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variability of segmentation clock genes
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and Ertu�grul M. Özbudak1,2,6,*

SUMMARY

Timely progression of a genetic program is critical for embryonic development.
However, gene expression involves inevitable fluctuations in biochemical reac-
tions leading to substantial cell-to-cell variability (gene expression noise). One
of the important questions in developmental biology is how pattern formation
is reproducibly executed despite these unavoidable fluctuations in gene expres-
sion. Here, we studied the transcriptional variability of two paired zebrafish seg-
mentation clock genes (her1 and her7) in multiple genetic backgrounds. Segmen-
tation clock genes establish an oscillating self-regulatory system, presenting a
challenging yet beautiful system in studying control of transcription variability.
In this study, we found that a negative feedback loop established by the Her1
and Her7 proteins minimizes uncorrelated variability whereas gene copy number
affects variability of both RNAs in a similar manner (correlated variability). We
anticipate that these findings will help analyze the precision of other natural
clocks and inspire the ideas for engineering precise synthetic clocks in tissue
engineering.

INTRODUCTION

Gene expression is an inherently stochastic process because of diffusion-driven biochemical processes

involving small numbers of molecules (Elowitz et al., 2002; Ozbudak et al., 2002). Many developmental pro-

cesses, such as pattern formation, are dependent upon coordinated expression of key genes. Somitogen-

esis is a landmark example of developmental pattern formation, generating metameric organization of the

major body axis in vertebrates (Hubaud and Pourquie, 2014). Somites contain the precursor cells of the

musculoskeletal system. Sequential segmentation of somites continues for a species-specific number

(e.g., 33 times in zebrafish) until patterning of the full body axis is completed. During somitogenesis, groups

of cells periodically form a somite segment (e.g., �200 cells form a somite every 30 min in zebrafish). The

period of segmentation is controlled by the oscillatory expression of segmentation clock genes in the pre-

somitic mesoderm (PSM) (Figure 1A) (Hubaud and Pourquie, 2014). Hes/her family genes form the core of

the segmentation clock: their expression oscillate in vertebrate embryos and disrupting their oscillations

leads to vertebral segmentation defects in animal models and congenital scoliosis (i.e., spondylocostal

dysplasia) in patients (Hubaud and Pourquie, 2014). Given the rapid tempo and reproducible precision

of segmentation, variability of clock expression should be tightly regulated.

In zebrafish, two linked genes—her1 and her7—have been identified as central to the genesis of oscilla-

tions (Figure 1B). When both are deleted (Henry et al., 2002) or mutated (Lleras Forero et al., 2018; Zinani

et al., 2021), all signs of oscillation are lost and segment boundary formation is disrupted along the body

axis (Figures 1C–1K). Oscillations are generated by a transcriptional negative feedback loop (Ay et al., 2013;

Giudicelli et al., 2007; Harima et al., 2013; Lewis, 2003; Schroter et al., 2012). Her1 and Her7 form different

types of dimers that repress their own transcription (Ay et al., 2013; Schroter et al., 2012; Trofka et al., 2012).

This negative feedback loop drives oscillatory expression of both her1 and her7. Because her1 and her7

have similar RNA half-lives (Giudicelli et al., 2007) and transcriptional time delays (Hanisch et al., 2013), tran-

script levels of both genes are very similar (Keskin et al., 2018; Zinani et al., 2021). Owing to the negative

feedback loop, clock RNAs are both the input and output of the clock proteins, and thereby their variability

is a good proxy for the function of the segmentation clock.
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Figure 1. Negative feedback loop established by Her1/7 proteins suppresses uncorrelated transcriptional

variability

(A) The sketch of a wild-type zebrafish embryo at the 12-somite stage. The PSM, highlighted in orange, is dissected from

the embryo for confocal imaging. Anterior (Ant) is to the right, and posterior (Pos) is to the left.

(B) Her1 and Her7 repress transcription of their own genes, and thereby form a cell-autonomous negative feedback loop.

