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Abstract

Tetanus neurotoxin causes the disease tetanus, which is characterized by rigid paralysis. The toxin acts by inhibiting the
release of neurotransmitters from inhibitory neurons in the spinal cord that innervate motor neurons and is unique among
the clostridial neurotoxins due to its ability to shuttle from the periphery to the central nervous system. Tetanus neurotoxin
is thought to interact with a high affinity receptor complex that is composed of lipid and protein components; however, the
identity of the protein receptor remains elusive. In the current study, we demonstrate that toxin binding, to dissociated
hippocampal and spinal cord neurons, is greatly enhanced by driving synaptic vesicle exocytosis. Moreover, tetanus
neurotoxin entry and subsequent cleavage of synaptobrevin II, the substrate for this toxin, was also dependent on synaptic
vesicle recycling. Next, we identified the potential synaptic vesicle binding protein for the toxin and found that it
corresponded to SV2; tetanus neurotoxin was unable to cleave synaptobrevin II in SV2 knockout neurons. Toxin entry into
knockout neurons was rescued by infecting with viruses that express SV2A or SV2B. Tetanus toxin elicited the hyper
excitability in dissociated spinal cord neurons - due to preferential loss of inhibitory transmission - that is characteristic of
the disease. Surprisingly, in dissociated cortical cultures, low concentrations of the toxin preferentially acted on excitatory
neurons. Further examination of the distribution of SV2A and SV2B in both spinal cord and cortical neurons revealed that
SV2B is to a large extent localized to excitatory terminals, while SV2A is localized to inhibitory terminals. Therefore, the
distinct effects of tetanus toxin on cortical and spinal cord neurons are not due to differential expression of SV2 isoforms. In
summary, the findings reported here indicate that SV2A and SV2B mediate binding and entry of tetanus neurotoxin into
central neurons.
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Introduction

The Clostridium genus of bacteria are responsible for the

production of the clostridial neurotoxins (CNTs), which include

both tetanus neurotoxin (TeNT) and seven botulinum neurotoxins

(BoNT/A–G) [1]. TeNT is synthesized by Clostridium tetani, and is

one of the most toxic substances known to humans; it causes the

disease tetanus [2,3]. Spores enter via deep wounds where they

germinate in the anaerobic environment, releasing TeNT via

autolysis [1]. Upon exposure to fatal levels of the toxin, patients

eventually die of respiratory or heart failure, thereby generating a

rich anaerobic environment in which the bacteria can proliferate

[4]. Tetanus kills hundreds of thousands of people each year in

countries in which regular tetanus vaccinations are not carried out

[1].

Structurally, the CNTs are 150 kDa proteins composed of a

heavy chain (HC) and a light chain (LC) that are linked through a

disulfide bond. The 100 kDa HC, which has two functional

domains, mediates binding to neuronal receptors and also creates

a pore that mediates the translocation of the 50 kDa LC, a zinc-

dependent endoprotease, into the cytosol [1,5]. The LC then

cleaves one or more of three soluble N-ethylmaleimide-sensitive

fusion protein receptor (SNARE) proteins: BoNT/A and E cleave

the plasma membrane protein SNAP-25 (synaptosomal-associated

protein of 25 kDa); BoNT/B, D, F, G and TeNT cleave the

vesicle protein synaptobrevin (syb); and BoNT/C cleaves both

SNAP-25 and syntaxin-1 [6,7,8,9,10]. Assembly of sybNsyntax-

inNSNAP-25 into parallel four-helix bundles is thought to pull the

vesicle and plasma membranes together to drive membrane fusion

[11]. Cleavage of these SNAREs by the CNTs either severs them

from the membrane or disrupts their ability to assemble into

stable/functional fusion complexes, thereby blocking synaptic

vesicle (SVs) exocytosis and neurotransmitter release [1,12].

While TeNT causes rigid paralysis, the BoNTs cause flaccid

paralysis [13]. These opposite symptoms are the result of different

sites of action. The BoNTs exert their effects at the neuromuscular

junction (NMJ) by cleaving one or more of the three synaptic

SNARE proteins. While TeNT also enters the nervous system via

presynaptic terminals of the a-motor neuron (MN) at the NMJ, it

does not act at this site but rather undergoes retrograde transport

into the spinal cord. To achieve this, TeNT localizes to lipid rafts

that contain high local concentrations of cholesterol, polysialo-
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gangliosides (PSGs), and glycophospoinositol (GPI)-anchored

proteins in the terminals of MNs [14,15]. Once bound, TeNT is

internalized into non-acidified vesicles that harbor growth factor

receptors [16]. The TeNT-harboring vesicle is sorted via a Rab 5/

7 dependent pathway and transported back to the cell body of the

MN [17]. TeNT then undergoes transcytosis by being released

from the MNs such that it enters upstream inhibitory neurons to

cleave SNAREs and inhibit transmitter release [18,19].

The pathway by which TeNT acts on inhibitory neurons occurs

via four steps. 1) TeNT binds to presynaptic terminals through

interactions with a ‘‘dual receptor’’ composed of lipid and protein

components that, together, form high-affinity receptors [20]. As

opposed to the other CNTs, which harbor one PSG binding site

(which is the lipid component of the dual receptor), it was

discovered that TeNT contains two binding sites for PSGs. Among

the PSGs, TeNT exhibits stronger interactions with GT1b, GD1b,

and GQ1b [1]. Furthermore, mice lacking PSGs were resistant to

TeNT as compared to wild-type (WT) mice [21,22]. Experiments

performed with spinal cord neurons and rat brain membranes also

indicated the presence of a protease-sensitive protein receptor;

however, the identity of this protein remains unknown [23,24,25].

2) Once bound to the membrane, TeNT is internalized via

endocytosis. 3) Following endocytosis, acidification of the vesicle

lumen triggers conformational changes in the HC which cause it

to form a translocation channel or pore in the vesicular

membrane. The LC translocates through the HC pore and the

disulfide bond connecting the HC and the LC becomes reduced in

the cytosol. 4) The LC cleaves syb to inhibit SV exocytosis. The

resultant loss of inhibitory neurotransmission results in hyper-

excitability of the MN, thereby enhancing release of acetylcholine

and producing rigid paralysis [26].

