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Abstract

Whole-genome sequencing is a powerful tool for analyzing genetic variation on a global

scale. One particularly useful application is the identification of mutations obtained by classi-

cal phenotypic screens in model species. Sequence data from the mutant strain is aligned to

the reference genome, and then variants are called to generate a list of candidate alleles. A

number of software pipelines for mutation identification have been targeted to C. elegans,

with particular emphasis on ease of use, incorporation of mapping strain data, subtraction of

background variants, and similar criteria. Although success is predicated upon the sensitive

and accurate detection of candidate alleles, relatively little effort has been invested in evalu-

ating the underlying software components that are required for mutation identification.

Therefore, we have benchmarked a number of commonly used tools for sequence align-

ment and variant calling, in all pair-wise combinations, against both simulated and actual

datasets. We compared the accuracy of those pipelines for mutation identification in C. ele-

gans, and found that the combination of BBMap for alignment plus FreeBayes for variant

calling offers the most robust performance.

Introduction

Next-generation sequencing (NGS) has transformed our ability to study genetic variation.

Entire genomes can be sequenced in a matter of days at relatively low cost. Comparison of

whole-genome data from two or more samples allows the global determination of sequence

differences between them. The technology has been applied to species from viruses to humans,

and has proven particularly useful for identifying causative mutations obtained in forward

genetic screens.

Mutation identification in model organisms typically begins with the alignment of sequence

data to a reference genome, followed by the generation of consensus variant calls, and finally

the application of data filters dictated by the species, genetic background, and pedigree. The

number of software tools available for each of those steps, coupled with their complexity, has

slowed the adoption of NGS by many researchers, who may find the analysis daunting. To
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address that challenge, a variety of integrated variant detection pipelines have been developed

with an eye toward ease of use. The integrated pipelines offer attractive features beyond the

simple identification of variants: filtering to remove strain-specific variants and common

sequencing artifacts, determination of candidate intervals by polymorphism mapping, and/or

incorporation of annotations to identify non-synonymous mutations. Several of those pipe-

lines have been tailored to Caenorhabditis elegans, including MAQGene [1] CloudMap [2],

and MiModD [3] The latter two have been integrated into the popular Galaxy platform [4–6],

which provides users a browser-accessible graphical interface. For a more detailed description

of those tools, the reader is directed to a recent WormMethod review [7].

Accurate detection of candidate variants is a necessary prerequisite for success in identify-

ing mutations. However, software for sequence alignment and variant calling is under contin-

uous development, and it is seems probable that some of the older components incorporated

into those integrated pipelines are not optimal. For example, MAQGene is based on MAQ [8],

a combined aligner and variant caller. However, that early-generation tool is unable to align

gapped sequences and, therefore, fails to detect most insertions and deletions. Likewise, Cloud-

Map utilizes the GATK UnifiedGenotyper [9] for variant calling, yet the GATK developers rec-

ommend the newer HaplotypeCaller as a superior alternative [10–11]. Note that Galaxy-based

workflows such as CloudMap and MiModD can be edited easily to incorporate alternative

software components, so the added functionality of those pipelines does not preclude the use

of improved tools for alignment and variant-calling.

An additional consideration is that much of the NGS analysis software is developed for and

benchmarked against human data. However, the human genome differs significantly from the

worm in terms of size, degree of repetitive sequences, and zygosity of variant alleles. Those

properties impose constraints on algorithm design and influence the heuristics employed to

address them. Similarly, best-practices guidelines for variant analysis are usually developed

with the human genome in mind, and may not be ideal for other species. Finally, there is the

separate issue of software compatibility. Despite the widespread adoption of standard formats,

such as SAM/BAM and VCF, differences between format versions or the inclusion of optional

field data can produce idiosyncratic interactions between specific software components.

To address those concerns, we performed variant detection with several data sets derived

from C. elegans. We produced simulated reads that replicate the type of data typical for muta-

tion identification in worms. We evaluated a number of sequence aligners and variant callers,

in all pair-wise combinations, for sensitivity and selectivity in the detection of known variants.