(C–E) Red stars (*) mark her1 and her7 genes carrying point mutations causing premature stop codons.

(F–H) The boundaries of somite segments are marked by xirp2 ISH staining in wild-type (F), her1ci301/+;her7hu2526/+ (G),

and her1ci301;her7hu2526 mutants (H). Scale bar is 200 mm. (I-J) Expression of her7 displays kinematic waves and oscillations

in wild-type (I) and her1ci301/+;her7hu2526/+ (J) mutants.

(K) Expression pattern of her7 is disrupted in double homozygous her1ci301;her7hu2526 mutants. Scale bar is 30 mm.

(L) The PSM is divided into single-cell width slices. Red or gray circles represent the cells, which contain higher or lower

RNA levels than an arbitrary threshold, respectively. Three oscillatory waves of her7 are visible. The images are divided

into two portions as left (top) and right (bottom) halves of the PSM.

(M) her7 RNA counts are plotted along the right half of PSM (posterior-to-anterior). Each dot corresponds to the mean

RNA number in a sliced cell population. Error bars are 2 SEM.
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The oscillation period of segmentation clock genes increases incrementally along the posterior-to-anterior

(tail-to-head) direction in the PSM (Giudicelli et al., 2007; Gomez et al., 2008). This slowing down of

oscillations causes a phase delay between the cells located in the anterior and posterior PSM. As a

consequence, it leads to different phases of the oscillator cycle in space along the PSM and two to three

kinematic waves of gene expression in the oscillation cycle at any moment (Figures 1I, 1L, and 1M). Hence,

all cells located at the same posterior-anterior position in a two-dimensional, single-cell-wide cross-section

are in the same phase of oscillations. To quantify transcriptional variability of her1 and her7, we exploited

this unique spatial property of the segmentation clock. To group cells in the same oscillation phase, we

grouped cells in the same spatial location (Figures 1L and 1M).

To study changes in clock gene expression during zebrafish somitogenesis, we recently performed high-

resolution single-molecule fluorescence in situ hybridization (smFISH) to count mRNA transcripts in single

cells (Keskin et al., 2018). We then quantified mean and variability (CV2 [SD/mean]2) of transcript levels

among phase-grouped cell populations (i.e., single-cell-diameter slices). Because transcriptional variability

will depend on RNA levels, we then grouped variability data into five bins based on mean RNA levels. We

found that segmentation clock genes are transcribed at low levels (mean of total her1 plus her7 RNA is 49

molecules) (Figure 1N) and display high variability (CV2 ranges from 0.15 to 0.60 at different expression

levels) (Keskin et al., 2018; Zinani et al., 2021). We further showed that correlated variability contributes

more to total transcriptional variability than uncorrelated variability (73% vs. 27%, p < 0.001, Figures S1A

and 1O).

To generate fast oscillations in zebrafish, segmentation clock RNAs and proteins have extremely

short half-lives (t1/2 = 3–5 min) (Ay et al., 2013; Giudicelli et al., 2007). Thus, variability in their levels

cannot be reduced by simple temporal averaging, which causes the segmentation clock to be very noisy

(Keskin et al., 2018). We recently showed that pairing of her1 and her7 on the same chromosome pro-

motes their correlated expression to ensure proper development (Zinani et al., 2021). However, the

source of high transcriptional variability of the segmentation clock genes is yet to be determined (Keskin

et al., 2018).

In this study, we explicitly investigated the impact of three factors on the transcriptional variability of her1

and her7: (1) variation of cell volume and its associated resources, (2) negative feedback by Her1 and Her7

transcriptional repressors, and (3) gene dosage. We found that all three factors differentially contribute to

transcriptional variability.