The protein receptors for BoNT/A, B ,E and G have recently

been identified [27,28,29,30,31,32,33]. The unique ability of

TeNT to shuttle from the periphery to the central nervous system

has made determining the receptor(s) for this toxin a greater

challenge. At present, the route of entry of TeNT into central

neurons is unclear, with some reports indicating that, in

hippocampal cultures, binding and entry was dependent on SV

recycling [34]. However, other studies indicate that entry of TeNT

into spinal cord neurons was mediated by non-SV carriers [35,36],

and thus this question remains an open issue. Furthermore, the

receptor-binding domain of TeNT was reported to bind to a GPI-

anchored protein that was sensitive to phosphoinositol specific

phosholipase C (PI-PLC) treatment in MNs, spinal cord neurons,

and PC12 cells (rat pheochromocytoma cell line). This putative

receptor was identified as Thy-1 [35,37], but whether Thy-1 is

required for binding and uptake of TeNT has yet to be tested.

As previously hypothesized, the protein receptors for TeNT in

inhibitory neurons and MNs are most likely to be distinct proteins

[1]. Namely, the receptor that is present in MNs directs TeNT into

a non-acidified compartment to circumvent translocation, whereas

the receptor that is expressed by inhibitory neurons is targeted to

vesicular structures that undergo acidification, thus allowing for

translocation [16]. Secondly, we note that dogs and cats are orders

of magnitude more resistant to TeNT when injected into the

periphery as compared to into the spinal cord [1,38,39]. It is

therefore possible that dogs and cats have substantial sequence

variation in the MN receptor that prevents proper interactions

with TeNT, resulting in reduced uptake and retrograde transport.

The identification of the somatic and central neuron protein

receptors for TeNT will aid in developing antagonists to combat

the disease, especially in nations without a tetanus vaccination

regimen [1]. Due to the toxin’s unique ability to be transported

from MNs into inhibitory interneurons in the central nervous

system, the findings described here will also aid in the development

of novel drug delivery methods for the treatment of central

nervous system diseases [40].

Results

TeNT binds to central neurons via recycling synaptic
vesicles

As alluded to before, there are conflicting reports regarding the

mode of entry for TeNT into central neurons. It was first suggested

that in hippocampal neurons, TeNT enters through recycling SVs

[34]. However, a later paper reported that the sensitivity of mouse

cerebellar slices to TeNT was reduced upon treatment with PI-PLC,

indicating the receptor had a GPI-anchor moiety [35]. Furthermore

in another study, gold-labeled TeNT was not commonly found in

SVs in cultured spinal cord neurons [36]. These results argued

against a SV uptake pathway because these vesicles are devoid of

GPI-linked proteins [41]. To address these apparent disparities, we

utilized a recombinant fragment of TeNT, corresponding to its

receptor-binding domain, to carry out binding assays using cultured

neurons. This fragment harbored a 3x-FLAG epitope tag that was

used for our imaging studies [37,42,43]. This C-terminal sub-

domain of the heavy chain (HCR/T) has been shown to have the

same binding, uptake, and retrograde transport properties as the full

length and enzymatically active holotoxin [44,45,46,47]

Extracellular exposure of neurons to solutions that contain high

concentrations of potassium results in membrane depolarization;

calcium then enters pre-synaptic terminals through voltage-gated

calcium channels thereby triggering SV exocytosis. We applied

this technique to investigate the binding of HCR/T to

hippocampal neurons under depolarizing and non-depolarizing

conditions. We utilized hippocampal neurons as they have proven

to be a useful model system that has been pivotal in the

identification of CNT receptors [27,28,30,34]. Incubation of

HCR/T with these neurons in a buffer containing tetrodotoxin

(TTX), which blocks action potentials and as a result active SV

recycling, resulted in little binding of HCR/T. However, when

experiments were performed in the presence of high potassium

buffer, a large increase in HCR/T fluorescence was observed

(Figure 1A). Quantitative analysis revealed a 3-fold increase in the

Author Summary

Tetanus neurotoxin is one of the most deadly bacterial
toxins known and is the causative agent for the disease
tetanus, also known as lockjaw. Tetanus neurotoxin utilizes
motor neurons as a means of transport in order to enter
the spinal cord. Once in the spinal cord, the toxin leaves
motor neurons and enters inhibitory neurons through a
‘‘Trojan-horse’’ strategy, thereby preventing the release of
inhibitory neurotransmitters onto motor neurons. This
causes hyper-excitability of the motor neuron and
excessive release of acetylcholine at the neuromuscular
junction, resulting in rigid paralysis. There is a major gap in
our understanding of the mechanism by which tetanus
neurotoxin enters neurons. In the current study we
discovered that the ‘‘Trojan-horse’’, utilized by tetanus
neurotoxin to enter central neurons, corresponds to
recycling synaptic vesicles. Furthermore, we discovered
that SV2 is critical for the binding and entry of tetanus
neurotoxin into these neurons. These findings will enable
further development of drugs that antagonize the action
of the toxin and will also aid in the development of drug
delivery systems that target spinal cord neurons.

SV2 Is Critical for Tetanus Toxin Intoxication
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fluorescence intensity of HCR/T at excitatory terminals

(vGLUT1) and a 10-fold increase at inhibitory terminals (vGAT)

upon stimulation with high potassium (Figure 1B). These results

suggest that the binding partner for TeNT is localized to the

lumen of SVs.

TeNT causes disease by exerting its effects at inhibitory neurons

in the spinal cord, so we extended our experiments to cultured

dissociated spinal cord neurons obtained from embryonic rats.

Again, HCR/T was incubated in TTX (non-depolarizing) and

high potassium (depolarizing) conditions, and we observed a 4-fold

increase of HCR/T binding upon depolarization of inhibitory

boutons (Figure 1C–D). The increase in TeNT binding to spinal

cord terminals under high potassium versus TTX conditions

strongly suggests that the binding partner for TeNT is localized to

SVs.

