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Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for late onset Alzheimer’s
Disease (AD), and is associated with impairments in cerebral metabolism and
cerebrovascular function. A substantial body of literature now points to E4 as a
driver of multiple impairments seen in AD, including blunted brain insulin signaling,
mismanagement of brain cholesterol and fatty acids, reductions in blood brain
barrier (BBB) integrity, and decreased cerebral glucose uptake. Various neuroimaging
techniques, in particular positron emission topography (PET) and magnetic resonance
imaging (MRI), have been instrumental in characterizing these metabolic and vascular
deficits associated with this important AD risk factor. In the current mini-review article,
we summarize the known effects of APOE on cerebral metabolism and cerebrovascular
function, with a special emphasis on recent findings via neuroimaging approaches.
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INTRODUCTION

Apolipoprotein E (ApoE) plays an critical role in the metabolism of lipoproteins and redistribution
of cholesterol, and has long been studied in relation to atherosclerosis and cardiovascular disease
(Mahley and Rall, 2000; Eichner et al., 2002; Pendse et al., 2009). In the periphery, apoE is primarily
produced by the liver, but is also expressed by a number of other tissues (Driscoll and Getz, 1984;
Zechner et al., 1991). In the brain, apoE is primarily produced by astrocytes, and it plays a critical
role in neuronal maintenance and repair (Xu et al., 1996, 2006; Mahley and Rall, 2000). In humans,
there are three major isoforms of apoE: E2, E3 and E4 (Mahley and Rall, 2000). E3 is the major
isoform expressed in humans, and the effects of E2 and E4 are typically compared to those of E3 to
determine relative risk (Phillips, 2014). Importantly, APOE is the strongest genetic risk factor for
late onset Alzheimer’s Disease (AD), with E4 conferring between a 3- (heterozygous) to 15-fold
(homozygous) increase in risk of AD (Farrer et al., 1997; Raber et al., 2004). Conversely, E2 is
associated with increased longevity and a decreased risk of AD (Farrer et al., 1997; Garatachea
et al., 2014).

Normal synaptic function requires a multitude of energy-intensive processes, and a complex
and intricately linked interplay between neurons and supporting glia is necessary to maintain
efficient energy metabolism (Belanger et al., 2011). Metabolic dysfunction, as in the case of
insulin resistance (IR) and type 2 diabetes, increases the risk of dementia and shares several
pathological characteristics with AD, such as inflammation, increases in oxidative stress and
vascular dysfunction (Craft, 2009; Walker and Harrison, 2015). Metabolic disorders also increase
in incidence with age (Narayan et al., 2006) and a rapidly ageing demographic means the number
of individuals suffering from both metabolic disorders and AD is expanding precipitously.

It is now well established that E4 is associated with various impairments in CNS metabolism,
most notably decreased cerebral glucose uptake. A substantial body of literature now suggests that
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E4 carriage can in itself be viewed as a form of cerebral metabolic
dysfunction. In the current mini-review article, we summarize
important recent findings related to apoE’s role in modulating
cerebral metabolism and cerebrovascular function, with a special
emphasis on neuroimaging approaches (see Figure 1).

APOE, CEREBRAL GLUCOSE
METABOLISM, AND PERIPHERAL
GLUCOSE REGULATION
18F-Fluorodeoxyglucose positron emission topography (FDG-
PET) is commonly used to measure cerebral glucose metabolism.
A reduction in cerebral metabolic rate of glucose (CMRglc), as
measured by FDG-PET, is now considered one of the hallmarks
of AD (Small et al., 2000). FDG-PET is able to differentiate AD
from other types of dementia with a high degree of specificity
due to specific regional patterns (Laforce and Rabinovici, 2011).
Clinical AD symptoms essentially never occur without glucose
hypometabolism, and the extent of the metabolic changes are
strongly correlated with the severity of clinical symptoms (Grady
et al., 1986; Haxby et al., 1990; Blass, 2002). Furthermore, recent
evidence suggests that these alterations in glucose metabolism
occur very early in the neurodegenerative process (Small et al.,
1995; Reiman et al., 1996; de Leon et al., 2001; Mosconi et al.,
2008).