We also characterized the software using actual genome sequence data from strains that con-

tain a large number of polymorphisms, validating the variant calls by prior annotation. We

observed that the results were affected by the variant type (SNP, insertion, or deletion), zygos-

ity, and length of insertion or deletion. Although no single pair of components was the best for

every category of variant, we have determined that BBMap plus FreeBayes offers robust perfor-

mance across all of the data that were tested.

Materials and methods

The following software were used for sequence alignment: BBMap [12], BFAST [13], Bowtie 2

[14], BWA [15] and NovoAlign [16] The software used for variant calling were: FreeBayes

[17], GATK HaplotypeCaller [18], SAMtools/BCFtools [19], and VarScan 2 [20]. Additional

software utilities included BEDTools [21], Picard [22] VCFLIB [23], and VCFtools [24]. Each

software package was installed per the developers’ instructions. Version information and

commands for software operation are listed in the Supporting Information (S1 and S2 Files,

respectively).

Comparing WGS pipelines for mutation identification in worms
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Simulated data were produced using the ‘randomreads’ function of BBMap [12]. Perfect-

match data were generated from the C. elegans reference genome version WS250 (http://www.

wormbase.org) with no errors and high base-quality scores (�35). Genome coverage was cal-

culated after filtering to remove reads with map quality scores�3 (~50% likelihood of mis-

mapping). Simulated ethyl methanesulfonate (EMS) mutagenesis-type data were generated

from a modified version of the reference genome into which mutations had been introduced

by a custom script. The modified reference contained the following mutations (all listed in S1

Table): 1000 homozygous single-nucleotide polymorphisms (SNPs), 1000 heterozygous SNPs,

50 homozygous small (1-15-bp) insertions, 50 heterozygous small insertions, 50 homozygous

small (1-15-bp) deletions, 50 heterozygous small deletions, and six each (one per chromo-

some) homozygous large (100-500-bp) deletions, transposon insertions, and complex inser-

tions/deletions (indels). Single-end 50-bp reads were generated with an error distribution of

0.2% random SNPs and 0.002% random indels. Simulated Escherichia coli data were generated

from reference MG1655 [25] with the same error distribution.

Sequence data for Hawaiian SNPs have been described previously [26] and are available at

the NCBI Sequence Read Archive (BioProject accession number PRJNA305991). For Hawai-

ian SNP-calling sensitivity, data were combined from wild-type strain N2 Bristol and polymor-

phic Hawaiian strain CB4856 [27]. Libraries from each strain were constructed using the

TruSeq library prep (Illumina, San Diego, CA), and single-end 50-bp sequencing performed

on a HiSeq 2500 instrument (Illumina, San Diego, CA). The two libraries were sequenced

independently and the data (20-fold total coverage) combined at two different ratios to repre-

sent heterozygous (50% Hawaiian) or low-frequency (5% Hawaiian) SNPs. Prior work identi-

fied a subset of 103,346 annotated Hawaiian SNPs from genome reference version WS220

suitable for mapping (Haw filtered list) [2]. Conversion to genome reference version WS250

removed twenty SNPs, leaving 103,326 high-quality SNPs (S2 Table); those were used to vali-

date variant calls obtained from the sequence data. One of the variant callers (FreeBayes) clas-

sified SNPs in close proximity as multiple nucleotide polymorphisms (MNPs) or complex

variants; those were separated into constituent SNPs with the ‘vcfallelicprimitives’ function

of VCFLIB [23] prior to Hawaiian SNP annotation. For the Hawaiian mapping plot example,

variants were called with BBMap plus FreeBayes using default parameters (minimum 20%

variant frequency supported by at least two reads) or declared variables (1% frequency, one

supporting read). Hawaiian SNP frequencies with LOESS regressions were plotted against

chromosome position with R [28]. Commands for Hawaiian SNP sensitivity detection are

available as S3 File.

