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Abstract: A series of the magnetic CuFe2O4-loaded corncob biochar (CuFe2O4@CCBC) materials was
obtained by combining the two-step impregnation of the corncob biochar with the pyrolysis of oxalate.
CuFe2O4@CCBC and the pristine corncob biochar (CCBC) were characterized using XRD, SEM,
VSM, BET, as well as pHZPC measurements. The results revealed that CuFe2O4 had a face-centered
cubic crystalline phase and was homogeneously coated on the surface of CCBC. The as-prepared
CuFe2O4@CCBC(5%) demonstrated a specific surface area of 74.98 m2

·g−1, saturation magnetization
of 5.75 emu·g−1 and pHZPC of 7.0. The adsorption dynamics and thermodynamic behavior of Pb(II)
on CuFe2O4@CCBC and CCBC were investigated. The findings indicated that the pseudo-second
kinetic and Langmuir equations suitably fitted the Pb(II) adsorption by CuFe2O4@CCBC or CCBC.
At 30 ◦C and pH = 5.0, CuFe2O4@CCBC(5%) displayed an excellent performance in terms of the
process rate and adsorption capacity towards Pb(II), for which the theoretical rate constant (k2) and
maximum adsorption capacity (qm) were 7.68 × 10−3 g·mg−1·

·min−1 and 132.10 mg·g−1 separately,
which were obviously higher than those of CCBC (4.38 × 10−3 g·mg−1

·min−1 and 15.66 mg·g−1).
The thermodynamic analyses exhibited that the adsorption reaction of the materials was endothermic
and entropy-driven. The XPS and FTIR results revealed that the removal mechanism could be mainly
attributed to the replacement of Pb2+ for H+ in Fe/Cu–OH and –COOH to form the inner surface
complexes. Overall, the magnetic CuFe2O4-loaded biochar presents a high potential for use as an
eco-friendly adsorbent to eliminate the heavy metals from the wastewater streams.
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1. Introduction

With the development of industry and technology, large quantities of heavy metals are getting
widely used in metallurgical, electroplating, and battery industries, among others. Thus, significant
amounts of heavy metals are inevitably released into wastewaters. However, the discharge of such
wastewaters into the environment is strictly controlled by various laws considering their high toxicity
and persistence [1,2]. As a result, effective methodologies and materials are needed to be developed
for the effective elimination of heavy metal ions from contaminated water streams.

Conventional processes for the removal of heavy metal ions from wastewater streams involve
ion exchange, precipitation reaction, reverse membrane osmosis, electrolytic deposition, adsorption,
etc. Among them, adsorption is preferred for its inexpensive process, simplicity, and effectiveness in
removing the heavy metals. Moreover, the adsorption processes can be utilized under various
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conditions [3,4]. Activated carbon, silica gels, chitosan, titania, iron oxide, hydroxyapatite,
and manganese (IV) hydroxide are among the conventional absorbents [5–9]. However, these
suffer from the shortcomings such as tendencies for oxidation and aggregation, limited adsorption
capacity, low selectivity, and high cost [7]. Thus, the further development of highly efficient, abundant,
and magnetically separable adsorbent materials has attracted much attention [10,11].

Biochar, a low-cost biomass-derived carbonaceous material, is an effective alternative to address
the challenge of the water pollution of heavy metal [12]. In general, the biochars prepared
directly from the biomass raw materials do not exhibit high adsorption capacity for capturing
toxic metal ions. Thus, emphasis has further been focused on the pristine biochar modification [13].
Importantly, the preparation of the magnetic biochars has proved to be one of the most effective biochar
modifications [14]. Use of the biochar-based magnetic materials to remove the heavy metal pollutants
from the aqueous solutions not only exhibits high removal performance but also enables the spent
adsorbents to be easily disposed using a low strength magnetic separation device [14]. In the recent
literature, studies concerning the magnetic biochars used for controlling the heavy metal pollution,
a variety of magnetic components were loaded/coated on the biochars derived from a wide range
of biomass sources, thus, improving the structure and functionality [14–21]. The most commonly
utilized magnetic substances are magnetite (Fe3O4) and maghemite (γ-Fe2O3). Son et al. reported
the use of the mixed iron oxide particles (Fe3O4 and γ-Fe2O3) as magnetic components to prepare
both kelp and hijikia magnetic biochars for the adsorption of copper, cadmium, and zinc ions [20,21].
A few research studies have reported the synthesis of manganese ferrite (MnFe2O4)/biochar composites
via different techniques such as thermal decomposition, hydrothermal carbonation, sol-gel/pyrolysis,
or co-precipitation for efficiently adsorbing Pb2+, Cu2+, Cd2+, and Sb3+ [22–25]. Similarly, cobalt
ferrite (CoFe2O4) was combined by Reddy et al. with the pine bark biochar for achieving the magnetic
biochar material with excellent adsorption performance of Pb(II) and Cd(II) [26]. Recently, Wang et al.
reported the preparation of magnetic greigite/biochar composites (MGBs) using less-commonly used
Fe3S4 nanosheets as a magnetic modifier, thereby, demonstrating the efficient removal of Cr (VI) on
MGBs [17].

Based on the literature, it can be concluded that a limited variety of magnetic modifiers has been
used in the fabrication of magnetic biochars. Therefore, exploration of the other types of magnetic
modifiers for synthesizing magnetic biochars is needed in the future. In our previous study [25],
a magnetic MnFeOx-loaded corncob biochar (MnFeOx@CCBC) was synthesized by combining the
two-step impregnation of corncob biochar with the pyrolysis of oxalate, which demonstrated enhanced
adsorption capacity. As a continuation of the last study, this study focuses on the use of spinel copper
ferrite (CuFe2O4) for producing a novel magnetic biochar composite for enhanced removal ability of the
heavy metal ions from the aqueous solutions. To date, CuFe2O4 and its derived composites have been
extensively used for the abatement of various pollutants such as organic dyes [27–31], anions [31–34],
arsenic [31,35,36], heavy metal ions, and organic toxicants [30,31,37,38], thus, implying that CuFe2O4

exhibits optimal properties for environmental applications. Therefore, introducing CuFe2O4 modifier
into biochar may reach the expected requirements for adsorbents such as good magnetic separability,
good adsorption capacity, eco-friendly character, and low budget.