Interestingly, a pattern of brain glucose hypometabolism
regionally similar to that observed in AD has been described in
individuals with E4 in a number of studies over the past two
decades (reviewed in more detail here, Wolf et al., 2013). This
pattern of decreased cerebral glucose metabolism is observed
even in non-demented, cognitively normal E4 carriers (Small
et al., 1995, 2000; Reiman et al., 1996, 2001) thereby lending
support to this being an inherent biological feature of E4, rather
than simply a byproduct of dementia (Reiman et al., 2004).
Importantly, these metabolic deficits are present decades in
advance of AD onset in E4 individuals—reductions in cerebral
glucose utilization are observed in normal E4 individuals as
young as their 20–30s (Reiman et al., 2004). This pattern
of cerebral glucose hypometabolism in young E4 carriers is
considered the earliest brain abnormality described to date in
living individuals at risk for AD (Mosconi et al., 2008). Below,
we summarize some more recent findings that may shed light
on this well-established E4-associated phenomenon, including
studies that look beyond FDG-PET imaging.

A recent study by Nielsen et al. (2017) examined how
peripheral apoE levels affect cognition, gray matter volume
(GMV) and cerebral glucose metabolism in an isoform-
dependent manner. They showed that females not only have
higher plasma levels of total apoE and apoE4 compared to males,
but also see significant increases in the apoE3 isoform with
age (Nielsen et al., 2017). In the same study, higher ratios of
apoE4/apoE3 were negatively associated with CMRglc and GMV.
These results may point toward an important role for peripheral
apoE levels in modulating brain health and may offer insight into
the higher risk of AD in women, particularly women with E4
(Altmann et al., 2014; Nielsen et al., 2017).

Several recent studies have explored the connection between
E4, glucose metabolism and amyloid pathology. For example,
by comparing FDG-PET data using β-amyloid as a continuous
variable, Carbonell et al. (2016) showed that E4 and β-amyloid
have a strong association with glucose hypometabolism during
early AD stages. Cognitively normal E4 carriers have increased
Aβ deposition, with a nonlinear relationship with age; albeit
subtle effects on GMV and glucose metabolism compared
to FDG-PET scans of other cognitively normal noncarriers
(Gonneaud et al., 2016).

Other groups have recently begun to probe the relationship of
peripheral glucose regulation and insulin sensitivity to cerebral
metabolism. For example, Foley et al. (2016) showed that in
E4 carriers, the degree of glucose dysregulation (measured by
fasting blood glucose concentration and HbA1C) correlates with
reduced cortical thickness; in fact, those diagnosed with diabetes
demonstrated a level of cortical thinning comparable to that of
preclinical AD. Additionally, impaired glycemia (defined here as
a fasting glucose ≥100 mg/dL) and E4 genotype are independent
risk factors for cerebral amyloid deposition in cortical regions,
but do not appear to have an additive effect (Morris et al.,
2016). E4 also confers a greater risk of age-related white
matter hyperintensities in diabetics aged 73–76 years and acts
as a predictor for progression of white matter hyperintensities
(Cox et al., 2017). Finally, post-mortem studies of young adult
E4 carriers showed upregulation of several transporters (GLUT1,
GLUT3 and MCT2), metabolic enzymes (hexokinase, SCOT and
AACS), and mitochondrial complexes I, II, IV, suggestive of
inherent apoE-associated alterations in metabolism (Valla et al.,
2010; Perkins et al., 2016).