Results and discussion

Readers not interested in the details of the comparative analyses can skip to the last section for

recommendations on the optimal workflow for mutation identification in C. elegans.

Software selection

Our objective was to identify software components and parameters that are optimally suited to

the task of mutation identification in C. elegans. Given the number of options for sequence

alignment and variant calling, it was not feasible to undertake a comprehensive survey of all

software. Thus, we decided to limit our analysis to open-source software tools that are freely

available and have been widely cited in the literature. We selected five alignment tools that

were designed specifically for short-read DNA sequencing (DNA-Seq), as opposed to RNA-

Seq or genome-to-genome alignment, and four tools for variant calling. We acknowledge that

our choices are limited and somewhat arbitrary, and anticipate the availability of superior
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software. Therefore, we have made our test data available (see Materials and methods) so that

the community can evaluate other tools independently. Although we do not include opera-

tional metrics (memory requirements and run times), each of the selected software tools can

be run on a moderately powerful computer (four cores, 16GB RAM) in a span of hours.

Perfect-match data

Before proceeding with variant detection, we wanted to address two questions regarding base-

line performance of the analysis: 1) How much of the genome is accessible by alignment? 2)

How much data is required for comprehensive coverage? To tackle those questions, we evalu-

ated the five aligners using perfect-match data (i.e., with no mutations or errors).

A portion of the C. elegans genome is repetitive and therefore refractory to mutation identi-

fication. The short reads (typically 50-250-bp) generated by most current NGS platforms affect

variant detection within repeated sequences in two ways. First, reads derived from identical

repeats that are longer than the read length cannot be uniquely aligned to the reference

genome. Depending upon the aligner, those can be flagged as multi-mapping reads without

positional information, assigned to the first best matching locus, or randomly assigned to one

of the matching loci. In none of those cases is the alignment suitable for variant calling. Sec-

ond, reads derived from nearly identical repeats produce multiple alignments that differ mini-

mally and are assigned low-confidence mapping quality scores. Those values are incorporated

into the variant-calling algorithms, producing variant calls with low quality scores that are

often filtered as probable false-positives. Consequently, repeated regions of the genome are

largely resistant to variant detection by short-read sequencing.

As a practical consideration, the inaccessibility of some repeat sequences has minimal

impact on mutation identification. A large fraction is derived from canonical repetitive ele-

ments, such as transposons, where mutation within the repeat is unlikely to produce a pheno-

type. And, while mobilization of a repetitive element and insertion within a gene can disrupt

its function, that mechanism is quiescent in the standard C. elegans laboratory strain. However,

some repeats are derived from the duplication of coding sequences. Paralogs, pseudogenes,

and conserved protein-coding domains represent potential sources of sequence duplication

that might preclude variant detection in some genes. The impact of sequence duplication is

not merely hypothetical: the top-2(it7) mutation cannot be identified by some variant-calling

pipelines due to sequence similarity between top-2 and its paralog cin-4 [29].

To our knowledge, the degree of repeated sequence defined by short-read alignment has

not been reported for C. elegans, so we performed that analysis. Twenty-fold genome coverage

provides sufficient data to detect 99% of variants in both worms [30] and humans [31], so we

began our analysis at that depth. We generated a perfect-match data set of 40 million 50-bp

single-end reads from the 100 Mb C. elegans reference genome, and performed alignment with

each of the five selected aligners using default parameters. We determined the percentage of

reads that were unmapped or had low mapping quality scores, an indicator of possible mis-

mapping. Those numbers were similar for all of the aligners, ranging from 6.49–7.20% of the

total (Table 1). After filtering to remove those reads, we examined the fraction of the genome

that was uncovered.

A minimum coverage depth of three independent reads is a reasonable guideline for variant

calling, to limit false-positive calls that arise from the combination of low coverage plus

sequencing errors, so we used that threshold to discriminate covered from uncovered regions.