The objective of this work was to study the feasibility of employing CuFe2O4 as a magnetic
modifier for achieving the magnetically-separable CuFe2O4-loaded corncob biochar (CuFeOx@CCBC)
for removing Pb(II) from the aqueous medium and to clarify its adsorption mechanism. The Pb(II)
adsorption behavior on CuFeOx@CCBC was studied under various experimental conditions using
batch method. The adsorption equations including the Langmuir and Freundlich isotherms as well as
the typical kinetic models were used to analyze the experiment data. In addition, various analytical
methods were implemented for the characterization of the as-fabricated samples and elucidation of the
process mechanisms. Overall, this work provides a beneficial approach for the development of a new
class of biochar-based adsorbent material.
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2. Results and Analysis

2.1. Characterization of CuFe2O4@CCBC and Corncob Biochar (CCBC)

As can be seen from the Section 3.1, the synthesis of CuFe2O4 coating and modification of
CCBC were achieved via a (Cu, Fe) binary oxalates precursor, which includes three sub-steps. First,
CCBC support was impregnated with equal-volume ethanol-aqueous solution (80%, v/v) containing
stoichiometric amount of copper and iron ions, resulting in a uniform distribution of copper and iron
ions within the CCBC matrix (including surfaces and pores). Next, the binary oxalates were produced
on the CCBC support through the oxalic acid solution impregnation. Finally, the binary oxalates
were decomposed and converted to CuFe2O4 in the subsequent pyrolysis process, thus, achieving the
CuFe2O4@CCBC composite. The SEM images of CCBC and CuFe2O4@CCBC(5%) are displayed in
Figure S1a,b, respectively. As can be seen, the prepared materials were composed of irregular grains
with obvious differences in size and morphology. The grain size was within the range of 5–25 µm for
CCBC and 8–40 µm for CuFe2O4@CCBC(5%), which was consistent with the general characteristics of
the biochar-based materials [13,14]. The particle size enlargement of the composite was observed after
coating CuFe2O4 owing to the thermal decomposition of Fe/Cu oxalate precursors, thus, improving
the surface and pore structure. Furthermore, as can be judged from the mapping diagrams of the
Cu and Fe elements of the CuFe2O4@CCBC(5%) sample in Figure S1c,d, the CuFe2O4 modifier was
uniformly coated onto the surface of CCBC, with no dominant aggregation, which led to an increase in
the adsorption sites and an improvement in the adsorption performance.

FTIR measurement was carried out to confirm the production of CuFe2O4 and its effect on the
surface functional groups (Figure 1). It was observed that the spectral peaks of CuFe2O4@CCBC(5%) had
high intensity. The absorbance band at 3435 cm−1 is assigned to the –OH stretching vibration [15,25].
The absorbance peaks at 1640 and 1560 cm−1 are ascribed to the C=O vibrations of the carboxyl
and aromatic ketones in the biochar frame [15,25]. The 1120 cm−1 peak is attributed to the C–O
ether stretching vibration [15]. These results prove that the surface modification leads to abundant
oxygen-containing groups on the interface of the biochar-based composite. In the spectrum of
CuFe2O4@CCBC(5%), the absorbance bands at 570 and 460 cm−1 are vibrations of the Fe3+–O2−

and Cu2+–O2− complexes, respectively [39,40], while the peaks at 870, 970, and 1457 cm−1 are the
characteristic peaks of M–OH (M is Fe/Cu) due to bending vibration [40,41], indicating the formation of
CuFe2O4 on the biochar-based composite. In the IR spectrum of CCBC, the strong peak at 450–515 cm−1

and weak peak at 670 cm−1 are attributed to the possible presence of kaolinite [42], and the possible
presence of quartz may be inferred from the little peak at 782 cm−1 [42]. However, a stronger
characteristic peak of quartz but no absorbance bands of kaolinite were observed in the infrared
spectrum of CuFe2O4@CCBC(5%), implying that the concomitant disassociation and re-organization
of the mineral fractions in the CCBC sample took place during the modification process.
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Figure 1. FTIR spectra of corncob biochar (CCBC) and CuFe2O4-loaded corncob biochar
(CuFe2O4@CCBC)(5%).
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The XRD patterns of CCBC and CuFe2O4@CCBC(5%) samples are shown in Figure S2. From
the pattern of CCBC, quartz (with two moderately strong peaks at 2θ around 26.7◦ and 40.5◦)
was observed as the predominant crystalline phase [42,43], which agrees with the FTIR findings.
No kaolinite and biochar peaks were detected, indicating their amorphous nature. In the XRD pattern
of CuFe2O4@CCBC(5%), the 2θ values at 20.2◦, 29.3◦, 37.8◦, 43.7◦, 56.9◦, and 64.0◦ could be indexed
to the (101), (112), (202), (220), (321), and (224) crystal faces of a face-centered cubic CuFe2O4 (JCPDS
No. 34-0425) [44], further demonstrating that CuFe2O4 was successfully covered on the surface of the
biochar-based composite. Additionally, the peak of quartz was noted to shift from 26.7◦ (2θ) to 27.2◦

and was relatively stronger than that of CCBC, possibly due to the re-organization of its structure,
which is also consistent with the FTIR characterization.

The formation of CuFe2O4 coating endows magnetism to CuFe2O4@CCBC(5%), which can
be proved by its hysteresis loop (shown in Figure 2). The CuFe2O4@CCBC(5%) has a saturation
magnetization (Ms) of 5.75 emu·g−1 and a coercive force (Hc) of 154.35 Oe. As expected, the magnetism
intensity of the developed CuFe2O4@CCBC material is sufficient for its swift recovery from the treated
solution by means of a small magnet, as shown in Figure 2. This demonstrates the potential of recycling
of the magnetic biochar-based adsorbent in the wastewater remediation process.

Molecules 2020, 25, x FOR PEER REVIEW 4 of 16 

 

The XRD patterns of CCBC and CuFe2O4@CCBC(5%) samples are shown in Figure S2. From the 
pattern of CCBC, quartz (with two moderately strong peaks at 2θ around 26.7° and 40.5°) was 
observed as the predominant crystalline phase [42,43], which agrees with the FTIR findings. No 
kaolinite and biochar peaks were detected, indicating their amorphous nature. In the XRD pattern of 
CuFe2O4@CCBC(5%), the 2θ values at 20.2°, 29.3°, 37.8°, 43.7°, 56.9°, and 64.0° could be indexed to 
the (101), (112), (202), (220), (321), and (224) crystal faces of a face-centered cubic CuFe2O4 (JCPDS No. 
34-0425) [44], further demonstrating that CuFe2O4 was successfully covered on the surface of the 
biochar-based composite. Additionally, the peak of quartz was noted to shift from 26.7° (2θ) to 27.2° 
and was relatively stronger than that of CCBC, possibly due to the re-organization of its structure, 
which is also consistent with the FTIR characterization.  