Cleavage of synaptobrevin II is dependent on synaptic
vesicle recycling

The previous experiments strongly suggest that TeNT binds to a

receptor that is a resident of SVs, so we next determined whether

this interaction results in functional entry of the toxin. To test this

idea, we determined whether the ability of TeNT holotoxin to

enter neurons and cleave syb II also depended on SV recycling.

We employed a monoclonal antibody raised against syb II (Cl.

69.1) that cannot recognize the enzymatically cleaved form of the

protein. We began by comparing the ability of TeNT to cleave syb

II under TTX (which blocks action potentials to inhibit SV

recycling) or high potassium (which depolarizes neurons to drive

SV recycling) conditions. We observed that syb II fluorescence was

markedly reduced when hippocampal neurons were depolarized

with potassium to drive SV recycling (Figure 2A); this occurred at

both excitatory and inhibitory nerve terminals (Figure 2B). Syb II

immunofluorescence was reduced in excitatory terminals by 39%

in the TTX condition and was further reduced by 65% of under

depolarizing conditions, as compared to control. Inhibitory

terminals exhibited no significant reduction of syb II immunoflu-

orescence under TTX conditions, but a 53% reduction was

observed in neurons that had been depolarized (Figure 2B).

To test the physiological relevance of these observations, we

monitored syb II levels in spinal cord neurons (Figure 2C) and

observed that under high potassium conditions syb II immuno-

fluorescence was reduced by 50% as compared to control and

non-stimulating (i.e. TTX) conditions (Figure 2D). These data

further reinforce the idea that TeNT entry into inhibitory spinal

cord neurons occurs through recycling SVs, relying on a receptor

that is localized to SVs.

Figure 1. TeNT binds to central neurons via recycling synaptic vesicles. (A) Cultured rat hippocampal neurons were incubated with the
receptor-binding domain of TeNT (HCR/T, 50 nM) either in non-depolarizing conditions (TTX: 5 mM KCl, 0 mM Ca2+, 1 mM TTX) or depolarizing
conditions (high K+ buffer: 55 mM KCl, 2 mM Ca2+). Cells were processed for immunocytochemistry and HCR/T was detected using a mouse anti-
FLAG tag monoclonal antibody. Vesicular glutamate transporter 1 (vGLUT1) antibodies were used to mark excitatory synapses and antibodies against
vesicular GABA transporter (vGAT) were used to mark inhibitory terminals. The binding of HCR/T to neurons was markedly enhanced under
depolarizing conditions. Scale bars in all figures are 10 mm unless otherwise indicated. (B) Quantification of HCR/T staining intensity at excitatory/
inhibitory terminals normalized to VGLUT1 or vGAT intensity. Error bars represent SD, n = 9, ***p#0.001. (C) Dissociated spinal cord neurons were
incubated with HCR/T (50 nM) in TTX buffer or high K+ buffer. Binding of HCR/T was markedly increased under depolarizing conditions. (D)
Quantification of HCR/T to vGAT staining intensity ratio. Error bars represent SD, n = 18, ***p#0.001.
doi:10.1371/journal.ppat.1001207.g001

SV2 Is Critical for Tetanus Toxin Intoxication
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Entry of TeNT into central neurons is abrogated by
inhibitors of exocytosis/endocytosis

To further confirm the requirement of SVs for the entry of

TeNT into neurons, we carried out experiments in which we

inhibited steps in the SV cycle and assayed for protection from the

toxin. For these experiments we took advantage of a dynamin

point mutant that interferes with the GTPase function of the

protein. This mutant (K44A) acts as a dominant negative that

inhibits endocytosis [48]. As shown in Figure 3A, neurons that

expressed the K44A mutant were protected from the entry of

TeNT, as evidenced by the lack of cleavage of syb II, as compared

to neurons that expressed WT dynamin.

We next determined whether we could prevent TeNT entry by

inhibiting the exocytosis (and thereby blocking compensatory

endocytosis) of SVs. As BoNT/A and BoNT/E cleave SNAP-25

instead of syb II, we were able to inhibit exocytosis in neurons

while still monitor the entry of TeNT through cleavage of syb II.

Hence, we first pre-treated spinal cord neurons with BoNT/A to

cleave SNAP-25 and inhibit exocytosis [1], and then we

subsequently assayed for entry of TeNT by monitoring cleavage

of syb II. We observed that syb II was largely protected from the

effects of TeNT at inhibitory terminals when exocytosis had been

inhibited by prior treatment with BoNT/A (Figure 3B). Similar

results were observed using hippocampal neurons that had been

pretreated with BoNT/E, which also cleaves SNAP-25 (Figure 3C).

Together, the results reported thus far establish the notion that the

primary route for TeNT-induced toxicity is through recycling SVs

and not through an alternative pathway.

SV2A/B mediate binding and entry of TeNT
To identify the potential SV binding partner for TeNT, we

biotinylated this toxin, as well as BoNT/B, BoNT/E (as controls),

and bound them to neutravidin beads, through biotin-avidin

interactions. After incubating the toxin-linked beads with brain

detergent extracts (BDE), we screened for bound SV proteins.

Previously it has been shown that the receptor for BoNT/B is

synaptotagmin (syt) I/II and the receptor for BoNT/E is SV2A/B

[29,30]. Consistent with previous reports, we detected that BoNT/

B associated with syt I and BoNT/E with SV2, but surprisingly,

we observed that TeNT also strongly associated with SV2

(Figure 4A). To further confirm that TeNT associated with SV2,

we used HCR/T to see if it could compete with BoNT/E for

Figure 2. TeNT requires actively recycling synaptic vesicles to enter neurons and cleave synaptobrevin II. (A) Cultured hippocampal
neurons were incubated with full-length TeNT (5 nM) in non-depolarizing (TTX) or depolarizing (high K+) buffer for 3 minutes, washed, then returned
to media and incubator for 4 hours. Cells were processed for immunostaining; the synaptobrevin II (syb II, Cl 69.1) signal was significantly reduced
under depolarizing conditions. (B) Quantification of syb II intensity at excitatory or inhibitory terminals normalized to VGLUT1 or vGAT intensities,
respectively. Error bars represent SD, n = 9, ***p#0.001. (C) Cultured spinal cord neurons were incubated with TeNT holotoxin (500 pM) in TTX or high
K+ buffers for 3 minutes, washed, then returned to media and incubated for 4 hours. (D) Quantification of syb II to vGAT fluorescence intensity ratios.
Error bars represent SD, n = 9, ***p#0.001.
doi:10.1371/journal.ppat.1001207.g002