The percentage of uncovered genome (4.86–5.40%) varied slightly by aligner and correlated

with the degree of low-confidence mapping (Table 1). Since the overwhelming majority of

mutations that yield phenotypes lie within protein coding sequences, we determined the

Comparing WGS pipelines for mutation identification in worms
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overlap between the uncovered regions and exons. We found that 2.96–3.06% of total exonic

sequences were not covered, encompassed by 2,067–2,134 genes (Table 1). Thus, of the 20,538

C. elegans genes, ~10% contain some sequences that are not accessible by short-read

alignment.

The observed lack of coverage might arise from an insufficient amount of data rather than

the presence of repetitive sequences in the genome. However, an increase in the data from

20-fold to 50-fold genome coverage produced only a modest increase (~0.3%) in the covered

fraction of the genome and correspondingly little improvement in gene coverage (Table 2).

Furthermore, the 50-fold-coverage data set represents an independent random sampling of

the genome. If lack of coverage were a consequence of insufficient data, then the uncovered

regions of the genome would differ between the two data sets. Instead, the uncovered segments

largely corresponded (>99% overlap between the 50-fold and 20-fold data sets; in S4 File). We

conclude that ~5% of the genome (and ~3% of coding sequence) is inaccessible by single-end

50-bp sequence data, and that 20-fold coverage is sufficient for the accessible fraction.

Although extra data does not significantly improve genome coverage, we determined that

the type of sequence data does have an impact. We generated two additional data sets for com-

parison: single-end 150-bp reads (the current maximum read length on Illumina’s produc-

tion-scale sequencers) and paired-end 50-bp reads, each at 20-fold coverage. With the

exception of BFAST, which provided the least coverage across all types of data tested, the frac-

tion of uncovered genome was reduced to 2.22% when using single-end 150-bp data, with cor-

responding reductions in the amounts of uncovered coding sequence (1.85%) and numbers of

Table 1. Perfect-match SE-50bp 20-fold genomes, mapping and genome coverage.

Aligner Unmapped/low map qualitya Uncovered genomeb Uncovered CDS (number of genes)c

BBMap 7.04% 5.29% 3.00% (2,089)

BFAST 7.20% 5.40% 3.06% (2,134)

Bowtie 6.49% 4.86% 2.96% (2,067)

BWA 6.50% 4.87% 2.96% (2,067)

Novoalign 6.49% 4.86% 2.96% (2,067)

aThe percentage of reads with map quality scores� 3.
bThe percentage of nucleotides with read depth coverage < 3.
cThe percentage of coding sequence in the genome that is uncovered, and the number of genes that contain uncovered coding sequence. Total coding

sequence, 25,460,976 bases. Total number of genes, 20,538.

https://doi.org/10.1371/journal.pone.0174446.t001

Table 2. Percentage of uncovered sequence using various perfect-match data setsa.

SE-50bp, 50Xb SE-150bp, 20X PE-50bp, 20X

Aligner Uncc CDS genes Unc CDS genes Unc CDS genes

BBMap 4.94% 2.87% 1,982 2.22% 1.85% 897 2.55% 1.73% 855

BFAST 5.10% 2.91% 2,016 3.05% 2.01% 989 5.40% 3.07% 2,124

Bowtie 4.56% 2.84% 1,960 2.22% 1.85% 897 2.35% 1.61% 781

BWA 4.57% 2.84% 1,960 2.22% 1.85% 897 2.17% 1.61% 785

Novoalign 4.56% 2.84% 1,960 2.22% 1.85% 897 2.41% 1.65% 863

aThe percentage of nucleotides with read depth coverage < 3.
bTypes of sequence data (SE, single-end; PE, paired-end), read length, and fold genome coverage.
cValues for the percentage of the uncovered genome (Unc), percentage of uncovered coding sequences (CDS), and the number of genes that contain

uncovered coding sequence.

https://doi.org/10.1371/journal.pone.0174446.t002
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genes affected (897) (Table 2). Paired-end 50-bp data provided comparable improvement in

genome coverage (2.17–2.55% uncovered) and slightly better gene coverage (1.61–1.73%

uncovered coding sequence, affecting 781–863 genes) (Table 2). However, the cost for those

types of data is significantly higher (roughly twice that of single-end 50-bp sequencing), so the

user must balance the superior coverage to be gained against the additional expense.