The formation of CuFe2O4 coating endows magnetism to CuFe2O4@CCBC(5%), which can be 
proved by its hysteresis loop (shown in Figure 2). The CuFe2O4@CCBC(5%) has a saturation 
magnetization (Ms) of 5.75 emu·g−1 and a coercive force (Hc) of 154.35 Oe. As expected, the magnetism 
intensity of the developed CuFe2O4@CCBC material is sufficient for its swift recovery from the treated 
solution by means of a small magnet, as shown in Figure 2. This demonstrates the potential of 
recycling of the magnetic biochar-based adsorbent in the wastewater remediation process. 

 
Figure 2. Hysteresis loop of CuFe2O4@CCBC(5%). 

The textural properties of the as-prepared biochar-based adsorbents were investigated by the N2 
adsorption-desorption analysis at the boiling point of nitrogen. The nitrogen adsorption-desorption 
isotherms of CCBC and CuFe2O4@CCBC samples with different loading amounts (3, 5, and 8%) are 
schematically shown in Figure S3. The typical properties, including the specific surface area, total 
pore volume and average pore diameter, are presented in Table S1. 

According to the IUPAC classification, the pristine CCBC sample demonstrates a typical type III 
isotherm; however, the modified CuFe2O4@CCBC composites exhibit type IV isotherms and style H3 
hysteresis loops, spanning a broad relative pressure region and resembling the appearance of slit 
pores [40]. From Table 1, the CuFe2O4 coating and an increase in the loading amount are observed to 
result in an enhanced specific surface area (from 17.1 to 75.0 m2·g−1) and pore volume (from 0.039 to 
0.082 cm3·g−1) as well as a reduced pore size (from 7.93 to 1.89 nm), which confirms that the 
CuFe2O4@CCBC composites have a mesoporous or microporous structure and contain a higher pore 
volume. In addition, it is observed that the surface area of 8% CuFe2O4@CCBC (75.0 m2·g−1) is lower 
than 5% CuFe2O4@CCBC (60.7 m2·g−1), which might be associated with the aggregation of the excess 
CuFe2O4 nanoparticles.  

Figure 2. Hysteresis loop of CuFe2O4@CCBC(5%).

The textural properties of the as-prepared biochar-based adsorbents were investigated by the N2

adsorption-desorption analysis at the boiling point of nitrogen. The nitrogen adsorption-desorption
isotherms of CCBC and CuFe2O4@CCBC samples with different loading amounts (3, 5, and 8%) are
schematically shown in Figure S3. The typical properties, including the specific surface area, total pore
volume and average pore diameter, are presented in Table S1.

According to the IUPAC classification, the pristine CCBC sample demonstrates a typical type III
isotherm; however, the modified CuFe2O4@CCBC composites exhibit type IV isotherms and style
H3 hysteresis loops, spanning a broad relative pressure region and resembling the appearance of slit
pores [40]. From Table 1, the CuFe2O4 coating and an increase in the loading amount are observed
to result in an enhanced specific surface area (from 17.1 to 75.0 m2

·g−1) and pore volume (from 0.039
to 0.082 cm3

·g−1) as well as a reduced pore size (from 7.93 to 1.89 nm), which confirms that the
CuFe2O4@CCBC composites have a mesoporous or microporous structure and contain a higher pore
volume. In addition, it is observed that the surface area of 8% CuFe2O4@CCBC (75.0 m2

·g−1) is lower
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than 5% CuFe2O4@CCBC (60.7 m2
·g−1), which might be associated with the aggregation of the excess

CuFe2O4 nanoparticles.
The ∆pH–pH0 curves of both CCBC and CuFe2O4@CCBC(5%) samples are shown in Figure S4.

As can be seen, the pHZPC of CuFe2O4@CCBC(5%) (7.0) was 2.5 units lower than that of CCBC
(9.5), reflecting that the number and strength of the protic groups (e.g., –OH and –COOH) in the
CuFe2O4@CCBC(5%) structure is significantly increased, thus, leading to the sorption of the heavy
metal ions through the ion exchange (with H+) or complexation mechanisms [45,46].

2.2. Effect of CuFe2O4 Loading Amount on Pb(II) Adsorption Capacity

In order to evaluate the improvement of the lead ion removal ability resulting from the CuFe2O4

coating, batch adsorption tests were carried out by adding 20 mg of the sample into 30 mL of the
500 mg·L−1 Pb(II) solution (pH = 5.0) at 30 ◦C. As shown in Figure 3, the CuFe2O4@CCBC composites
showed significantly higher Pb(II) removal capacity than the pristine CCBC sample (from 11.50 mg·g−1

to 115.58, 126.67, and 120.90 mg·g−1), with CuFe2O4@CCBC(5%) exhibiting the best performance.
A positive correlation between the Pb(II) removal capacity and specific surface area was observed
among the tested samples. Overall, these results confirm the potential of CuFe2O4@CCBC(5%) as an
effective adsorbent of heavy metal.
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Figure 3. Comparison of the Pb(II) removal capacity and specific area of the samples.

2.3. Adsorption Kinetic Analysis

Adsorption kinetic behavior is fundamental for selecting the optimal adsorbent material. For the
typical kinetic adsorption test described in the Section 2.3, Figure 4 shows that qt changed with the
contact time. Obviously, Pb(II) adsorption on the tested materials rapidly improved at the initial
phases, followed by a slow increase, and eventually reaching the equilibrium state at 40 min. Thus,
this duration is considered as the equilibrium time period. The test data was fitted linearly according to
the first-order and second-order models, respectively (Figure S5a,b). The estimated kinetic parameter
values are presented in Table 1. The coefficient (R2) of the second-order model was higher than that
of the first-order model, implying that it is reasonable to depict the adsorption kinetic behavior of
CCBC and CuFe2O4@CCBC for Pb(II) based on the second-order kinetic model [25]. From the model
parameters, the theoretical equilibrium adsorption capacity of CuFe2O4@CCBC(5%) (close to the
measured value, as seen in Table 1) was 8.87 times higher than that of CCBC, while with a rate constant
ratio advantage of 1.75. The results expressed that the adsorption kinetic performance of CCBC for the
heavy metal pollutants could be significantly enhanced by the CuFe2O4 coating.
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Table 1. Adsorption kinetic fitting results.

