotometer
(Eppendorf). After the addition of 5 µL of ammonium hydroxide
(30 µg/mL) to each tube, the cultures were incubated
anaerobically at 37°C for 50 min and then centrifuged at 7,000
rpm for 5 min at 4°C. After centrifugation, the supernatants were
transferred to a new tube and the ammonia concentrations were
measured by an ammonia assay kit (AA0100; Sigma-Aldrich)
following the manufacturer’s protocol. The strains with low
ammonia quantitation results were selected as ammonia
removal microbes.

Colonization Efficiency of the Symbiotic
Pair of the Intestinal Microbes
The intestinal microbe for the colonization test was cultured with
appropriate media, washed and resuspended in phosphate-
buffered saline (PBS) for mouse feeding. The prepared
microbes were orally administered to the mice, 1×109 CFU
microbes in 200 µL PBS per day for 40 days (n=5 per group).
Assessment of overall health was done including any fatal signs,
hair ruffling, change in body weight, fluid consumption, diarrhea,
and rectal prolapse. Fecal samples for quantitative bacteriological
analysis were collected on day 0 and day 2 after the last
administration. A total of 100 mg of feces was suspended in 1
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mL PBS and cultured at 37 ± 2°C, for 24-72 h on appropriate,
MRS or KF Streptococcus, agar plates. After the gram-straining
test, the single colonies were analyzed by PCR and sequencing.
The primers for PCR were Lac-spec-F: (5’-GCGGAAT
TTAAGCA GCGATAC-3’), Lac-spec-R: (5’-CCTGGAAAG
CATTAAATCAGG-3’) and Strep-spec-F: (5’-TCGATGCAG
AAACAATGACATTGC-3’), and Strep-spec-R: (5’-AGACCA
AGAATTGGTTTTTTACCTTC-3’). PCR was initiated at 94°C
for 10 min followed by 40 cycles of 60 sec at 94°C, 60 sec at 50°C,
and 90 sec at 72°C.

In Vivo Evaluation of the Symbiotic Pair of
the Intestinal Pair for Ammonia-
Removal Efficacy
To evaluate the ammonia-removal efficacy of selected intestinal
microbes in vivo, NH4Cl was i.v. injected on the last day into the
mice fed the symbiotic pair for 2 weeks at the dosage of 100 mg/
kg of body weight to elevate blood ammonia (n=3 per group).
The blood and fecal samples were collected at 1 h after injection
of NH4Cl. The blood was centrifuged, and serum was collected
for ammonia quantitation. After the sacrifice of animals, the
brain and fecal samples were collected and homogenized. After
homogenization, the samples were centrifuged and the
supernatant was used for ammonia quantitation with an
ammonia assay kit (AA0100; Sigma-Aldrich).

In Vivo Evaluation of the Symbiotic Pair of
the Intestinal Pair for Therapeutic Efficacy
in Acute Hyperammonemia Model
To evaluate the therapeutic efficacy of ammonia-removal
microbes, mice were grouped and treated with normal saline
for the control group, thioacetamide (TAA) for the acute
hyperammonemia group, and TAA and symbiotic pair
microbes for the treatment group (n=3 per group). Acute
hyperammonemia was induced by intraperitoneally injected
TAA at 250 mg/kg body weight on day 0 and day 1. For the
symbiotic pair treatment group, each culture of L. reuteri JBD400
and S. rubneri JBD420, 1×109 CFU in 200 µL PBS, were orally
administered to the mice daily for 40 days before injection of
TAA. In day 2, mice were sacrificed and blood, brain tissue, and
feces were collected and analyzed for ammonia quantity,
histology, and neuronal apoptosis. For histological examination
of mouse tissues, the brain and liver tissues from each group were
immediately fixed with 10% buffered neutral formalin. The
tissues were embedded in paraffin wax, sliced into 6 µm
sections, deparaffinized, and cleared. Hematoxylin and eosin
(H&E) staining were used for the histopathologic examination.

For neuronal apoptosis assay, brain tissue from each group
was sliced into 6 µm sections by using a cryotome (Thermo
Scientific). Fluorescent-labelled Inhibitor of Caspases (FLICA™)
assay kit was used to quantitate apoptosis. The FLICA reagent
was easy to enter and irreversibly binds to activated caspase-9 in
cells. The stock concentrate of FLICA Caspase-9 reagent (1:50
DMSO) was diluted with 200 µL PBS. The diluted FLICA was
directly added to samples and incubated for approximately 20
min. Slices were washed 3 times with apoptosis wash buffer.
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Then slices were stained with DAPI according to the protocol.
Data were analyzed using a fluorescence microscope (Nikon).

Statistics
 Data were represented as means ± SD. Statistical analyses were
performed using GraphPad Prism 8 (GraphPad Software, La
Jolla, CA, USA). Comparisons were made using Student’s t test
between two groups. Analyses across multiple groups were made
using a one-way analysis of variance (ANOVA) with Dunnett’s
multiple comparisons post hoc test. P values less than 0.05 were
considered to be significant.

The experiment data that support the findings of this study are
available in this article and its Supplementary Information files.
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