SV2 Is Critical for Tetanus Toxin Intoxication
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binding to its native receptor, SV2, on hippocampal neurons. A

100-fold molar excess of HCR/T, compared to BoNT/E,

markedly reduced BoNT/E binding to nerve terminals in this

preparation (Figure 4B). Moreover, competition of HCR/T with

BoNT/E in hippocampal neurons reduced the extent of cleavage of

SNAP-25 (Figure 4C). These data are in agreement with previous

studies on the NMJ that also demonstrate HCR/T can antagonize

BoNT/E entry [49,50]. The ability of the receptor-binding domain

of TeNT to reduce BoNT/E binding and entry into hippocampal

neurons - through competition for binding SV2 - further supports

the idea that TeNT utilizes SV2 as its receptor protein.

SV2 is a 12 transmembrane protein that is heavily glycosylated

and is homologous to transmembrane transporters. SV2 exists in 3

isoforms - A, B, and C - and SV2 A and B, but not C, knock-out

(KO) mice have been generated [51,52]. We utilized dissociated

spinal cord neurons from SV2 KO mice in order to directly

determine whether SV2 was critical for the action of TeNT at a

functional level. We observed significant reductions of HCR/T

binding to inhibitory terminals in KO mice (Figure 5A).

Compared to WT, there was a 30% reduction in HCR/T

binding to SV2B KO spinal cord neurons and a 55% reduction of

HCR/T binding to inhibitory terminals of SV2A/B KO neurons

(Figure 5B). These results further demonstrate that SV2 plays a

critical role in the binding of TeNT to inhibitory terminals in the

spinal cord.

To investigate whether SV2 was necessary for entry of TeNT,

we cultured SV2A/B KO hippocampal neurons which express

little SV2C [27] and examined whether TeNT was able to cleave

syb II. In Figure 5C, SV2A/B KO neurons were largely protected

from TeNT and these neurons could be re-sensitized with the

infection of SV2A or B lentivirus (which infects greater than 90%

of the cells) [28,30]. In addition, we cultured SV2B and SV2A/B

KO spinal cord neurons and observed that while SV2B KO mice

were still sensitive to the addition of TeNT, SV2A/B double KO

spinal neurons were protected from TeNT; again the neurons

were re-sensitized to the toxin after infection with SV2A virus

(Figure 5D). Together, these data indicate that SV2A and SV2B

mediate entry of TeNT.

SV2 has three putative N-linked glycosylation sites at amino

acids 498, 548, and 573 [53,54,55,56,57]. It has been shown that

Figure 3. Inhibition of exocytosis or endocytosis prevents the entry of TeNT into neurons. (A) Hippocampal neurons were transfected
with HA tagged wild type or K44A dynamin 1. Syb II was protected from cleavage by TeNT in hippocampal neurons expressing the dominant
negative form of dynamin as compared to control neurons. (B) Spinal cord neurons that were pretreated with 10 nM BoNT/A, to inhibit exocytosis,
failed to take-up TeNT (5 nM) at inhibitory boutons. (C) Hippocampal neurons were treated with TeNT (5 nM) which had or had not been pretreated
with BoNT/E (500 pM). Cell lysates were loaded and subjected to SDS-PAGE and immunoblot analysis. Pretreatment with BoNT/E prevented entry of
TeNT and cleavage of syb II. The arrow indicates the BoNT/E cleaved form of SNAP-25. Synaptophysin (syp), another SV protein, served as a loading
control.
doi:10.1371/journal.ppat.1001207.g003
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BoNT/E requires the third N-linked glycosylation site of SV2 to

enter neurons [30], so we investigated whether the glycosylation of

SV2 was also critical for TeNT entry. To address this, each of the

three SV2A N-linked glycosylation sites were mutated to generate

individual site mutants and were expressed in hippocampal

neurons using lentivirus. None of the individual glycosylation

mutations affected TeNT entry (Figure 5E). We note that PNGase

F treatment cannot access all the N-glycosylation sites of SV2 in

cultured neurons and triple glycosylation mutants of SV2 do not

target properly to SVs, so we are unable to completely rule out

whether the glycosylation of multiple sites might play a role in

toxin binding or entry ([30];data not shown). However, the

experiments reported here clearly demonstrate that – in contrast

to BoNT/E [30] - loss of glycosylation at each of the individual

glycosylation sites does not impact the entry of TeNT.

Next, we turned to an in vivo mouse model to investigate

whether SV2B KO mice are resistant to TeNT intoxication. We

injected WT and SV2B KO littermates with 5 mg/mouse of TeNT

and determined the length of time required for the mice to expire.

WT mice survived ,190 minutes post-injection, while SV2B KO

mice were resistant to TeNT and survived ,400 minutes post-

injection. The average survival time of KO mice (,400 minutes)

injected with 5 mg TeNT was longer than that of WT mice

injected with 1 mg of TeNT (,300 minutes) indicating the

effective concentration of TeNT was reduced by at least five-fold

in SV2B KO mice. (Figure 5F).

In order to determine whether the uptake of other toxins was

altered in SV2A/B double KO neurons, we used BoNT/F, which

also utilizes recycling SVs [58], as a control. We titrated BoNT/F

from 0.3 to 10 nM on WT and knockout neurons and observed no

significant difference in binding and entry, as evidenced by

cleavage of syb II, between these two conditions (Figure 5G).

These data indicate that loss of SV2 does not affect normal uptake

of toxins that target SVs and furthermore, in contrast to previous

suggestions, SV2A/B is not required for normal uptake of BoNT/

F [50,58].