First-order Second-order

qe,exp
(mg·g−1)

qe
(mg·g−1)

k1
(min−1)

R2 qe
(mg·g−1)

k2
(g·mg−1·min−1)

R2

CCBC 11.50 11.33 1.42 × 10−2 0.9611 14.10 4.38 × 10−3 0.9842
CuFe2O4@CCBC(5%) 126.67 120.24 6.60 × 10−2 0.8998 125.13 7.68 × 10−3 0.9991

qe,exp: experimental equilibrium adsorption capacity, qe: theoretical equilibrium adsorption capacity, k1: first-order
rate constant, k2: second-order rate constant, R: correlation coefficient

To elucidate the rate-determining steps toward Pb(II) adsorption on the adsorbents, the intraparticle
diffusion model (Equation (12)) was used to estimate the experimental data. As shown in Figure S6,
the plots are multi-linear, and a two-step adsorption process is observed, indicating that an initial
and rapid sorption process first occurred on the surface, followed by a chemical adsorption process
with functional groups and intraparticle diffusion of the lead ions. Obviously, none of the C constants
approached zero (Table S2), suggesting that the chemical adsorption and intraparticle diffusion may
not exclusively control Pb(II) adsorption [45].

2.4. Adsorption Thermodynamic Study

It is vital to study the adsorption thermodynamic behavior for understanding the interaction
of Pb(II) with the prepared materials in the aqueous solution [47]. Therefore, the equilibrium
adsorption isotherms for the CuFe2O4@CCBC(5%) and CCBC adsorbents were conducted at 30, 40,
and 50 ◦C, as shown in Figure 5a,b. Qualitative observation indicates that the equilibrium adsorption
capacity increased first and subsequently reached a maximum value on increasing the residual Pb(II)
concentration and temperature. The isothermal data were fitted using the Langmuir and Freundlich
models for quantitative analysis, as displayed in Figure S6 and Table 2. From the correlation coefficients
(R2), the Langmuir model was noted to be suitable to describe the adsorption equilibrium of Pb(II) on
both CuFe2O4@CCBC and CCBC materials at the investigated temperatures. The R2 values for the
Langmuir isotherms of the adsorption processes were observed to be greater than 0.95, especially for
the Pb(II) adsorption on the CuFe2O4@CCBC(5%) sample, suggesting uniform monolayer adsorption.
The results indicated that the qm of CuFe2O4@CCBC(5%) was approximately 8 times higher than that
of CCBC, which increased slightly with temperature, indicating the endothermic character of the
adsorption process. Additionally, it has been reported that using partition coefficient (PC) as a metric
for comparing the adsorption performance of adsorbents may be more objective and meaningful,
mainly due to the ability to truly minimize the bias derivable from the use of the adsorption capacity



Molecules 2020, 25, 3456 7 of 16

concepts such as qe and qm [48–51]. Therefore, according to the paradigm established by Kim et al. [48],
we estimated the PC values of both CuFe2O4@CCBC and CCBC materials accounting for initial Pb(II)
concentration condition and Pb(II) adsorption capacities at 30 ◦C. Table S3 summarizes the obtained
PC values. The PC values of CuFe2O4@CCBC(5%) and CCBC were found to decrease as the initial
Pb(II) concentration increased and Pb(II) adsorption capacity increased. This trend was consistent
with the phosphorus adsorption on the PEI-PEF and DC-PEI-PEF sorbents [48]. At a lower initial
concentration (100 mg·L−1, 482.6 µM), the Pb(II) adsorption capacities of CuFe2O4@CCBC(5%) and
CCBC were 88.25 and 9.95 mg·g−1, respectively. The qe of CuFe2O4@CCBC(5%) was 8.9 times higher
than that of CCBC. However, the calculated PC values for CuFe2O4@CCBC(5%) and CCBC were 0.444
and 0.022 mg·g−1

·µM−1, respectively. The PC of CuFe2O4@CCBC(5%) was noted to be 20.2 times to that
of CCBC. Therefore, the observed significant difference in the PC values between CuFe2O4@CCBC(5%)
and CCBC fully confirmed that the adsorption performance of CCBC for heavy metal ions like Pb(II)
could be significantly improved by the CuFe2O4 coating. Moreover, it can be seen from Table S4
that CuFe2O4@CCBC(5%) exhibited superior adsorption capacity than other adsorbents reported
in literature.
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Figure 5. Adsorption isotherms for the Pb(II) adsorption on 5% CuFe2O4@CCBC (a) and CCBC (b).

Table 2. Adsorption isotherm parameters and correlation coefficients of the Pb(II) adsorption.

Langmuir Constants Freundlich Constants

T (K) qm
(mg·g−1)

KL
(L·mg−1)

R2 KF
(mg·g−1)(L·mg−1)1/n n R2

CCBC
303 15.66 0.013 0.9891 1.26 0.087 0.8835
313 16.66 0.018 0.9544 1.80 0.021 0.8207
323 16.93 0.032 0.9533 3.03 0.016 0.8576

CuFe2O4@CCBC(5%)
303 132.10 0.059 0.9997 63.89 8.21 0.7339
313 134.23 0.078 0.9995 66.26 8.34 0.6851
323 134.41 0.096 0.9989 68.80 8.74 0.6315

qm: maximum adsorption amount, KL: Langmuir constant, KF and n: Freundlich empirical constants.

The standard thermodynamic change functions of the adsorption processes, including ∆Go
m, ∆Ho

m,
and ∆So

m, can be calculated from the Langmuir constant KL and temperature by Equations (1)–(3),
respectively [25,30,47]. From the obtained results presented in Table S3, ∆Ho

m for the Pb(II) adsorption
process on CuFe2O4@CCBC(5%) was 19.55 kJ·mol−1, while the value for the Pb(II) process on CCBC
was 35.42 kJ·mol−1, indicating endothermic processes in both cases, with an enhanced temperature
benefitting the adsorption process. A positive ∆Go

m value was obtained for the adsorption processes,
indicating that the adsorption reaction could be non-spontaneous if the adsorbate, adsorbent, and
resulting adsorption product were in their respective standard states. Furthermore, the positive ∆So

m
values indicated an increment in the degree of freedom of the adsorbed species, probably attributed to
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the hydroniums (H3O+) released into the bulk aqueous phase during the course of adsorption [30].
Based on the comprehensive analysis of the aforementioned adsorption standard thermodynamic
functions, it is speculated that the adsorption reaction for removing Pb(II) by CuFe2O4@CCBC and
CCBC is an entropy-driven process.