RESULTS

Cell volume dependent factors increase correlated transcriptional variability of clock genes

Cell volume is a general regulator of gene expression through its ubiquitous effect on molecular concen-

trations (Song et al., 2015). It was previously shown that transcriptional burst size correlates with cell volume

(Padovan-Merhar et al., 2015). We assessed whether variation in cell volume could underlie transcriptional

variability of clock genes by normalizing transcript counts by cell volume (Keskin et al., 2018). This analysis

revealed that uncorrelated variability does not depend on cell volume (Figure S1B), but roughly 38% of

correlated variability can be filtered out by converting RNA numbers to concentrations (Figure S1C). These

results show that variability in volume-dependent factors increases the dominant correlated transcriptional

variability. We believe the increased correlated variability is likely triggered by transcriptional cofiring of

her1 and her7 occurring independently in different cells. Nonetheless, a large portion of variability re-

mained to be explained (from now on, volume-corrected variability is plotted in all figures).

Figure 1. Continued

(N) The frequency histogram of total her (her1+her7) RNA per cell is plotted in wild-type (dark gray) (n=24, N=2),

her1ci301/+;her7hu2526/+ (silver) (n=18, N=2), her1ci301;her7hu2526 (red) (n=28, N=2) mutant embryos.

(O) Each dot represents her1 (x axis) and her7 (y axis) counts in a single cell. Correlated (green) and uncorrelated (purple)

variability of her expression can be quantified in the population.

(P and Q) Correlated (P) and uncorrelated (Q) transcriptional variability of her1 and her7 are plotted based on mean her

RNA concentration (mRNA counts normalized by cell volume). Error bars are two standard errors.

(R) Changing the size or frequency of transcriptional bursts affect the variability curve (CV2 vs. mean) differently.

(S) Loss of Her proteins results in more uncorrelated transcriptional variability most likely due to increased burst sizes in

her1ci301;her7hu2526 mutants. n is the number of embryos; N is the number of independent experiments. See also

Figure S1.
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Negative feedback loop suppresses uncorrelated transcriptional variability of clock genes

What is the source of the size-independent correlated variability? One possibility is cell to cell variability in

the levels of an upstream transcriptional regulator (e.g., Her1 and Her7), which could cause high transcrip-

tional covariation of target genes (i.e., noise transmission). Indeed, a theoretical study previously proposed

that slow dissociation of Her1/7 repressors fromDNA is the main factor causing transcriptional variability of

clock genes (Jenkins et al., 2015). According to this model, abolishing the function of repressors should

significantly decrease transcriptional variability of clock genes. To test this hypothesis and discern the

role of negative feedback loop in controlling transcriptional variability, we reanalyzed smFISH data

obtained in her1ci301;her7hu2526 double homozygous mutants (Zinani et al., 2021). Unlike wild-type and het-

erozygote mutant embryos, oscillatory expression of clock genes is lost, and segmentation is disrupted in

double homozygousmutants. Because our probes do not distinguish betweenmutant and wild-type RNAs,

we found that heterozygous mutants have similar RNA levels compared to wild-type embryos. In contrast,

the mean RNA level increased by 74% (p < 0.001) in homozygous mutants compared to wild-type embryos

(Zinani et al., 2021) (Figure 1N). Because transcriptional variability depends on mean RNA levels (Fig-

ure S1A), we compared variability of mutant and wild-type embryos at similar mean RNA levels. The tran-

scriptional variability of the clock genes was similar in wild-type and double heterozygous mutants

(Figures 1P and 1Q, 5% difference for correlated variability, 8% difference for uncorrelated variability).

Opposite to the previously proposed hypothesis (Jenkins et al., 2015), the transcriptional variability is

higher rather than lower in double homozygous mutants compared to wild-type embryos: although the

correlated variability modestly increased by 4.6% (Figure 1P, p < 0.001), the uncorrelated variability of clock

genes increased by 33% (Figure 1Q, p < 0.001). On the other hand, these results are consistent with an

earlier report that negative feedback reduces variability of non-oscillating synthetic reporters in bacteria

(Becskei and Serrano, 2000). According to the two-state transcriptional bursting models, the variability

curve (CV2 vs. mean) can only be uplifted by increasing the size rather than frequency of transcriptional

bursts (Figure 1R) (Dar et al., 2012). Therefore, these findings suggest that Her1/7 might suppress burst

sizes to decrease the transcriptional variability of clock genes (Figure 1S). In conclusion, Her1/7 repressors

do not increase clock gene transcriptional variability, as previously proposed (Jenkins et al., 2015), instead

they participate in a cell-autonomous negative feedback loop, which decreases uncorrelated variability.