SV2A/B expression does not determine the targeting of
TeNT to inhibitory spinal cord neurons

To further understand how TeNT targets inhibitory neurons

when released from MNs in the spinal cord, we first tested cortical

neurons at low concentrations of TeNT to determine which

population of neurons TeNT would affect first. Surprisingly in

Figure 6A, at 0.5 pM toxin, miniature excitatory postsynaptic

currents (mEPSCs) were reduced to 20% of control as compared

to 60% for miniature inhibitory postsynaptic currents (mIPSCs).

This is counter-intuitive because during the normal course of

tetanus pathology, TeNT affects inhibitory neurons rather than

excitatory neurons [1]. However, when spinal cord neurons were

treated with 50 pM TeNT, typical hyper excitability of the culture

– due to preferential loss of inhibitory transmission - was evident

3 hours after treatment (Figure 6B). However, extended incuba-

tion resulted in the inhibition of all action potentials (data not

shown). Since we observed distinct effects in cortical and spinal

cord neurons, we wondered whether different expression patterns

Figure 4. TeNT associates with SV2. (A) Biotinylated BoNT/B, E and TeNT were pre-incubated with neutravidin beads and then mixed with brain
detergent extract. Beads were washed and bound material was subjected to SDS-PAGE and immunoblot analysis. BoNT/B and BoNT/E both
associated with their receptors, synaptotagmin 1 (syt1, Cl 69.1) and SV2 (pan-SV2), respectively. TeNT showed a strong association with SV2, but not
with other synaptic vesicle proteins such as syt1 and synaptoporin (porin). (B) BoNT/E (20 nM) was analyzed for binding to hippocampal neurons in
the presence and absence of 2 mM HCR/T. Binding of BoNT/E to neurons was substantially reduced by HCR/T, indicating competition for binding to
SV2. (C) Hippocampal neurons were treated with 200 pM BoNT/E in the presence and absence of 20 nM HCR/T. The arrow indicates the BoNT/E
cleaved form of SNAP-25. Immunoblot analysis revealed that the presence of HCR/T resulted in the reduced cleavage of SNAP-25 by BoNT/E, again
indicating competition for binding to the same receptor.
doi:10.1371/journal.ppat.1001207.g004

SV2 Is Critical for Tetanus Toxin Intoxication
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Figure 5. SV2A/B KO neurons are resistant to TeNT. (A) Mouse spinal cord neurons with the following genotypes: WT, SV2B KO [SV2A (+/+)
SV2B (2/2)], and SV2A/B KO [SV2A (2/2) SV2B (2/2)], were exposed to HCR/T (50 nM). HCR/T fluorescence in SV2A/B KO neurons was dramatically
reduced as compared to WT and SV2B KO. (B) Quantification of HCR/T binding: fluorescence was reduced by 30% and 50% for SV2B KO and SV2A/B
KO neurons, respectively. Error bars represent SD, WT n = 9, SV2B KO n = 11, SV2A/B KO n = 12, ***p#0.001. (C) SV2B KO and SV2A/B KO cultures were
exposed to TeNT (20 nM) and BoNT/A (10 nM). Cell lysates were subjected to immunoblot analysis and probed for syb II, SV2, SNAP-25, and actin. Syb
II in SV2A/B KO neurons was largely protected from TeNT action until resensitized through lentiviral expression of SV2A or SV2B; arrow indicates the
BoNT/A cleaved form of SNAP-25. (D) SV2B KO and SV2A/B KO spinal cord neurons from were assayed for susceptibility to TeNT. Syb II was cleaved by
5 nM TeNT in SV2B KO neurons, while syb II was protected from TeNT in SV2A/B KO neurons. SV2A/B KO neurons could be resensitized to TeNT, upon
lentiviral expression of SV2A. (E) Three putative glycosylation sites in SV2A were removed by creating N to Q mutants (residues 498, 548 and 573) and
were expressed in SV2A/B KO neurons along with WT SV2A. Syb II was cleaved by TeNT in neurons reinfected with WT SV2A as well as the three
mutants. (F) WT and SV2B KO mice were injected with the indicated amounts of TeNT and their time-to-death was recorded. SV2B KO mice were

SV2 Is Critical for Tetanus Toxin Intoxication
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of SV2 isoforms could be responsible for the opposite phenotypes

observed in the two types of cultures. We found that among

cortical neurons, SV2A is largely colocalized with inhibitory

neurons, while SV2B is colocalized with excitatory neurons

(Figure 6C–D). In adult spinal cord slices, we focused our studies

on the ventral horn, where the cell bodies of MN are located. In

this area, SV2A was more colocalized to inhibitory neurons and

SV2B was largely colocalized with excitatory terminals. Since the

SV2 expression patterns for spinal cord versus cortical neurons are

similar, but TeNT has differential effects on excitatory versus

inhibitory synaptic transmission in these two preparations, other

yet to be defined factors must underlie the selective action of

TeNT on inhibitory synaptic transmission observed in vivo.

Discussion

Functionally, TeNT causes rigid paralysis, through a reduction

of the strength of inhibitory inputs on MNs; however, the pathway

through which TeNT enters neurons is unresolved. The majority

of studies indicate that TeNT enters neurons through a non-SV

pathway [35,36], although one report concluded that the toxin

enters via recycling SVs [34]. Among the CNTs, TeNT has the

most unique intoxication pathway, yet little is understood the

precise mechanism by which it reaches its target. In the current

study, we demonstrate that in cultured hippocampal and spinal

cord neurons, a receptor-binding fragment of TeNT exhibits

robust binding to nerve terminals only after we stimulated robust

SV exocytosis to deposit SV proteins into the plasma membrane.

This result indicates that SVs harbor a receptor for the TeNT. We

then extended these observations by determining whether full-

length TeNT achieves functional entry by being internalized via

recycling SVs. Indeed, in hippocampal neurons, as well as in

inhibitory spinal cord neurons that are the physiological targets of

TeNT, we observed markedly enhanced cleavage of TeNT’s

substrate, syb II, under conditions that stimulate SV exo- and

endocytosis. In addition, dominant negative dynamin was also

effective at inhibiting TeNT entry into hippocampal neurons.