∆Go
m = −RT ln KL (1)

ln
KL(T2)

KL(T1)
=

∆Ho
m

R
(

1
T1
−

1
T2

) (2)

∆So
m =

∆Ho
m − ∆Go

m

T
(3)

2.5. Discussion on Mechanism of Pb(II) on CuFe2O4@CCBC

2.5.1. Influence of Solution pH and Ion Strength

pH and ion strength can lead to the corresponding changes in the protonation/deprotonation of
the surface groups of the adsorbent and speciation of the heavy metal species [16,25,46]. Figure S7
describes the adsorption results under different pH and NaCl concentrations. It is observed that the qe

values sharply increased as the pH was raised from 2.0 to 4.0, followed by a slight increment to the
relative peak value (at pH = 6.0). On the other hand, further increase in the solution pH could have
impacted the Pb(II) removal due to the formation of Pb(OH)2. In addition, a minor increase in the
qe was observed on increasing the ionic strength at different pH values. These trends imply that the
adsorption process conforms to the mechanism of the inner surface complexation with accompanied
ion exchange [52]. The FTIR analysis also indicated that CuFe2O4@CCBC contained effective hydroxyl
(–OH) and carboxyl (–COOH) groups, thus, the cation exchange reactions could have occurred during
the adsorption of Pb2+ ions, resulting in 1:1 or 1:2 surface complexes [25,52,53]. The surface adsorption
reactions are speculated as reaction Equations (4)–(7), among which both reactions (5) and (7) might be
more apt to occur, as the adsorption is an entropy-driven phenomenon.
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     −OH(s) + Pbଶା(aq) → [(     −O −) Pb]ା(s) + H 
ା(aq) (4) 

2      − OH(s) + Pbଶା(aq) → [(     −O −)ଶPb] (s) + 2H 
ା(aq) (5) 

     −COOH(s) + Pbଶା(aq) → [(     −COO −) Pb]ା(s) + H 
ା(aq) (6) 

2      − COOH(s) + Pbଶା(aq) → ൣ(     −COO −)ଶ Pb൧ (s) + 2H 
ା(aq) (7) 

2.5.2. XPS Analysis 

A series of the XPS records are depicted in Figure. 6, including the survey spectra (Figure 6a), 
Cu2p (Figure 6b) and Fe2p (Figure 6c) spectra of the core level regions as well as O1s region spectra 
(Figure. 6d,e) before and after adsorption. Table 3 lists the main peak binding energy values, peak 
areas, and surface atomic compositions of each element, calculated from the XPS data. The FA (named 
as area factor) values have also been presented in the table, which is defined as the coefficient of the 
main peak area of each element of the CuFe2O4@CCBC(5%)-Pb sample divided by that of 
CuFe2O4@CCBC(5%). The FA values might be used to gain insights about the Pb(II) adsorption [25]. 

As presented in Figure 6a, two new peaks of Pb4f7/2 and Pb4f5/2 at 138.37 and 143.96 eV binding 
energy values were observed in the spectrum of the CuFe2O4@CCBC(5%)-Pb sample, which indicated 
that Pb(II) bonded to the sample surface. The presence of the Fe3+ and Cu2+ cations was identified by 
the spectra shown in Figure 6b,c, suggesting the face-centered cubic structure of the coated CuFe2O4 
[44]. The Pb(II) adsorption resulted in a significant decrease in the height of the Cu2p and Fe2p peaks, 
especially Cu2p. This observation can be explained in detail based on the findings presented in Table 
3. As can be seen from Table 3, seven elements (Cu, Fe, O, C, Si, Ca, and Na) were detected in the 
tested sample by XPS, while Pb was only found after the adsorption process. Among these elements, 
C had the highest content attributed to the biochar matrix, followed by the O element due to the 
abundant presence of the –OH and –COOH groups. On the other hand, Si, Ca, and Na are inherent 
impurities of the biochar, while both Cu and Fe are introduced by the coating. Obviously, the change 
in the atomic percentage of the elements is closely related to the Pb(II) sorption. The atomic ratio of 
each element could be reduced slightly, if the dilution effect caused by the Pb(II) adsorption was 
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As presented in Figure 6a, two new peaks of Pb4f7/2 and Pb4f5/2 at 138.37 and 143.96 eV binding 
energy values were observed in the spectrum of the CuFe2O4@CCBC(5%)-Pb sample, which indicated 
that Pb(II) bonded to the sample surface. The presence of the Fe3+ and Cu2+ cations was identified by 
the spectra shown in Figure 6b,c, suggesting the face-centered cubic structure of the coated CuFe2O4 
[44]. The Pb(II) adsorption resulted in a significant decrease in the height of the Cu2p and Fe2p peaks, 
especially Cu2p. This observation can be explained in detail based on the findings presented in Table 
3. As can be seen from Table 3, seven elements (Cu, Fe, O, C, Si, Ca, and Na) were detected in the 
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C had the highest content attributed to the biochar matrix, followed by the O element due to the 
abundant presence of the –OH and –COOH groups. On the other hand, Si, Ca, and Na are inherent 
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2.5.2. XPS Analysis 

A series of the XPS records are depicted in Figure. 6, including the survey spectra (Figure 6a), 
Cu2p (Figure 6b) and Fe2p (Figure 6c) spectra of the core level regions as well as O1s region spectra 
(Figure. 6d,e) before and after adsorption. Table 3 lists the main peak binding energy values, peak 
areas, and surface atomic compositions of each element, calculated from the XPS data. The FA (named 
as area factor) values have also been presented in the table, which is defined as the coefficient of the 
main peak area of each element of the CuFe2O4@CCBC(5%)-Pb sample divided by that of 
CuFe2O4@CCBC(5%). The FA values might be used to gain insights about the Pb(II) adsorption [25]. 