Gene dosage increases correlated transcriptional variability of clock genes

We next investigated the role of gene dosage on the transcriptional variability of clock genes. If transcrip-

tion of clock genes has large bursts, it could influence transcriptional variability by two alternative sce-

narios: (1) if two chromosomes fire at close time intervals (Figure 2A), overlapping bursts will increase burst

sizes and thereby uplift variability curve (Figure 1R); (2) if chromosomes fire at distant time intervals (Fig-

ure 2B), nonoverlapping bursts will increase burst frequency and this will shift the variability curve only diag-

onally (Figure 1R).

Gene copy numbers could be changed by utilizing a chromosomal deletion mutant covering the entire

her1-her7 locus (Henry et al., 2002). These heterozygous chromosomal deletion embryos have normal clock

expression pattern in PSM, and no somite segmentation defect (Henry et al., 2002) (Figures 2C–2E). We

previously reported that the levels and spatial amplitudes of the clock RNAs were lower in the her1b567/+;

her7b567/+ chromosomal deletion mutants compared to wild-type embryos (28% her1 amplitude p value =

0.017, 28% her7 amplitude p < 0.001 (Zinani et al., 2021), and 38% total her level p < 0.001, Figure 2F). In

contrast to our findings using the her1ci301/+;her7hu2526/+ heterozygous mutants (Figures 1P and 1Q), we

found that correlated transcriptional variability decreased 31% (p < 0.001), whereas uncorrelated transcrip-

tional variability changed only 4.5% in her1b567/+;her7b567/+ mutants compared to wild-type embryos

(Figures 2G and 2H). The variability curve can only be shifted down by decreasing transcriptional burst

size (Figure 1R) (Dar et al., 2012). Therefore, our results suggest that decreased gene copy number primarily

decreases transcriptional burst size. Our current results support the scenario that both chromosomes fire at

close time intervals, and are in agreement with our previous findings reporting around 60% cofiring of two

homologous alleles (Zinani et al., 2021).

Decreased bursting alone cannot explain all of our results, because high burst sizes generally increase un-

correlated transcriptional variability (Raj et al., 2006) instead of correlated variability that we measured

(Figures 2G and 2H). However, chromosomal adjacency was shown to cause correlated variability of syn-

thetic reporters in yeast, mammalian cell culture, and fly embryos (Becskei et al., 2005; Fukaya et al.,

2016; Raj et al., 2006). We recently showed that pairing of two clock genes on the same chromosome drives
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Figure 2. Clock gene dosage increases correlated transcriptional variability

(A and B) Reduced gene copy in her1b567/+;her7b567/+ mutants results in decreased burst sizes or frequency if two

homologous alleles cofire with either close (A) or distal (B) interval, respectively.

(C) One of the chromosomes has a large deletion including the her1-her7 locus in her1b567/+;her7b567/+ mutants.

(D) A her1b567/+;her7b567/+ embryo with normal kinematic waves of her7 transcription. Scale bar is 30 mm.

(E) The boundaries of somite segments are marked by xirp2 ISH staining in sibling (top) wild-type or heterozygous

her1b567/+;her7b567/+ and (bottom) homozygous her1b567;her7b567 mutant embryos. Scale bar is 200 mm.

(F) her1b567/+;her7b567/+ embryos (n=24, N=2) have less her mRNA than wild-type (n=14, N=2). The frequency histogram

of total her (her1+her7) RNA per cell is plotted in wild-type (dark gray), her1b567/+;her7b567/+ mutant (light blue) embryos.