Increasing evidence suggests that cognitive impairment
resulting from IR and E4 share common neuropathological
features and involve similar changes in metabolism and
cerebrovascular function. For instance, the cerebrovascular
pathology observed in diabetic patients and in individuals
with E4 show significant overlap (Walker and Harrison, 2015)
and both IR and E4 have been independently associated with
brain glucose hypometabolism and reduced cerebral blood flow
(CBF; Thambisetty et al., 2010; Filippini et al., 2011; Pallas
and Larson, 1996; Chung et al., 2015). Additionally, these
two risk factors appear to interact to impair cognition and
drive neurodegeneration (Peila et al., 2002; Dore et al., 2009;
Salameh et al., 2016; Johnson et al., 2017a,b). Along these
lines, a number of recent studies directly implicate E4 in
pathways of insulin signaling (Wolf et al., 2013). For example,
in both human apoE mice and postmortem human brain tissue,
E4 reduced the expression of insulin signaling proteins such
as IRS1 and Akt (Ong et al., 2014; Keeney et al., 2015). In a
mouse model of AD, E4 expression accelerated cognitive deficits
and exaggerated impairments in insulin signaling (Chan et al.,
2015, 2016). Importantly, a recent study by Zhao et al. (2017)
showed that E4 directly impairs cerebral insulin signaling in an
age-dependent manner, and that peripheral IR and E4 also acted
synergistically to impair insulin signaling in the brain. Finally,
E4+ individuals do not cognitively benefit from intranasal insulin
administration, suggestive of brain IR (Reger et al., 2006; Hanson
et al., 2015b). Together, these findings may suggest a metabolic
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FIGURE 1 | Neuroimaging approaches to study the effects of the Apolipoprotein E (ApoE) isoforms on cerebral metabolism. Left: traditional neuroimaging
techniques, in particular positron emission topography (PET) and magnetic resonance imaging (MRI), have been invaluable in characterizing the metabolic and
cerebrovascular deficits associated with APOE4, the strongest genetic risk factor for late onset Alzheimer’s disease (AD). 18F-Fluorodeoxyglucose positron emission
topography (FDG-PET) imaging has consistently shown a pattern of brain glucose hypometabolism in individuals with E4, while amyloid PET imaging shows
increased amyloid deposition. Some, but not all, blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) studies in E4 individuals have
shown decreased cerebral blood flow (CBF). Right: other alternative, or non-imaging methods of visualizing vascular and metabolic changes may prove instrumental
in elucidating apoE isoform-specific effects on AD risk and progression. Magnetic resonance spectroscopy (MRS), metabolomics and lipidomics studies have
implicated E4 in multiple pathways of lipid and glucose metabolism (effects of E4 denoted by red arrows).

dysregulation in early life stages preceding disease onset (Perkins
et al., 2016).

APOE AND BRAIN LIPID METABOLISM

ApoE serves as the primary lipid carrier protein in the brain,
carrying cholesterol synthesized from astrocytes to neurons in
HDL-like lipoprotein particles. These lipid carrying lipoproteins
have been shown to interact with Aβ (Sanan et al., 1994). In
both transgenic AD mouse models and in post-mortem AD
tissue, apoE and its corresponding cholesterol were shown to
co-localize with Aβ plaques (Panchal et al., 2010; Lazar et al.,
2013). Interestingly, lipid associated E4 has a higher Aβ binding
affinity than the delipidated isoforms (Sanan et al., 1994). While
this may suggest that cholesterol is involved in E4 driven AD
pathology, the mechanism by which apoE-shuttled cholesterol
interacts with Aβ is unclear.

In addition to APOE associated alterations in brain
cholesterol, studies have shown that there is an isoform-
dependent usage of fatty acids in both mice and humans.
Arbones-Mainar et al. (2016) showed that E4 mice exhibit a
metabolic shift toward fatty acid oxidation compared to controls
using indirect calorimetry. In humans, it has been reported that
E4 individuals β-oxidize uniformly labeled docosahexaenoic
acid at higher rates than age- and disease-matched controls
(Chouinard-Watkins et al., 2013). E4 expressing mice have
also shown to have dysregulated fatty acid synthesis in the
entorhinal cortex (Nuriel et al., 2017). Specifically, targeted
metabolomics of E4 entorhinal cortices revealed significant
changes in multiple glycerolipid and glycerophospholipid
species, (Johnson et al., 2017a) as well as seven fatty acid species,
(Nuriel et al., 2017) when compared to E3 mice. Thus, in
addition to the glucose and insulin impairments described in
the previous section, these studies point to a potential lipid
mismanagement in E4 carriers which may contribute to AD
pathogenesis.