As presented in Figure 6a, two new peaks of Pb4f7/2 and Pb4f5/2 at 138.37 and 143.96 eV binding 
energy values were observed in the spectrum of the CuFe2O4@CCBC(5%)-Pb sample, which indicated 
that Pb(II) bonded to the sample surface. The presence of the Fe3+ and Cu2+ cations was identified by 
the spectra shown in Figure 6b,c, suggesting the face-centered cubic structure of the coated CuFe2O4 
[44]. The Pb(II) adsorption resulted in a significant decrease in the height of the Cu2p and Fe2p peaks, 
especially Cu2p. This observation can be explained in detail based on the findings presented in Table 
3. As can be seen from Table 3, seven elements (Cu, Fe, O, C, Si, Ca, and Na) were detected in the 
tested sample by XPS, while Pb was only found after the adsorption process. Among these elements, 
C had the highest content attributed to the biochar matrix, followed by the O element due to the 
abundant presence of the –OH and –COOH groups. On the other hand, Si, Ca, and Na are inherent 
impurities of the biochar, while both Cu and Fe are introduced by the coating. Obviously, the change 
in the atomic percentage of the elements is closely related to the Pb(II) sorption. The atomic ratio of 
each element could be reduced slightly, if the dilution effect caused by the Pb(II) adsorption was 
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adsorption reactions are speculated as reaction Equations (4)–(7), among which both reactions (5) and 
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2.5.2. XPS Analysis 
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as area factor) values have also been presented in the table, which is defined as the coefficient of the 
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CuFe2O4@CCBC(5%). The FA values might be used to gain insights about the Pb(II) adsorption [25]. 

As presented in Figure 6a, two new peaks of Pb4f7/2 and Pb4f5/2 at 138.37 and 143.96 eV binding 
energy values were observed in the spectrum of the CuFe2O4@CCBC(5%)-Pb sample, which indicated 
that Pb(II) bonded to the sample surface. The presence of the Fe3+ and Cu2+ cations was identified by 
the spectra shown in Figure 6b,c, suggesting the face-centered cubic structure of the coated CuFe2O4 
[44]. The Pb(II) adsorption resulted in a significant decrease in the height of the Cu2p and Fe2p peaks, 
especially Cu2p. This observation can be explained in detail based on the findings presented in Table 
3. As can be seen from Table 3, seven elements (Cu, Fe, O, C, Si, Ca, and Na) were detected in the 
tested sample by XPS, while Pb was only found after the adsorption process. Among these elements, 
C had the highest content attributed to the biochar matrix, followed by the O element due to the 
abundant presence of the –OH and –COOH groups. On the other hand, Si, Ca, and Na are inherent 
impurities of the biochar, while both Cu and Fe are introduced by the coating. Obviously, the change 
in the atomic percentage of the elements is closely related to the Pb(II) sorption. The atomic ratio of 
each element could be reduced slightly, if the dilution effect caused by the Pb(II) adsorption was 

(7)

2.5.2. XPS Analysis

A series of the XPS records are depicted in Figure 6, including the survey spectra (Figure 6a),
Cu2p (Figure 6b) and Fe2p (Figure 6c) spectra of the core level regions as well as O1s region spectra
(Figure 6d,e) before and after adsorption. Table 3 lists the main peak binding energy values, peak areas,
and surface atomic compositions of each element, calculated from the XPS data. The FA (named as area
factor) values have also been presented in the table, which is defined as the coefficient of the main peak
area of each element of the CuFe2O4@CCBC(5%)-Pb sample divided by that of CuFe2O4@CCBC(5%).
The FA values might be used to gain insights about the Pb(II) adsorption [25].
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Figure 6. Comparison of XPS spectra of CuFe2O4@CCBC(5%) before and after the Pb(II) sorption:
survey spectra (a), spectra of Cu2p core level region (b), spectra of Fe2p core level region (c), and
spectra of O1s core level region (d,e).
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Table 3. XPS parameters of CuFe2O4@CCBC(5%) before and after the Pb(II) sorption.

Cu2p Fe2p O1s C1s Si2p Ca2p Na1s Pb4f

CuFe2O4
@CCBC(5%)

BE (eV) 933.24 710.91 530.80 284.13 101.99 346.98 1070.39 -

Peak area
(CPS·eV) 111,990 284,117 494,988 452,400 31,376 82,267 66,321 -

Atomic% 1.43 3.02 25.47 62.13 3.67 2.40 1.88 -

CuFe2O4
@CCBC(5%)-Pb

BE (eV) 933.62 710.34 531.23 284.09 102.22 347.41 1070.80 138.37

Peak area
(CPS·eV) 10,245 229,330 762,573 389,258 44,052 85,689 51,115 69,3037

Atomic(%) 0.54 2.36 28.78 56.32 4.07 2.37 1.61 3.95

FA 0.09 0.81 1.54 0.86 1.40 1.04 0.77 ∞

BE: binding energy, FA: area factor.

As presented in Figure 6a, two new peaks of Pb4f7/2 and Pb4f5/2 at 138.37 and 143.96 eV binding
energy values were observed in the spectrum of the CuFe2O4@CCBC(5%)-Pb sample, which indicated
that Pb(II) bonded to the sample surface. The presence of the Fe3+ and Cu2+ cations was identified by
the spectra shown in Figure 6b,c, suggesting the face-centered cubic structure of the coated CuFe2O4 [44].
The Pb(II) adsorption resulted in a significant decrease in the height of the Cu2p and Fe2p peaks,
especially Cu2p. This observation can be explained in detail based on the findings presented in Table 3.
As can be seen from Table 3, seven elements (Cu, Fe, O, C, Si, Ca, and Na) were detected in the tested
sample by XPS, while Pb was only found after the adsorption process. Among these elements, C had
the highest content attributed to the biochar matrix, followed by the O element due to the abundant
presence of the –OH and –COOH groups. On the other hand, Si, Ca, and Na are inherent impurities of
the biochar, while both Cu and Fe are introduced by the coating. Obviously, the change in the atomic
percentage of the elements is closely related to the Pb(II) sorption. The atomic ratio of each element
could be reduced slightly, if the dilution effect caused by the Pb(II) adsorption was solely considered.
In fact, a large reduction in the atomic ratio of Cu, Fe, C, and Na was observed; however, the atomic
ratio of O and Si was increased, with the extent of Ca remaining almost unchanged. From Table 3,
the order of the FA values of the elements is as follows: FA(O) > FA(Si) > FA(Ca) > FA(C) > FA(Fe) >