(G and H) her1b567/+;her7b567/+ embryos have reduced correlated transcriptional variability than wild-type (G), but

uncorrelated transcriptional variability changed mildly (H). Reduced correlated transcriptional variability can be

explained by reduced burst size in her1b567/+;her7b567/+ embryos than in wild-type.

(I and J) Computational model also shows more reduced correlated variability (I) in her1b567/+;her7b567/+ embryos than in

wild-type embryos compared to uncorrelated variability (J). Error bars are two standard errors. n is the number of

embryos; N is the number of independent experiments. See also Tables S1–S3.
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their transcriptional cofiring (Zinani et al., 2021). Therefore, we conclude that transcriptional cofiring leads

to high correlated transcriptional variability in wild-type embryos and reducing gene copy numbers primar-

ily decreases correlated variability.

We inferred potential changes of transcriptional bursts by comparing heterozygous chromosomal deletion

mutants with wild-type embryos. To further assess the role of gene dosage on transcriptional variability, we

took two additional approaches. Firstly, we leveraged a simple model of bursty transcription. Simulations

showed that reducing gene dosage in an oscillating system changed correlated variability more than un-

corrected variability of the clock genes (Figures 2I and 2J). These simulations supported our experimental

results. Secondly, we tested the gene dosage effect in a non-oscillating system by generating two different

double homozygous mutants (Figure 3A): The first double homozygous mutant, her1ci301;her7hu2526, carries

mutants of both genes on two chromosomes, whereas the second one her1b567/ci301;her7b567/hu2526 carries

mutant genes only on one chromosome (both genes are deleted in the homologous chromosome) (Fig-

ure 3B). We performed smFISH experiments (Figure 3C) and found that the levels of clock RNAs were

23% lower in her1b567/ci301;her7b567/hu2526 compared to her1ci301;her7hu2526 mutants (p < 0.001, Figure 3D).

We found that correlated transcriptional variability decreased 38% (p < 0.001) while uncorrelated transcrip-

tional variability decreased only 18% (p < 0.001) in her1b567/ci301;her7b567/hu2526 compared to her1ci301;

her7hu2526 mutants (Figures 3E and 3F). These results validated our conclusions and showed that reducing

gene copy numbers primarily decreases correlated variability.

Figure 3. Clock gene dosage increases correlated transcriptional variability more than uncorrelated one

(A) Reduced copy of her genes likely results in decreased burst sizes in her1b567/ci301;her7b567/hu2526 mutants compared to

her1ci301;her7hu2526 mutants.

(B) One of the chromosomes has mutant her1 and her7 genes whereas the other has a large deletion including the her1-

her7 locus in her1b567/ci301;her7b567/hu2526 mutants. Red stars (*) mark point mutations causing premature stop codons.

(C) Expression pattern of her7 is disrupted in her1b567/ci301;her7b567/hu2526 embryos. Scale bar is 30 mm.

(D) her1b567/ci301;her7b567/hu2526 embryos (n=12, N=2) have less her mRNA than double homozygous her1ci301;her7hu2526

embryos (n=17, N=2). The frequency histogram of total mutant her (her1+her7) RNA per cell is plotted in

her1ci301;her7hu2526 (red), her1b567/ci301;her7b567/hu2526 mutant (blue) embryos.

(E and F) her1b567/ci301;her7b567/hu2526 embryos have both reduced correlated (E) and uncorrelated (F) transcriptional

variability than her1ci301;her7hu2526. Error bars are two standard errors. n is the number of embryos; N is the number of

independent experiments.
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DISCUSSION