APOE, CEREBRAL BLOOD FLOW AND
CEREBRAL AMYLOID ANGIOPATHY

Similar to dynamic vasculature meeting metabolic needs through
hyperemic action in skeletal muscle, a related theory has been
posited in the brain as so called ‘‘neurovascular coupling’’. These
events are the observed increases in CBF to meet hyperactive
neuronal activity. Initially thought to be a response to an oxygen
deficit, there is now evidence suggesting direct action of various
vasoactive agents on the local vasculature to modulate CBF.
Neurovascular coupling is the basis for routinely used imaging
platforms including functional magnetic resonance imaging
(fMRI). The blood oxygen level dependent (BOLD) contrast
response represents an fMRI signal comprised of both a blood
flow and metabolic component, as each voxel reflects changes in
deoxyhemoglobin and CBF.

Some studies suggest that cerebral hypoperfusion
precedes, and possibly contributes to, the onset of dementia
(Ruitenberg et al., 2005). Because metabolic rate and
CBF are coupled, alterations in cerebral metabolism are
likely to affect CBF (Koehler et al., 2009). However, it
remains unclear whether cerebral hypoperfusion is a
driver of cognitive decline, or whether the deficits simply
reflect diminished metabolic demand due to aging and/or
neurodegeneration. Given the importance of an efficient
and responsive vascular system, it has been proposed that
the accelerated AD pathogenesis associated with E4 may
result from detrimental cerebrovasculature effects (Tai et al.,
2016).

It is well established that CBF is decreased in AD patients
(Celsis et al., 1997; Roher et al., 2012). However, both increased
(Scarmeas et al., 2005; Thambisetty et al., 2010; Filippini et al.,
2011) and decreased (Wierenga et al., 2013; Zlatar et al.,
2014) CBF has been observed in individuals with E4, with
results differing depending on age (Filippini et al., 2011).
Reduced CBF in multiple brain regions has been observed
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in elderly E4 carriers relative to non-carriers (Filippini et al.,
2011). Cognitively normal E4 individuals also show sharper
age-related declines in regional CBF (Thambisetty et al., 2010)
and APOE modifies the association between cognitive function
and age-related changes in CBF (Wierenga et al., 2013). In
addition to these differences in resting CBF, several studies
have shown differences in functional activation, as measured by
BOLD fMRI, in middle aged and older E4 individuals (Scarmeas
et al., 2005). Functional differences in CBF have been noted
in individuals as early as their 20s (Scarmeas et al., 2005)
suggesting that E4-associated alterations in brain physiology
occur early in life—in the absence of gross neuropathological
changes and preceding cognitive impairments (Di Battista et al.,
2016).

Evidence from studies using human apoE mice also highlight
CBF as a potential link between E4 and impaired cognition. For
example, Wiesmann et al. (2016) recently used a flow-sensitive
MRI technique to show that 18-month old E4 mice have
reduced CBF compared to WT mice. Using MRI, Lin et al.
(2017) similarly showed that compared to WT mice, E4 mice
have reduced CBF. Furthermore, they showed improvements
in CBF in E4 mice following treatment with rapamycin,
a pleiotropic compound with various metabolic effects, and
provided evidence that the blood brain barrier (BBB) is
involved in mediating these effects (Lin et al., 2017). Our
own group recently showed that both diet-induced IR and
E4 decreased cerebral blood volume (CBV) as measured with
optical microangiography (Johnson et al., 2017b). We further
demonstrated that an oral glucose gavage selectively improved
cognitive performance in E4 mice with IR, and that this spike
in blood glucose resulted in a significant increase in CBV.
Interestingly, our results in this mouse model of human apoE
mirrored a recent clinical research study, in which E4 carriers
showed acute cognitive benefits from a high glycemic index
meal (Hanson et al., 2015a). However, it should be noted
that not all studies of CBF or CBV in human apoE mice
have been in consensus. For example, a recent study using
a steady-state gadolinium-enhanced fMRI technique showed
that, compared to E3 mice, aged E4 mice were found to have
higher CBV in the hippocampal formations (Nuriel et al.,
2017).