Finally, to inhibit SV exocytosis, spinal cord neurons or

hippocampal neurons were pretreated with BoNT/A or E,

respectively, and were protected from the effects of TeNT.

Collectively, these findings firmly establish that the predominant

pathway by which TeNT enters central neurons is through

recycling SVs.

Most of the early efforts to identify the receptor for TeNT were

focused on MNs where it was suggested that the TeNT receptor

contained a PI-PLC sensitive GPI-anchor and was localized to

lipid rafts [14,35,37]. This GPI-anchored protein was postulated

to be the receptor important for retrograde transport of TeNT

from the periphery of the MN to the soma, which is located in the

spinal cord. Much of the literature has been dedicated to studying

this non-SV receptor, but surprisingly, little work has been done to

investigate the receptor in spinal cord neurons in the central

nervous system. We provide the first direct evidence that a distinct

vesicular compartment was required for entry into spinal cord

neurons versus MNs [14,35,37,59,60]. Because neuronal activity

and SV recycling were required for the cleavage of syb II,

indicating that the toxin receptor resided on SVs, we began to

screen SV proteins for TeNT binding activity. In order to achieve

this, we used biotinylated toxins incubated with detergent

solubilized brain extracts and identified the primary protein

associated with TeNT to be SV2. To further confirm that TeNT

uses SV2 as a receptor, we assayed for competition between TeNT

and a toxin known to use SV2A/B as its receptor, BoNT/E [30].

Notably, we found that an excess amount of TeNT efficiently

occluded the binding and entry of BoNT/E, consistent with

competitive binding for sites on SV2.

To determine, definitively, whether TeNT relies on SV2 to bind

and enter neurons, we took advantage of SV2A/B KO mice

[51,52]. We first cultured spinal cord neurons that lacked SV2A/B

and monitored binding of a receptor-binding fragment of TeNT;

WT neurons served as controls. It was observed that SV2B KO

neurons had reduced binding and SV2A/B double KO neurons

exhibited a further decrease in binding of HCR/T. Thus, both

SV2A and B are important for TeNT to recognize and associate

with the surface of central neurons. Furthermore, double KO

neurons were largely protected from TeNT, as evidenced by the

lack of cleavage of syb II; moreover, these neurons could be re-

sensitized through infection with viruses that expressed SV2A or

B. Using viruses that encode mutant forms of SV2, we found that

glycosylation at any one of the three N-linked glycosylation sites

was not required for TeNT to bind and enter neurons. In contrast,

the third glycosylation site plays a critical role for binding and

entry of BoNT/E and glycosylation appears to enhance the ability

of BoNT/A to enter neurons via SV2 [30]. Given this result, in

conjunction with the competition studies described above, TeNT

and BoNT/E are unlikely to bind to the exact same sites on SV2,

since BoNT/E requires glycosylation of the third N-linked

glycosylation site in intra-lumenal loop 4 whereas TeNT does

not. However, it seems likely that these two toxins compete for

binding (Figure 4B–C) due to a steric hindrance; two different

toxin molecules are unlikely to be able to simultaneously bind to

the relatively small intra-lumenal loops of SV2 that are exposed to

the extracellular milieu during exocytosis. Finally, intravenous

injections revealed that SV2B KO mice are at least five-times

more resistant to TeNT as compared to WT littermates.

The finding that SV2A/B double KO neurons exhibit

decreased binding and entry of TeNT, in conjunction with the

ability of TeNT to compete with BoNT/E, strongly implicates

SV2 as the receptor for TeNT. However, it remains possible that

loss of SV2 might prevent the proper expression or targeting of

yet-to-be identified protein receptors for TeNT. Our experiments

showing normal entry of BoNT/F, another toxin that requires SV

recycling for entry [58], into SV2A/B double KO neurons argues

against the notion that SV2 plays a general permissive role in toxin

entry.

Interestingly, when we exposed cortical neurons to low

concentrations of TeNT we discovered an unexpected preferential

action on excitatory versus inhibitory neurotransmission. In

contrast, in spinal cord cultures, TeNT preferentially acted on

inhibitory neurons resulting in the expected pathological symp-

toms of hyper excitability. To further investigate how TeNT is

directed to specific populations of neurons, we examined the

distribution of SV2A and SV2B in both preparations. We found

that SV2B expression is largely localized to excitatory terminals

while SV2A is preferentially localized to inhibitory neurons in

both cortical cultures and spinal cord slices; this differential

distribution was more striking with cortical neurons. Thus, SV2A/

B expression patterns do not seem to determine or dictate the

more than five-times more resistant to TeNT as compared to their WT counterparts. (G) WT and SV2A/B KO neurons were cultured and treated with
BoNT/F at the indicated concentrations. Cell lysates were probed for syb II and syp by immunoblot analysis. WT and SV2A/B KO neurons exhibited
similar sensitivities to BoNT/F.
doi:10.1371/journal.ppat.1001207.g005
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Figure 6. SV2A is largely expressed in inhibitory neurons while SV2B is predominately expressed in excitatory neurons. (A) Cultured
cortical neurons were exposed to the indicated concentrations of TeNT for 3 minutes in high K+ buffer then returned to the incubator for 2 days.
mEPSCs and mIPSCs were analyzed and the frequency of mEPSCs was reduced to a greater degree than mIPSCs. mEPSC/mIPSC at 0 pM TeNT, n = 10;
mEPSC at 0.5 pM TeNT, n = 10; mIPSC at 0.5 pM TeNT, n = 9; mEPSC/mIPSC at 5 pM TeNT, n = 8; error bars represent SEM. (B) Sample traces of
dissociated spinal cord neurons exposed to TeNT (50 pM) in high K+ buffer, washed than analyzed after 3 hours. Cultures treated with TeNT exhibited
pronounced hyper excitability, as evidenced by high-frequency bursting activity, as compared to control neurons. (C) Representative images of SV2A/
B staining with markers for excitatory (vGLUT1/2) or inhibitory (vGAT) boutons in cortical neurons and spinal cord slices. Red boxes indicate the
region that was subjected to analysis by immunocytochemistry. (D) Pearson’s coefficient for SV2A/B localization with excitatory/inhibitory terminals.
In cortical neurons, SV2A localizes to inhibitory terminals while SV2B localizes to excitatory terminals. In contrast, in spinal cord slices, SV2A showed a
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specificity of TeNT for inhibitory neurons. It was previously

suggested that structural features - especially the organization of

neurons that is lost in dissociated culture - can be important for the

selective action of TeNT on inhibitory neurons in the spinal cord

[1]. Since inhibitory neurons typically synapse directly onto the

cell body, while excitatory neurons form synapses on dendritic

spines, it is possible that the retrograde carrier for TeNT

predominately undergoes transcytosis at the cell body, thus

allowing TeNT to preferentially target inhibitory neurons.