Our previous study showed that correlated variability contributes more to total transcriptional variability

than uncorrelated variability (Keskin et al., 2018); however, the source of the transcription variability was un-

known. In this study, we combined single-cell transcript counting with genetic manipulations to investigate

the roles of cell volume, transcriptional negative feedback loop, and gene dosage on transcriptional vari-

ability of two segmentation clock genes. We found that Her1/7 cell-autonomous negative feedback loop

decreases uncorrelated transcriptional variability likely by reducing transcriptional burst size. In contrast,

cell volume and gene dosage increased the correlated transcriptional variability of clock genes. Our results

support a model where highly correlated variability of two clock genes is likely because of coordinated tran-

scriptional bursting between two genes on two homologous alleles. Correlated variability of her1 and her7

expression can be influenced by (i) gene-dosage, (ii) volume-dependent, and (iii) volume-independent

cellular factors. Our results support that adjacency of two segmentation clock genes causes their correlated

expression, a phenomenon previously shown to be beneficial for robust developmental pattern formation

in zebrafish embryos (Zinani et al., 2021).

The levels of clock RNAs were 38% lower in the her1b567/+;her7b567/+ chromosomal deletion mutants

compared to that in wild-type embryos (p < 0.001, Figure 2F). This lack of compensation in the expres-

sion levels suggests that the segmentation network differs from dosage compensated networks, such as

the GAL network in yeast (Peng et al., 2016). In contrast, the functional outcome, (i.e., somite segmen-

tation) can be successfully achieved at most of the physiological developmental temperatures (Figure 2E),

suggesting phenotypic compensation might occur at a different regulatory step. On the other hand,

both zebrafish segmentation and yeast GAL networks minimize noise in part by utilizing a negative feed-

back loop.

Oscillations are prevalent in biological systems, and Hes/Her protein levels oscillate in multiple cell types

and tissues and control proliferation to differentiation switches (Kobayashi and Kageyama, 2014). We antic-

ipate our findings would aid in understanding the precision of other natural oscillators and engineering

precise synthetic oscillators. Our findings might inspire future studies for developing new ways to control

stem cell proliferation and differentiation by engineering synthetic clocks or manipulating natural ones in

tissue engineering or organoid systems.

LIMITATIONS OF THE STUDY

In this study, we used static smFISH experiments to identify the roles of transcriptional feedback loop and

gene dosage on transcriptional variability of segmentation clock genes. We also performed stochastic

simulations of transcriptional dynamics by using a simple model. From our results, we inferred that

transcription of segmentation clock genes is bursty. However, direct demonstration of transcriptional

bursts requires live imaging of RNA transcription. Future RNA live imaging experiments will shed light

on the dynamics of transcriptional bursts, i.e., burst sizes and the frequency of bursts in a single clock cycle.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

� Further information and requests for resources and reagents should be directed to the lead and cor-

responding author Ertu�grul M. Özbudak (Ertugrul.Ozbudak@cchmc.org).

Materials availability

� This study did not generate new unique reagents.

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Chicken IgY, anti-GFP, unconjugated, Primary Antibody Thermo Fisher Scientific Cat#A10262, RRID: AB_2534023

Alexa Fluor 488 Goat anti-Chicken IgG (H+L)

Secondary Antibody

Thermo Fisher Scientific Cat#A-11039; RRID: AB_142924

Chemicals, peptides, and recombinant proteins

RNAscope Fluorescent Multiplex Detection Reagents Advanced Cell Diagnostics Cat#320851

RNAscope Protease III Reagents Advanced Cell Diagnostics Cat#322340

Hoechst trihydrochloride, trihydrate Invitrogen Cat#33342

ProLong Gold antifade reagent Life Technologies Cat#P36934

SP6 mMessage mMachine Life Technologies Cat#AM1340

RNAscope Probe - Dr-her1-LE2-C3 Advanced Cell Diagnostics Cat#433201-C3

RNAscope Probe - Dr-her7 Advanced Cell Diagnostics Cat#428611

Deposited data

Image Processing Pipeline (Keskin et al., 2018) Data S1 in (Keskin et al., 2018)

Stochastic Simulations Script This paper Data S1

Excel file of smFISH data for her1ci301;her7hu2526

embryos.