EMS-type data

The evaluation of accuracy requires sequence data for which the entire constellation of variants

is known, to discriminate true-positive, false-positive, and false-negative variant calls. There-

fore, we produced simulated reads from a modified reference genome that contained defined

variants. At the same time, we sought to replicate as faithfully as possible the properties of

actual data derived from C. elegans. Ethyl methanesulfonate (EMS) treatment is the most com-

mon method of mutagenesis in this species. The spectrum of EMS-induced alleles has been

characterized in C. elegans [32], so we incorporated the same types and frequencies of those

variants (predominantly SNPs; see Materials and Methods for details) in our test data. The

simulated reads also contained an error distribution typical of Illumina sequencers (the most

widely used sequencing platform). The majority of the published data for mutation identifica-

tion in C. elegans are single-end 50-bp reads, so we generated data of that type at 20-fold cover-

age. We also included an additional 5% of E. coli reads to mimic the bacterial food source that

is a common contaminant.

We performed alignment and variant calling in all pair-wise combinations, with default

parameters for all software, generating a total of 20 data sets. Three pairs of software yielded

unexpected results that suggested idiosyncratic interactions between the components. The

BBMap+FreeBayes combination produced only SNP calls but no insertions or deletions. That

result was a consequence of how sequence mismatches were represented in the alignment file

(specifically, the CIGAR string of the SAM file; see [33] for format details). The behavior was

corrected by addition of an optional format flag to the default command (see S2 File for all

command-line parameters). BFAST+FreeBayes yielded an excessive number of false-positive

variant calls (2940 of 5083 total variants, equaling 58%). Filtering the output by a minimum

quality score, as recommended by best-practice guidelines (see below), reduced the number of

false-positive variants by >98% while retaining >98% of true-positive calls. BFAST+VarScan2

also produced a large number of false-positive variant calls. VarScan2 represents allele quality

by p-value, whereas the other variant callers report PHRED-scaled quality scores as specified

by the VCF standards [34] However, we were unable to define a clear-cut threshold for BFAST

+VarScan2 to discriminate true-positive from false-positive calls, even after converting quality

scores to the specified format. Therefore, we excluded that combination from further analysis,

leaving nineteen minimal variant-calling pipelines for evaluation.

We compared the output from each pair of software components to the list of known var-

iants and tallied the number that were true-positive, false-positive, or mismatch calls (an

incorrect variant call within 20 nucleotides of a bona fide variant). We categorized the

results by allele type and zygosity, and identified the pipelines in each class with the most

sensitivity (highest number of true-positive calls). For homozygous SNPs, sensitivity ranged

from 87% to 98%, and five pipelines correctly identified greater than 95% of variants (Fig

1A, indicated by asterisks). All pipelines were less sensitive to heterozygous SNPs, in some

cases significantly so (range 76–95%), but three identified at least 93% of variants (Fig 1B).

SNP identification was influenced more by the variant caller than aligner; all of the top pipe-

lines employed either VarScan2 (for homozygous SNPs) or FreeBayes (both homozygous

and heterozygous SNPs).

Comparing WGS pipelines for mutation identification in worms
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The pipelines exhibited different characteristics for insertions and deletions compared to

SNPs. First, sensitivity was not consistently affected by zygosity. Six pipelines produced true-

positive rates�90% for both homozygous and heterozygous insertions, and three of those also

identified�90% of homozygous and heterozygous deletions (Fig 1C and 1D, respectively).

Second, deletion calls (but not insertions) were more dependent upon the aligner than the var-

iant caller, with relative sensitivities of BBMap� Novoalign > BFAST > Bowtie> BWA.