BBB dysfunction can lead to impairments in microvascular
function, and thus represents a potential pathway leading to
neurodegeneration and AD (Zlokovic, 2013). In fact, multiple
studies have linked APOE genotype with BBB function, with
E4 leading to higher BBB permeability, decreased cerebral
vascularization, thinner vessel walls and reduced CBF (Bell
et al., 2012; Alata et al., 2015). Importantly, these E4-associated
vascular defects were observed as early as 2 weeks of
age (Bell et al., 2012) well preceding the neuronal and
synaptic dysfunction that is observed in these mice in late
age.

Apart from its effect on AD risk, E4 has also been
independently linked to the development of cerebral amyloid
angiopathy (CAA). A majority of AD brains show CAA, which
is a result of amyloid deposition within the walls of small
vessels in the leptomeninges and brain parenchyma. A recent

study from Nielsen et al. (2017) showed increased incidence
of CAA in ApoE4 postmortem brain tissues. Interestingly,
they also found an association with E2, but this finding is
not consistent across other studies (Rannikmae et al., 2014).
CAA has been studied in the context of AD mouse models
as well. Deletion of murine APOE in two mouse models
of Aβ deposition resulted in abolishment of Aβ deposits
in the brain parenchyma and cerebrovasculature (Holtzman
et al., 2000). This deletion also resulted in less CAA-associated
microhemorrhage (Fryer et al., 2005). These data demonstrate
that apoE facilitates the formation of cerebrovascular plaques,
which are pathological hallmarks of CAA. As compliance
decreases with increased deposition of insoluble material, it is
probable that cerebrovascular amyloid has substantial effects
on the hemodynamics of the brain microvasculature. Could
deposition of Aβ in the microvascular walls be a primary cause
of the decreased CBF in E4 individuals? Questions such as these
highlight the need for further studies examining CBF in the
context of CAA.

LIMITATIONS OF CEREBRAL METABOLIC
IMAGING, ALTERNATIVE “IMAGING”
APPROACHES AND FUTURE DIRECTIONS

While they have provided an invaluable knowledge base, each
brain imaging technology described above comes with its own
set of limitations. Of particular importance in regards to the
E4-associated phenomenon of cerebral glucose hypometabolism,
are the limitations to biological interpretation of FDG-PET
measures. Mainly that CMRglc as determined by FDG-PET is
based on blood flow, 2-deoxyglucose (not glucose) transport
out of the bloodstream, and phosphorylation of 2DG by the
enzyme hexokinase. Thus, the process and its interpretation are
restricted to the initial biochemical steps of glycolysis. In theory,
the net rate of 2DG uptake is equal to the net rate of the entire
glycolytic pathway at steady state (Reivich et al., 1969; Sokoloff
et al., 1977; Sokoloff, 1977, 1984; Phelps et al., 1979). However,
limited resolution means the cell type(s) responsible remain
unknown, and there is no information on whether glucose is
eventually converted to ATP in mitochondria, enters the pentose
phosphate pathway, is stored as glycogen, or converted to lactate
(Mosconi, 2013). Thus, future studies aimed at tracing glucose
and other metabolites to their eventual fate will be critical in
expanding our understanding of APOE’s effects on cerebral
metabolism.

Outside of traditional PET- and MRI-based approaches,
a few other imaging modalities have been applied to the
question of APOE influences on cerebral metabolism. For
example, magnetic resonance spectroscopy (MRS) has been
used by several groups to examine common metabolite
concentrations in control and AD individuals of various
APOE genotypes, as well as human apoE mice. Results
have been conflicting, with some groups showing increased
choline/creatine and myo-inositol/creatine ratios in E4 carriers
(Gomar et al., 2014; Riese et al., 2015) while others showed
no APOE differences in measured metabolites (Kantarci et al.,
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2000; Suri et al., 2017). Finally, Dumanis et al. (2013)
used MRS in human apoE mice to show a decrease in
production of glutamate and increased levels of glutamine in
E4 mice.