This paper Data S2

Excel file of smFISH data for her1b567/ci301;

her7b567/hu2526 embryos.

This paper Data S3

Raw and analyzed data related to Figures 1 and 2 (Zinani et al., 2021) https://www.ebi.ac.uk/biostudies/studies/S-BSST434

Raw data related to Figure 3 This paper https://www.ebi.ac.uk/biostudies/studies/S-BSST847

Experimental models: Organisms/strains

Zebrafish: her1ci301;her7hu2526 (Zinani et al., 2021) ZFIN ID: ZDB-ALT-211025-4

Zebrafish: Df(Chr05:her1,her7,ndrg3a)b567 (Henry et al., 2002) ZFIN ID: ZDB-ALT-030512-2

Software and algorithms

Imaris 9.8 Bitplane http://www.bitplane.com/imaris/imaris;

RRID:SCR_007370

Python Programming Language, version 3.8 Python Software Foundation http://www.python.org/; RRID:SCR_008394

Matlab_R2020b Mathworks http://www.mathworks.com/products/matlab/;

RRID:SCR_001622

ImageJ https://imagej.nih.gov/ij/; RRID:SCR_003070

GraphPad Prism 7 GraphPad http://www.graphpad.com/; RRID:SCR_002798

Other

Nikon A1R GaAsP inverted confocal microscope

1003 1.49 NA Apo TIRF DIC- Oil objective

Nikon N/A
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Data and code availability

d The data reanalyzed in Figures 1 and 2 were previously published and deposited online as described in

(Zinani et al., 2021), and are publicly available in the BioStudies database as of the date of publication.

The accession number is listed in the key resources table.

d Data in Figure 3 are newly generated according to the protocols described in (Zinani et al., 2021) and

provided as Data S2 and S3. The raw data have been deposited at the BioStudies database, and are pub-

licly available as of the date of publication. The accession number is listed in the key resources table.

d C++ code is provided in Data S1 document.

d Analyses are conducted in Python. The Python codes were previously made available online as described

in (Zinani et al., 2021).

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fish stocks

Df(Chr05:her1,her7,ndrg3a)b567 (Henry et al., 2002) and her1ci301;her7hu2526 (Zinani et al., 2021) mutant

lines were used in this study. The fish experiments were performed under the ethical guideline of Cincinnati

Children’s Hospital Medical Center. The animal protocol was reviewed and approved by Cincinnati

Children’s Hospital Medical Center Animal Care and Use Committees (Protocol # 2020-0031). Sex is not

determined chromosomally and it is fixed weeks after fertilization in zebrafish. We used embryos less

than one day post fertilization. Thus, we did not discriminate against a particular gender in our studies.

METHOD DETAILS

smFISH and imaging

The smFISH experiments and confocal imaging were performed as described in (Zinani et al., 2021). Back-

ground subtracted total her (her1+her7) mRNA levels were plotted as RNA distributions. Transcriptional

variability was plotted from background subtracted and volume corrected her levels for each genetic back-

ground as in (Keskin et al., 2018).

QUANTIFICATION AND STATISTICAL ANALYSIS

Calculating transcriptional variability

By using previously published smFISH data (Zinani et al., 2021), we quantified transcription variability

among cells located in single-cell-wide cross-sections along the PSM. Correlated, uncorrelated and total

transcriptional variability were computed for cells located in each slice using the following equations as

in (Keskin et al., 2018):

uncorrelated variability =
1

2
C

�
her1

Cher1D
� her7

Cher7D

�2

D

correlated variability =
Cher1 ,her7D � Cher1DCher7D

Cher1DCher7D
total variability = uncorrelated variability+ correlated variability

Transcriptional variability was plotted at different mean her (her1+her7) mRNA levels for each genetic

background. We have previously showed how transcriptional variability varies with respect to mean her

mRNA levels among phase grouped cells (single-cell diameter spatial slices) in wild-type embryos (Keskin

et al., 2018). Then, we have grouped the data of individual slices into 5 bins according to their mean her

mRNA numbers (Figure S1A) as in (Keskin et al., 2018).