Note that this pattern differs from the relative fraction of unaligned reads (Table 1; Bowtie�

BWA� Novoalign < BBMap < BFAST), so sensitivity for detection of deletions does not cor-

relate with overall alignment rates.

We also included in our data a small number (six each, one per chromosome) of homozy-

gous structural variants that are not typical of EMS mutagenesis: complex insertion/deletions

(indels), large deletions, and transposon insertions. The pipelines that we tested were not

designed for such variants, and that limitation was largely borne out by the results; 13 failed to

identify even a single structural variant correctly (S1 Fig). However, one combination per-

formed significantly better than anticipated. BBMap+FreeBayes correctly identified four

Fig 1. Sensitivity of variant-calling pipelines for EMS-type mutations. The percentage of true-positive (TP) mutation calls is indicated for

each combination of aligner plus variant caller (F, FreeBayes; G, GATK HaplotypeCaller; S, SAMtools/BCFtools; V, VarScan2) and plotted

separately for different categories of variants. Homozyous (blue) and heterozygous (red) mutation calls are indicated by color. Asterisks (*)

indicate the best-performing pipelines in each category. (A) Homozygous SNPs. (B) Heterozygous SNPs. (C) Insertions. (D) Deletions.

https://doi.org/10.1371/journal.pone.0174446.g001
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(67%) of the complex indels, and all six (100%) of the large deletions. While failing to identify

any of the transposon insertions accurately, BBMap+FreeBayes also reported one or more mis-

match calls at each of the transposon loci. Although beyond the scope of the current study, we

note that superior detection of indels and structural variants can be obtained using paired-end

data and specialized software for that application.

We evaluated the error rates for each pair of software, and found them to be low. For false-

positive calls, the proportion ranged from 0–5.2% of the total number of variant calls (Fig 2A).

We observed that the most sensitive pipelines exhibited the highest error rates (compare with

Fig 1A), and that heterozygous SNPs were the most common class of false-positive variants.

Similarly, mismatch calls were a small fraction of the total (range 0–2.4%), and predominantly

associated with the structural variants (Fig 2B). Those observed error rates would have mini-

mal impact on mutation identification. The number of candidate alleles in a typical mapping

interval is low (<10), and candidates can be validated by Sanger sequencing and/or functional

criteria such as RNAi, transgene rescue, or CRISPR/Cas9-mediated genome engineering (see

[35] for examples). Consequently, false-positive calls are readily eliminated and mismatch calls

might even prove useful for identifying the causative locus, even if the molecular description

of that variant is incorrect. Therefore, we conclude that errors are not a significant challenge to

mutation identification in C. elegans for data derived from EMS-mutagenized strains.

Although we used default software parameters (with the exceptions noted for idiosyncratic

interactions), all of the variant callers offer best-practice guidelines for improved performance.

We considered the utility of implementing those guidelines for our analysis, but anticipated

minimal changes in our results. Most of those additional steps are designed to reduce false-

positive calls, which (with the exception of BFAST+FreeBayes, addressed above) are already a

small fraction of the total. Two variant callers (GATK and SAMtools) recommend the same

two best-practice additions to the workflow prior to variant calling: 1) the marking or removal

of duplicate reads to eliminate error-containing PCR duplicates that could give rise to false-

positive calls, and 2) base quality recalibration to discriminate true variants from sequencing

errors that might generate false-positive calls. SAMtools further recommends local realign-

ment around indels to resolve alignment ambiguities likely to produce false-negative or

Fig 2. Error rates of variant-calling pipelines. The fraction of (A) false-positive (FP) and (B) mismatch (MM) mutation calls as a percentage of

the total number of variants called by each pipeline. Variant callers are indicated as in Fig 1. Color codes for different categories of variants are

indicated by the key (inset). Abbreviations: struct, structural variant; hom, homozygous; het, heterozygous; del, deletion; ins, insertion; SNP,

single-nucleotide polymorphism.

https://doi.org/10.1371/journal.pone.0174446.g002
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mismatch calls. GATK includes variant quality recalibration after variant calling to improve

specificity. Finally, all of the variant callers endorse filtering (by read depth, strand bias, map-

ping quality, and/or other criteria) to remove probable false-positive calls.