FA(Na) >> FA(Cu). It is speculated that a decrease in Na+ is caused by the ion exchange or dissolution
during the Pb(II) sorption. The attenuation of Cu, Fe, and C can be ascribed to the bonding of their
adjacent oxygen functional groups (–Cu–OH, –Fe–OH, –C–OH, or –COOH) with Pb2+ (as shown in
the reaction Equations (11)–(14)), thus, the adsorbed Pb(II) significantly prevents the possibility of the
incident electron colliding with the extranuclear electrons, resulting in the significant weakening of the
XPS peaks. It is observed from Table 3 that the O atomic ratio increased from 25.47 to 28.78%, and the
FA value was the highest, which can be explained by the fact that the Pb2+, Cu2+, and Fe3+ ions are
coordinated by the O2− ions, as more O is exposed to the surface of the particles. The XPS spectra of
the O1s regions of the CuFe2O4@CCBC(5%) and CuFe2O4@CCBC(5%)-Pb samples are presented in
Figure 6d,e, which can be fitted into three contributions [54,55], indicating that the proportion of the
lattice oxygen (O2−) increased (from 14.6 to 27.4%); however, the content of the surface hydroxyl groups
(OH−) and adsorbed water (H2O) was reduced (from 64.2 and 21.2% to 54.3 and 18.3%, respectively).
The results further demonstrate that the oxygen-bonding functional groups, such as –OH and –COOH,
are the main adsorption sites towards Pb(II). As for the increased surface Si, it probably resulted from
the dissolution of the impurities containing the quartz particles.

2.5.3. FTIR Characterization

The FTIR spectra of CuFe2O4@CCBC(5%) and CuFe2O4@CCBC(5%)-Pb are presented in Figure S8,
in order to observe the changes in the characteristic peaks of the functional groups (potential adsorption
sites for Pb(II)). A significant decrease in the intensity of the bands corresponding to the hydroxyl
groups (about 3435, 870, 970, and 1457 cm−1) was observed, and the two absorbance peaks of the
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carboxyl groups at 1640 and 1560 cm−1 almost disappeared due to the lead ions adsorption. The results
demonstrate that the lead ions are chemically adsorbed with the hydroxyl and carboxyl groups in the
CuFe2O4@CCBC structure, which is consistent with the mechanism proposed above.

3. Materials and Methods

3.1. Synthesis of CuFe2O4@CCBC Composites

The raw corncob biochar was provided by Hebei Batu Biotechnology Co., Ltd. (Xingtai, China).
The sample was washed and used as a blank sample (denoted as CCBC). Further, it was used as a
precursor to prepare the magnetic biochar composites. The magnetic CuFe2O4-loaded corncob biochar
(denoted as CuFe2O4@CCBC) was prepared by combining the two-step impregnation of CCBC with the
pyrolysis of oxalate [25]. Three CuFe2O4@CCBC composites with different mass contents of CuFe2O4

(3, 5, and 8%) were achieved according to the following steps: Fe(NO3)3·9H2O and Cu(NO3)2·3H2O at
Cu:Fe molar ratios of 1:2 were dissolved in 7 mL of 80% ethanol solution. Next, 7 mL of the solution
was added dropwise to 10 g of CCBC. The mixture was uniformly mixed and allowed to stand for
30 min before placing in an air-drying oven at 65 ◦C for 12 h. 7.2 mL of the saturated oxalic acid
(C2H2O4·2H2O, A.R.) solution was added dropwise to the dried solid. Similar to the earlier procedure,
the mixture was uniformly mixed and allowed to stand for 30 min before placing in an air-drying
oven at 65 ◦C for 12 h. Subsequently, the mixture was tiled in a quartz boat and calcined at 300 ◦C
for 1 h in a horizontal tube furnace. The calcined samples were sieved and placed in a desiccator for
further characterization.

3.2. Characterization of CuFe2O4@CCBC and CCBC

The crystallographic structure of the samples was identified from the X-ray diffraction (XRD)
patterns recorded in the 2θ range of 10–80◦ using D8 ADVANCE diffractometer (Bruker AXS,
Karlsruhe, Germany). Fourier transform infrared (FTIR) spectra of the adsorbents were acquired
using KBr pellets in the wavelength region of 4000–400 cm−1 via FTIR spectrometer (Nicolet 6700,
Theromo Fisher, Waltham, MA, America). The absorbent textural parameters were obtained using
the Brunauer-Emmett-and-Teller (BET) multipoint approach by employing the surface area and
porosity analyzer (Kubo-X1000, Beijing Electronic Technology Co., Ltd., Beijing, China). The material
morphology was observed on a scanning electron microscope (SEM; S-4800, Hitachi Ltd., Tokyo,
Japan), while elemental composition of the material surface was measured using its accompanying
INCA Energy 350 spectrometer. Photoelectron spectroscopy (Escalab 250Xi, ThermoFisher, Waltham,
MA, American) was used to investigate the chemical composition and state of the material surface.
In addition, the magnetic parameters of the biochar composite were measured using a vibrating
sampling magnetometer (VSM; MPMS-3, San Diego, CA, America).

3.3. pH Drift Experiment

The pH of the zero-point charges (pHZPC) of the adsorbents was determined using the following
procedure [45]: (1) 25 mL of 0.01 mol·L−1 NaCl solution was poured in a 50 mL plastic centrifuge tube.
The initial solution pH (pH0) was adjusted to discrete initial values between 2.0 and 11.0, and 0.05 g of
the sample was subsequently added to the tube; (2) The plastic tube was filled with N2 to minimize the
effect of CO2 on pH, followed by shaking for 20 h at 40 ◦C; (3) The final solution pH was immediately
measured. The difference between the final pH and the pH0, named as ∆pH, was plotted against
pH0. The solution pH at which the curve crosses the line of ∆pH = 0 was perceived as the pHZPC of
the samples.