The retrograde transport of TeNT along axons of MNs,

followed by transcytosis and final entry - through SVs - into

inhibitory neurons is reminiscent of the transport and transcytosis

of BoNT/A through the epithelial lining of the intestine and its

subsequent selective entry into MNs. As TeNT and the BoNTs are

related members of the CNT family, it is perhaps not surprising

that these two toxins would both make use of transcytosis

pathways, but that these pathways diverged during evolution to

allow for distinct points of entry. TeNT is typically introduced

through deep wounds, so it utilizes the MN as a mechanism of

transport back to the spinal cord, where its enzymatic activity is

focused on inhibitory neurons. BoNTs are typically ingested and

need to enter the bloodstream to access the NMJ; this is achieved

via transport across the epithelial layer in the gastrointestinal tract.

It is important to note that MNs also express SV2 [27]. This

raises the question as to how TeNT selectively targets inhibitory

interneurons, without affecting MNs; that is, why is the toxin not

taken up into SV2-harboring SVs that acidify in MNs, thereby

triggering translocation and resulting in flaccid paralysis (note: at

extremely high concentrations, TeNT can in fact inhibit

neurotransmitter release from MNs, probably via interactions

with SV2 [61]). As alluded to above, previous studies indicated

that SVs are not the major mode of entry as TeNT in MNs; e.g.

TeNT shows little colocalization with the SV protein, syb II [59].

Another issue raised by the results presented here is the question of

how TeNT is released from its receptor in MNs such that it can

bind to SV2 on inhibitory interneurons following transcytosis.

In our first model, we envision that once TeNT reaches the

NMJ, the protein receptor(s) responsible for retrograde transport

(peripheral receptor) has a lower affinity for TeNT as compared to

SV2. To prevent the entry of TeNT into SVs, the peripheral

receptor would have to be present in large excess as compared to

SV2, resulting in the sequestration of TeNT into the retrograde

pathway. Next, TeNT undergoes retrograde transport back to the

soma of the MN and the lack of acidification during transport

prevents toxin translocation; hence the toxin does not gain access

to the cytosol to cleave syb II [16]. During transcytosis, the

peripheral receptor is no longer in abundance as compared to

SV2. In addition, the higher affinity of SV2 for TeNT would allow

for efficient capture of the toxin once it has dissociated from the

MN, thus favoring binding and entry into the upstream inhibitory

neuron.

Alternatively, recent data suggesting that PSGs are not

internalized along with TeNT in MNs provide a second hypothesis

[59]. As opposed to the previous model, the peripheral receptor,

rather than SV2, has a higher affinity for TeNT. Therefore, once

TeNT reaches a MN, it targets the peripheral receptor rather than

SV2. As mentioned above, PSGs are important co-receptors for

the CNTs. Once bound to PSGs and the peripheral receptor,

TeNT is subsequently internalized into a vesicle bound for

retrograde transport; however, PSGs are not internalized and

remain on the plasma membrane [59,62]. The loss of PSGs might

dramatically reduce the affinity of TeNT for the peripheral

receptor, relative to SV2, so TeNT can be released from the MN

and target inhibitory neurons after transcytosis. Restated: the lack

of internalization of PSGs into retrograde carriers might permit

the release of the toxin from the MN. Further studies to identify

the peripheral receptor will help address these questions.

In conclusion, we demonstrate that the recycling SVs are the

primary mode of entry for TeNT into hippocampal and spinal

cord neurons. Furthermore, SV2 is critical for the binding and

entry of TeNT into neurons. To our knowledge, this is the first

definitive identification of a protein receptor that is critical for the

entry of TeNT into central neurons. This discovery identifies a

new target that can be exploited to prevent tetanus. In addition,

our greater understanding of the mechanism of TeNT entry

should facilitate the development of a new class of therapeutics

that allow for the delivery of drugs and genes to the central

nervous system.

Materials and Methods

Ethics statement
All animal care and experiment protocols in this study were

conducted under the guidelines set by the NIH Guide for the Care

and Use of Laboratory Animals handbook. The protocols were

reviewed and approved by the Animal Care and Use Committee

(ACUC) at the University of Wisconsin - Madison (assurance

number: A3368-01).

Antibodies, materials, and mouse lines
Monoclonal antibodies directed against syb II (Cl. 69.1), SV2

(pan-SV2), syp (Cl. 7.2), and SNAP-25 (Cl. 71.1) were generously

provided by R. Jahn (Max-Planck-Institute for Biophysical

Chemistry, Gottingen, Germany). Rabbit polyclonal antibodies

against BoNT/B and BoNT/E were described previously [29].

Guinea pig anti-vesicular glutamate transporter 1 and 2

(vGLUT1/2) antibodies were purchased from Chemicon (Teme-

cula, CA). Mouse anti-FLAG antibody was purchased from

Sigma-Aldrich (St. Louis, MO). Rabbit and mouse anti-vesicular

GABA transporter (vGAT) and rabbit anti-SV2A and B antibodies

were purchased from Synaptic Systems (Gottingen, Germany).

Rabbit anti-HA tag and mouse anti-actin antibodies were

purchased from Abcam (Cambridge, MA).

TeNT was purchased from List Biological Laboratories (Camp-

bell, CA). BoNT/B and BoNT/E were purified as previously

described [63,64]. Tetrodotoxin was purchased from Sigma-

Aldrich (St. Louis, MO). HCR/T, purified as previously described

[65], was generously provided by J. Barbieri (Medical College of

Wisconsin, Milwaukee, WI). SV2A, SV2B, and SV2A/B knockout

mouse lines were previously described [52].