While best-practice guidelines are generally applicable to variant calling, many of those

steps are poorly suited to our specific example of mutation identification in C. elegans. Recali-

bration of both base quality and variant quality requires a list of known variants to establish

metrics for true-positive calls. Although that information is available for our simulated reads,

it is generally unavailable for actual data obtained from mutant strains. Many of the parame-

ters for filtering false-positive calls are subjective and require optimization for each workflow.

Filtering also reduces the sensitivity to true-positive calls and runs the risk of excluding bona
fide variants. Therefore, we elected to forego many of the complexities of best-practice guide-

lines. We incorporated duplicate removal and a minimum read depth of three into all of our

pipelines (in addition to the pipeline-specific modifications mentioned previously), but other-

wise used default parameters for subsequent analyses.

Hawaiian SNP mapping data

EMS mutagenesis in C. elegans generates thousands of variants, of which only one is responsi-

ble for the phenotype of interest. By using the appropriate strain for crossing, both map posi-

tion and candidate alleles can be ascertained from the sequence data. One popular method

utilizes the highly polymorphic Hawaiian strain isolate [27] for simultaneous mapping and

mutation identification [36]. The strain contains >370,000 SNPs [37], of which ~30% have

been annotated in the wild-type reference genome ([38–39]; D. Spencer and R. H. Waterston,

unpublished data). After crossing and pooling of homozygous mutant F2 animals for sequenc-

ing, the Hawaiian SNPs exhibit anti-linkage to the causative mutation: the SNPs are heterozy-

gous at unlinked loci, but the frequency drops to zero near the mutation locus. Hawaiian SNP

frequencies are determined by variant calling, and then plotted on the physical map to identify

the gap that defines the mutation interval. The density of annotated Hawaiian SNPs (roughly

one per kilobase) allows mapping at high resolution, and the method has been widely adopted

by the community (e.g., [2, 35–36, 40– 43]).

The popularity of Hawaiian polymorphism mapping led us to evaluate our variant-calling

pipelines for that application. The most important feature for accurate mapping is the ability

to detect low-frequency SNPs from the pooled sample to delimit the mapping interval. Default

thresholds for variant-calling software adversely affect low-frequency SNP detection. The prior

expectation is that variants are either homozygous or heterozygous, and zygosity is determined

by the fraction of reads that contains the variant call. Those that fail to meet a minimum

threshold are filtered by default to remove false-positives arising from sequencing errors. How-

ever, the fractional representation of Hawaiian SNPs approaches zero near the mutation locus,

so default thresholds remove bona fide low-frequency SNPs and reduce mapping resolution.

Data from a representative mapping cross illustrate the impact of thresholds on the mapping

interval (Fig 3, compare A and B). Therefore, it is necessary to specify a lower threshold during

variant calling to capture the low-abundance SNPs for maximum mapping resolution.

We assessed the SNP detection limits of our pipelines from actual (not simulated) sequence

data by combining Hawaiian and N2 wild-type samples (single-end, 50-bp, 20-fold coverage)

in two different ratios: 50% Hawaiian data, representing unlinked heterozygous SNPs, and 5%

Hawaiian data, equal to one SNP-containing read per 20-fold coverage. We performed variant

calling with all 19 pipelines, with parameters adjusted to obtain maximum sensitivity (see S3

File), and used 103,326 high-confidence Hawaiian SNPs as our true-positive variants for vali-

dation. Sensitivity was high (>90%) for all of the pipelines for the 50% Hawaiian sample, but
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varied significantly for the 5% Hawaiian sample (Fig 3C). Sensitivity for the latter sample was

largely unaffected by the aligner but highly dependent upon the variant-calling software. Free-

Bayes and VarScan2 were the most sensitive, identifying 49–56% Hawaiian SNPs. GATK was

considerably less sensitive, with 12–14% Hawaiian SNPs being identified. SAMtools is not

designed to detect low-frequency variants from pooled samples and, as a result, offered the

worst performance (only 3–4% Hawaiian SNPs detected). Note that the parameters required

for maximum sensitivity cannot discriminate low-frequency SNPs from sequencing errors and

are not suitable for identifying candidate mutations; those should be called independently

using default parameters as described previously.