3.4. Batch Adsorption Experiments

The Pb(II) stock sample with a concentration of 1000 mg·L−1 was acquired by dissolving Pb(NO3)2

in the measured volume of DI water, which was further attenuated to the required concentrations
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(80–500 mg·L−1). A series of 30 mL Pb(II) solutions were added to 50 mL plastic centrifuge tubes,
with adjustment of the initial pH to the specified value (the pH was 5.0 for most of the studied
systems, while the values of 2.0, 3.0, 4.0, 5.0, and 6.0 were attained to study the pH effect). 0.01 mol·L−1

HNO3 or NaOH solution was used to regulate the initial pH of the solutions. Afterwards, the batch
experiments were conducted by introducing 20 mg of the adsorbent sample to the pH-preadjusted
solution. The adsorption tubes were swiftly placed in a shaking incubator and continuously shaken at
30 ◦C for 8 h to achieve equilibrium. About 5 mL solution was sampled from the tubes and filtered
using 0.45 µm membrane syringe filter. The remaining Pb(II) concentration in the aqueous filtrate
was measured using a flame atomic absorption spectrophotometer (T6, Beijing Pu Analysis General
Instrument Co., Ltd., Beijing, China) so as to assess the Pb(II) equilibrium adsorption capacity (qe).
The influence of the CuFe2O4 loading, initial pH and ionic strength on the Pb(II) adsorption was
analyzed according to the above mentioned procedure. Additionally, the kinetic experiments were
performed at an initial concentration of 500 mg·L−1 for different contact time intervals (2, 5, 8, 12, 15,
18, 20, 40, 60, 80, 120, and 180 min). The residual Pb(II) concentration of the samples was determined
to estimate the Pb(II) process adsorption capacity (qt). Here, Equations (8) and (9) were applied to
calculate qt (mg·g−1) and qe (mg·g−1).

qt =
c0 − ct

m
(8)

qe =
(c0 − ct) ×V

m
(9)

where c0, ct and ce are the initial, t-time residual and equilibrium concentration of Pb(II) (mg·L−1). V is
the solution volume (mL) and m is the adsorbent mass (mg).

The kinetic experimental data were treated using the first-order (Equation (10)), second-order
(Equation (11)) and intraparticle diffusion models (Equation (12)) [56], respectively. Furthermore,
typical isothermal experiments were performed using a group of Pb(II) solutions with different initial
concentration at 30, 40, and 50 ◦C respectively. The obtained data were fitted to the linear Langmuir
and Freundlich equations, defined as Equations (13) and (14), respectively.

log(qe − qt) = log qe − 0.434k1t (10)

t
qt

=
1

k2q2
e
+

t
qe

(11)

qt = ki
√

t + C (12)

ce

qe
=

1
qmKL

+
ce

qm
(13)

ln qe = ln KF +
1
n

ln ce (14)

where the parameters k1 (min−1), k2 (g·mg−1
·min−1) and ki (mg·g−1

·min−1/2) represent the rate
constants of the first-order, second-order, and intra-particle diffusion models, respectively. C refers to
the boundary layer thickness for the intra-particle diffusion model. The parameter qm represents the
maximum Pb(II) adsorption amount and KL is Langmuir constant. KF and n are Freundlich empirical
constants.

3.5. Partition Coefficient Estimation

With the aforementioned batch isotherm experimental data, the following Equation (15) was
employed to calculate the partition coefficients (PC).

PC =
qe

ce
(15)
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where the qe and ce are the Pb(II) adsorption capacity (mg·g−1) of the adsorbents and Pb(II) concentration
(µmol·L−1, µM) in the solution at adsorption equilibrium, respectively.

4. Conclusions

Magnetic CuFe2O4-loaded corncob biochar (CuFe2O4@CCBC) was prepared by combining the
two-step impregnation of CCBC with the pyrolysis of oxalate. CuFe2O4, with a face-centered cubic
crystal phase, was homogeneously coated on the surface of CCBC. The CuFe2O4@CCBC(5%) sample
exhibited a specific area of 74.98 m2

·g−1, saturation magnetization of 5.75 emu·g−1 and pHZPC of 7.0.
CuFe2O4@CCBC with 5% loading amount was observed to be the most effective material for the
removal of Pb(II) from wastewater. The pseudo-second kinetic and Langmuir models suitably fitted the
Pb(II) adsorption by CuFe2O4@CCBC. The rate constant and maximum adsorption capacity of Pb(II)
by CuFe2O4@CCBC(5%) at 30 ◦C were observed to be 7.68 × 10−3 g·mg−1

·min−1 and 132.10 mg·g−1,
respectively, which were significantly higher than CCBC (4.38 × 10−3 g·mg−1

·min−1 and 15.66 mg·g−1).
The adsorption reaction for removing Pb(II) by CuFe2O4@CCBC was an endothermic entropy-driven
process. The multiple analytical characterizations illustrated that the specific area and extent of
oxygen-bonding groups (M–OH and –COOH) increased after generating the CuFe2O4 coating, thus,
resulting in enhanced Pb(II) adsorption ability. The main adsorption mechanism could, thus, be the
conjunction of the ion exchange and inner surface complexation. The study suggests that the magnetic
CuFe2O4-loaded biochar can be an efficient and eco-friendly adsorbent for the heavy metal abatement.

Supplementary Materials: The following are available online, Figure S1: SEM images of CCBC (a) and
CuFe2O4@CCBC (5%) (b) as well as mappings of Cu (c) and Fe (d); Figure S2: XRD patterns of CuFe2O4@CCBC(5%)
and CCBC; Figure S3: Nitrogen adsorption/desorption isotherms (a) and pore-size distribution diagram (b)
of the samples; Figure S4: pH drift curves of the samples; Figure S5: (a) Adsorption kinetics fitted with the
pseudo-first-order model of Pb(II), (b) Adsorption kinetics fitted with the pseudo-second-order model of Pb(II),
(c) Adsorption kinetics fitted with the intra-particle diffusion kinetics model of Pb(II); Figure S6: (a) Langmuir
and (c) Freundlich isotherm models fitted on the Pb(II) adsorption for CuFe2O4@CCBC(5%); (b) Langmuir and
(d) Freundlich isotherm models fitted on the Pb(II) adsorption for CCBC. (Contact time = 24 h, pH = 5.0.);
Figure S7: Influence of pH and ion strength on Pb(II) sorption; Figure S8: FTIR spectra of CuFe2O4@CCBC(5%)
and CuFe2O4@CCBC(5%)-Pb; Table S1. Texture properties of different samples; Table S2: Comparison of the
adsorption performance of typical adsorbents for Pb(II); Table S3: Thermodynamic parameters for the Pb(II)
adsorption by CuFe2O4@CCBC and CCBC.
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