Statistical analysis

To compare the correlated/uncorrelated variability in different genetic backgrounds we sampled the vari-

ability data with replacement 100 times, and for each case calculated the area under the variability curve

(AUC). Then we assessed the statistical significance of the difference in the variability between different ge-

netic backgrounds with paired t-test using the 100 AUC values. Normality was assessed Shapiro-Wilk test,

and by visual inspection of histograms and normal Q-Q plots. The distributions of mRNA levels across
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different genetic backgrounds are compared by visual inspection of box-plots and the Kolmogorov-Smir-

nov test.

Computational modeling

To gain a better understanding of the noise properties of the segmentation clock in zebrafish, we adapted

and modified the simple model proposed by Lewis (2003). Her1 and Her7 proteins form a heterodimer that

inhibits their own expression. In our model, her1 and her7 mRNA production occurs in transcriptional

bursts. We assume that heterodimer-induced repression has a direct effect on the average burst size of

the mRNAs, but not their burst frequency. Additionally, we assume that her1 and her7 mRNA bursts are

correlated. In our model, the time delays are implemented through 10 intermediate reactions. Below,

we discuss the model in detail.

All molecular species in the model are summarized in Table S1, and the biochemical reactions are summa-

rized in Table S2. The parameters km1, and km7 are burst frequencies for individual bursts of her1, and her7

mRNAs, whereas km17 is the burst frequency of correlated bursts, i.e., when both genes fire together. We

characterize the correlated bursts by the parameter a: km1 = km7 = kmð1 � aÞ, and km17 = kma. If a = 1,

the bursts are perfectly correlated, and a = 0 they are uncorrelated. The heterodimer (p17) repress the

burst size. Let Bmax be the maximum burst size. In the presence of feedback, the average burst size is

given by,

CBD = Bmaxf
�
p17

�
:

Here the repression function, fðp17Þ, is the usual Hill function

f
�
p17

�
=

1

1+
�

p17
pdcrit

�2
;

where pdcrit is the amount of heterodimer counts at which the repression is half of the maximum. When

CBDR 1, we draw burst size from a geometric distribution: probðB = iÞ = ð1 � sÞi� 1s; for i = 1; 2; 3;.;

where 1
s = CBD is the average burst size.

The symbols tm, and tp represent the transcriptional and translational delays. We incorporated these de-

lays via n intermediate molecules for each mRNA and protein species. kp1 and kp7 are the rates for produc-

tion of Her1 and Her7 proteins. The degradation rates for her1 and her7mRNAs and proteins are denoted

as gm1;gm7;gp1; and gp7. Her1 and Her7 proteins bind with rate kb to form heterodimer and they dissociate

with rate ku. The degradation rate of the heterodimer is gp17.

In our model, we did not explicitly include two copies of genes of homologous chromosomes in the wild-

type embryos. We assume that bursts between two homologous chromosomes are perfectly correlated. In

the deletion mutant, one chromosome copy is deleted. In our model, we reduce the maximum burst size

Bmax by half to mimic the deletion mutant. Table S3 lists the parameters for wild-type and deletion mutants.

Simulations and noise measurement

All the biochemical reactions occur stochastically according to the propensities specified in Table S2. We

numerically evolve the system’s stochastic dynamics using our custom C++ code in accordance with the

Gillespie algorithm (Gillespie, 1976) (code is provided in Data S1 document). We generate many trajec-

tories from the same initial condition. One trajectory represents the dynamics of a single cell. After the

time, T0, we store the values m1n, and in the interval of dtobs (which is sufficiently smaller than the period

of oscillation) for many time points up to time Tmax . We calculate correlated and uncorrelated variability

for a given time point data. Finally, we bin the correlated and uncorrelated variability for different time

points according to the total her mRNA level (Cm1nD+ Cm7nD) and compute the average value of variability

at each bin.
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