Recommendations

Our objective was to identify an optimized workflow for mutant allele detection in C. elegans
from whole-genome sequence data. For sequencing, the most complete coverage of the

genome was obtained using paired-end sequencing with 50-bp (or longer) reads at 20-fold

Fig 3. Sensitivity of variant-calling pipelines for Hawaiian SNPs. (A) Plot of Hawaiian (Haw) SNP fraction vs. physical map position

using the default threshold for variant calling. Shown is a representative example used to map lin-9(n112), located on chromosome III at

position 8.9 Mb (red arrow), with BBMap+FreeBayes for variant calling. Green line, LOESS regression of the SNP fraction. (B) The same

data as A with a minimum threshold of 1% variant call and one supporting read for FreeBayes. Mapping data from [26]. (C) Sensitivity for

50% (blue) and 5% (red) Hawaiian SNPs. The percentage of true-positive (TP) Hawaiian SNP calls are indicated for each pipeline. Variant

callers are indicated as in Fig 1.

https://doi.org/10.1371/journal.pone.0174446.g003
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depth of coverage. Absent other considerations, that would be the preferred choice; however,

that option may not be particularly cost-effective. We find that single-end 50-bp sequencing

at 20-fold depth of coverage is sufficient to detect mutations in ~97% of protein-coding

sequences, providing a reasonable balance between coverage and cost.

For data analysis, we recommend the combination of BBMap for alignment and FreeBayes

for variant calling (a detailed, step-by-step workflow is diagrammed as S2 Fig with command-

line instructions as S5 File). The most important criterion for mutation identification in

C. elegans is sensitivity to true-positive variant calls: candidate alleles can be validated by inde-

pendent methods, but only if detected by the pipeline. In contrast, the error rate is not a signif-

icant concern with the recommended pipeline, because false-positive and mismatch calls

represent only a small fraction of the total and can be readily eliminated during candidate allele

validation. Although no single pipeline was the most sensitive for every class of variant, the

combination of BBMap for alignment and FreeBayes for variant calling was consistently

among the top performers across all categories of EMS-generated mutations. In addition,

BBMap+FreeBayes was able to detect a significant number of the structural variants that were

largely missed by all of the other pipelines. This combination also offered robust performance

for low-frequency Hawaiian SNP detection and interval mapping using appropriate parame-

ters. While continual improvements in sequencing platforms and alignment and variant-call-

ing software will require ongoing evaluation, our current recommendation is BBMap plus

FreeBayes as the preferred tools for mutation identification in C. elegans.

Supporting information

S1 Fig. Detection of structural variants. The number of structural variants (SVs) in each cate-

gory that were identified by true-positive (top) or mismatch (bottom) calls for each pipeline.

Color codes for different categories of structural variants are indicated by the key.

(TIFF)

S2 Fig. Schematic diagram of recommended workflow for variant calling.

(TIFF)

S1 File. List of software tools and versions used.

(DOCX)

S2 File. Software commands for default variant-calling pipelines.

(DOCX)

S3 File. Software commands for low-sensitivity Hawaiian SNP calling.

(DOCX)

S4 File. BED file of uncovered regions shared by SE-50bp data at 20-fold and 50-fold

genome coverage.

(DOCX)

S5 File. Command-line instructions for recommended BBMap + FreeBayes pipeline.

(DOCX)

S1 Table. List of EMS-type variants.

(XLSX)

S2 Table. List of 103,326 Hawaiian SNPs from reference genome version WS250 in VCF

file format.

(TXT)
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