New applications of established imaging modalities are
also providing novel insight into cerebral metabolism. For
example, a recent study by Shokouhi et al. (2017) utilized a
novel FDG-PET analysis, the regional FDG time correlation
coefficient (rFTC) to sensitively measure longitudinal changes
in metabolism in cognitively normal individuals. By capturing
within-subject similarities between baseline and follow-up
regional radiotracer distributions, they showed that rFTC decline
was significantly steeper in E4 carriers compared to noncarriers
(Shokouhi et al., 2017). PET can provide measurement of not
only CMRglc, but also metabolic rate of oxygen (CMRO2),
thereby allowing estimation of glucose metabolism outside
of oxidative phosphorylation, or aerobic glycolysis. A series
of articles by Raichle and colleagues have shed new light
on the importance of cerebral rates of aerobic glycolysis by
defining a new measure of aerobic glycolysis, the glycolytic
index (GI), and applying this measure to pertinent studies of
regional metabolic variability, amyloid deposition, and cognitive
activation. Vaishnavi et al. (2010) showed strong regional
variations in aerobic glycolysis, with two cortical regions (the
default mode network and areas in the frontal and parietal
cortex), showing the highest rate. Further, the areas of the
normal brain that demonstrate the highest rates of aerobic
glycolysis show near complete overlap with areas of the AD
brain that preferentially accumulate amyloid, and it has thus
been suggested that impairments in aerobic glycolysis may
contribute to AD pathophysiology (Vlassenko et al., 2010).
Finally, Shannon et al. (2016) combined fMRI and PET to
examine the metabolic profile of activated brain areas before
and after a task, and demonstrate that aerobic glycolysis is
indeed enhanced in areas undergoing learning induced plasticity.
Interestingly, declines in cerebral glucose utilization are greater
than those in blood flow and oxygen consumption in the early
stages of AD (Lying-Tunell et al., 1981; Hoyer et al., 1991;
Fukuyama et al., 1994; Blass, 2002). This discrepancy in the
initial stages of the disease may suggest that changes in aerobic
glycolysis are an influential metabolic feature of early AD, and
raises several important questions, including: Do differences
in aerobic glycolysis underlie the hypometabolism observed in
young E4 carriers?

Finally, other non-imaging methods of ‘‘visualizing’’
metabolic changes may prove instrumental in elucidating
APOE-driven alterations in cerebral metabolism. For example,
two groups have applied metabolomic analyses to brain
tissue from human apoE expressing mice (Johnson et al.,
2017a; Nuriel et al., 2017). Nuriel et al. (2017) used a mass
spectrometry (MS) based metabolomics technique to report

an E4-associated downregulation of several fatty acid species
and an upregulation of multiple TCA-cycle metabolites, among
other changes. Our own recent study applied an integrated
‘omics approach to provide insight into the metabolic pathways
altered in E4 brains (Johnson et al., 2017a). Combining measures
of DNA hydroxymethylation and MS-based metabolomics,
we identified novel E4-associated alterations in multiple
pathways, most notably purine metabolism, glutamate
metabolism, and the pentose phosphate pathway (Johnson
et al., 2017a).

SUMMARY

Over the years, the neuropathological characterization of AD
has expanded beyond the classic descriptions of amyloid and
tau pathology to include metabolic and vascular dysfunction.
Advances in brain imaging, most notably PET and MRI,
have been invaluable in broadening our understanding of AD
pathophysiology. Specifically, the metabolic and cerebrovascular
dysfunction described by these studies includes reductions in
brain glucose uptake, blunted insulin signaling, alterations in
brain lipid metabolism, loss of BBB integrity and deficits
in CBF. As reviewed above, many similar alterations have
been observed in E4+ individuals, sometimes early in life
and often even in the absence of cognitive impairment.
Perhaps reflected in the sum of these findings is an inherent
inability of E4+ individuals to efficiently regulate cerebral
metabolism; although whether it occurs at the level of the
BBB or cellular uptake, oxidative phosphorylation, aerobic
glycolysis or elsewhere remains unclear. Future studies aimed
at expanding the important knowledge base established by
PET, MRI and other traditional imaging techniques will be
critical in better understanding how E4 drives metabolic
dysfunction in AD, and essential in identifying new therapeutic
targets to correct these deficiencies in order to delay or
prevent AD.
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