Cell culture and spinal cord sections
Rat and mouse hippocampal neurons were cultured as

described previously [30]. Cultured rat spinal cord neurons were

prepared from embryonic (E) 14–15 day pups. SV2 knockout

spinal cord neurons were prepared from E12.5,14 timed

pregnant mice. Spinal cord neurons were dissected in Hybernate

E medium (Brain Bits, Springfield, IL), Spinal cords were cut into

12 pieces, incubated with 0.025% trypsin (Invitrogen, Carlsbad,

California) for 15 minutes at 37uC, dissociated with DNase

greater degree of colocalization with markers for inhibitory terminals than excitatory terminals, while SV2B largely localized to excitatory terminals.
Error bars represent SEM, SV2A cortical neurons n = 4, SV2B cortical neurons n = 6, spinal cord slice n = 13, *p,0.05, ***p,0.001.
doi:10.1371/journal.ppat.1001207.g006
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(20 mg/ml), washed with DMEM supplemented with 10% fetal

bovine serum (FBS), and then triturated. Neurons were plated on

12 mm glass coverslips coated with poly-D-lysine and rat-tail

collagen. Neurons were grown in DMEM with 10% FBS

overnight. Afterwards, the media was replaced with Neurobasal

medium supplemented with B-27 (2%) and Glutamax (2 mM).

Neurons were used between 14–24 days in vitro (DIV). Transient

transfection of neurons and lentiviral infections were performed as

described previously [30]. Spinal cords were dissected from adult

mice (4–6 months) and embedded in agarose. 300 mm serial

sections were taken from the lumbar and thoracic sections with a

vibratome.

Immunocytochemistry and western blots
Neurons were incubated in the following buffers: TTX

(150 mM NaCl, 4 mM KCl, 4 mM MgCl2, 10 mM D-glucose,

10 mM HEPES, 1 mM tetrodotoxin) and high K+ (same as TTX

buffer but adjusted to 55 mM KCl, 99 mM NaCl, 2 mM CaCl2,

2 mM MgCl2 and without the addition of tetrodotoxin) at pH 7.4

with an osmolarity adjusted to 310 mOsm. Unless otherwise

noted, neurons were incubated with toxins in high K+ buffer for

5 min. Images were collected with an Olympus FV1000 confocal

microscope under a 606 water immersion lens (Melville, NY),

Neuronal lysates were collected with 100 ml lysis buffer (20 mM

Tris, 150 mM NaCl, 1% Triton X-100, 0.05% SDS, 0.5% PMSF,

0.5 mg/ml leupeptin, 0.7 mg/ml pepstatin, 1 mg/ml aprotinin,

pH 7.4) per well (24-well plate). Lysates were subjected to SDS-

PAGE and immunoblot analysis.

Biotinylation of toxins and avidin bead pulldowns
0.4 mg of BoNT/B, E, and TeNT were dialyzed overnight at

4uC against 0.1M Na-MES buffer (pH 6.0). BoNT/A, B and

TeNT were incubated with 0.025 mg EDC and 0.067 mg EZ-link

biotin PEO4-amine at RT for 2 hr (Thermo Fisher, Waltham,

MA). The reaction mixture was then dialyzed against PBS

(pH 7.4) overnight at 4uC. 2.5 mg of biotinylated toxin was bound

to neutravidin beads (Thermo Fisher, Waltham, MA) that were

pre-blocked with 2% BSA and 0.1% cold water fish gelatin

(Sigma-Aldrich, St. Louis, MO). Beads were incubated with rat

brain detergent extracts and 250 mg/ml mixed PSGs for 1 hr at

4uC. Bound material (20%) was subjected to SDS-PAGE and

immunoblot analysis.

Mouse time-to-death assays
SV2B WT and KO littermates were injected intravenously with

100 ml of the indicated amount of TeNT resuspended in GelPhos

(30 mM sodium phosphate, 0.2% gelatin, pH 6.3, autoclaved).

Four mice were used in each experimental condition. Mice that

survived longer than 420 minutes were euthanized.

Electrophysiology
Whole-cell recordings were performed using a MultiClamp

700B amplifier (Molecular Devices). The bath solution consists of

(in mM) 128 NaCl, 30 glucose, 5 KCl, 5 CaCl2, 1 MgCl2, 25

HEPES; pH 7.3. For recording action potentials or mEPSCs, the

pipette solution contained (in mM) 125 K-gluconate, 10 KCl, 5

EGTA, 10 Tris-phosphocreatine, 4 magnesium ATP, 0.5 sodium

GTP, 10 HEPES, pH 7.3 (305 mOsm). For recording mIPSCs,

the pipette solution contained (in mM) 147 CsCl2, 2 EGTA, 5

Tris-phosphocreatine, 2 magnesium ATP, 0.5 sodium GTP, 10

HEPES, pH 7.3 (305 mOsm). To isolate AMPA receptor-

mediated mEPSCs, 0.5 mM TTX (sodium channel blocker,

Tocris), 50 mM D-AP5 (NMDA receptor antagonist; Tocris) and

20 mM bicuculline (GABAA receptor antagonist; Tocris) were

added. To isolate GABAA receptor-mediated mIPSCs, bicuculline

was replaced with 20 mM CNQX (AMPA receptor antagonist,

Tocris). Recordings of mEPSCs and mIPSCs were performed in

voltage-clamp mode with membrane potential held at 270 mV.

Recordings of action potentials were performed in current-clamp

mode with current held at 0 pA. Data were acquired using

pClamp (Molecular Devices) software, sampled at 10 kHz, and

filtered at 2 kHz. Off-line data analysis was performed using

Clampfit (Molecular Devices) or MiniAnalysis (Synaptosoft)

software. All experiments were carried out at room temperature.

Statistical methods
Statistical significance was evaluated by two-tailed unpaired

Student’s t-test: *p,0.05, **p,0.01, ***p,0.001.
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