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ABSTRACT
We present a fast, validated, open-source toolkit for processing dynamic contrast
enhanced magnetic resonance imaging (DCE-MRI) data. We validate it against
the Quantitative Imaging Biomarkers Alliance (QIBA) Standard and Extended
Tofts-Kety phantoms and find near perfect recovery in the absence of noise, with an
estimated 10–20× speedup in run time compared to existing tools. To explain the
observed trends in the fitting errors, we present an argument about the conditioning
of the Jacobian in the limit of small and large parameter values. We also demonstrate
its use on an in vivo data set to measure performance on a realistic application. For
a 192 × 192 breast image, we achieved run times of <1 s. Finally, we analyze run
times scaling with problem size and find that the run time per voxel scales as O(N1.9),
where N is the number of time points in the tissue concentration curve. DCEMRI.jl
was much faster than any other analysis package tested and produced comparable
accuracy, even in the presence of noise.

Subjects Radiology and Medical Imaging, Computational Science
Keywords Magnetic resonance imaging, DCE, Quantitative imaging biomarkers, qMRI, Cancer,
Parallel computing, Julia, Medical imaging, Numerical methods

INTRODUCTION
Dynamic contrast enhanced MRI
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) involves the

continuous acquisition of heavily T1-weighted MR images while a paramagnetic contrast

agent (CA) is injected. The CA increases the contrast between different tissues by changing

their inherent relaxation rates. By collecting serial images, each image voxel yields an

intensity time course that can be used to estimate physiological parameters, such as the

volume transfer constant Ktrans, extravascular extracellular volume fraction ve, and the

plasma volume fraction vp (Choyke, Dwyer & Knopp, 2003; Yankeelov & Gore, 2009). Due

to this, DCE-MRI has successfully been applied to assess vascular characteristics in both

pre-clinical (Zwick et al., 2009; Jensen et al., 2010) and clinical settings (Lockhart et al., 2010;

Mannelli et al., 2010).
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The MR scanner typically handles the reconstruction of the acquired raw MR data into

images, while the second step of DCE-MRI analysis is left to the end user. This second

step includes determining a subset of voxels to process, fitting a nonlinear signal model

to the time curve of each of those voxels, postprocessing the fitted model parameters, and

summarizing the results.

Existing analysis software
In both clinical and research settings, a rapid, validated DCE-MRI analysis software

package is a useful tool in the growing area of quantitative MR imaging. Furthermore,

making a software package open source can increase the safety of clinical medical devices

through community auditing, bug tracking, and version control.

Several DCE-MRI analysis packages have been released to the community.

DCE@urLAB1 from Ortuño et al. (2013) has been validated against reference phantoms

1 http://www2.die.upm.es/im/archives/
DCEurLAB/

and includes many pefusion models, but it requires IDL, a commercial software package. It

can be run for free with the IDL Virtual Machine, which requires registration and approval

from the vendor. In the end the full IDL development environment must be installed, even

though its functionality is crippled without a paid license. Second, DCE@urLAB was built

around a graphical user interface (GUI) that did not provide batch processing. It also did

not run on Mac OS X or Linux. Finally, the stated run times (Ortuño et al., 2013) were

slower than we expected, given the computational complexity of nonlinear least squares

fitting, suggesting some inefficiency due to the software complexity (∼20,000 lines of IDL

code) or GUI overhead.

Zöllner et al. (2013) built an OsiriX plug-in called UMMPerfusion.2 This is a validated,

2 http://ikrsrv1.medma.uni-heidelberg.de/
redmine/projects/ummperfusion

open-source software package for DCE-MRI analysis, but it works only within the OsiriX

image viewer, a Mac OS X only program and which only a 32-bit, basic version was

available for free. This package also did not provide a headless batch processing tool, and

the reported run times were also slower than expected, even though it supported parallel

processing.

The DCE Tool3 is another GUI solution for DCE modeling. It requires both a Windows

3 http://thedcetool.com/ only software package called ClearCanvas (available for free) and the MATLAB4 run time

4 Mathworks, Natick, MA.

environment (a commercial product) in order to run. This solution was quite complex,

comprising over 1.2 million lines of C and C# code.

The most useful existing tool for our needs was dcemriS45 (Schmid et al., 2009a;

5 http://dcemri.sourceforge.net/ Schmid et al., 2009b; Schmid et al., 2006), an R package. R is a popular statistical analysis

language, but it is not as common in MRI research. Nevertheless, the package contained

many advanced models, was fast in our benchmarks, and included parallel processing, but

it still took tens of seconds to process a typical breast DCE-MRI data set and to the best of

our knowledge has not been validated.

Why Julia?
We desired a fast, free, simple, easily extendable code that required a minimal installation,

would work on Windows, Mac OS X, and Linux, and would be familiar to MATLAB

users. Based on these criteria, we chose Julia as the implementation language. Julia
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julia> f(x,y) = x + y

f (generic function with 1 method)

julia> f(2,3)

5

julia> code native(f, (Float64, Float64))

.section TEXT, text,regular,pure instructions

push RBP

mov RBP, RSP

vaddsd XMM0, XMM0, XMM1

pop RBP

ret

Listing 1. The function f (x,y) is compiled upon first execution using Julia’s just-in-time (JIT) compiler,
making subsequent function calls much faster. The generated CPU instructions can be viewed directly
with the code native function, which takes two arguments: a function name and an n-tuple of
argument types. Here we examine the native CPU code produced if f were called on two 64-bit floating
point variables. The native code contains only one math instruction (vaddsd), surrounded by the code
required to preserve and restore the stack for a function call. (By convention the first two floating point
arguments are passed into the function in the XMM0 and XMM1 registers, and the result is placed in
XMM0.) All other overhead has been stripped away automatically without an explicit compilation. The
development and testing cycle is accelerated by this elimination of a separate code compilation step, and
the generated code executes as quickly as compiled C or Fortran would.

(Bezanson et al., 2012; Bezanson, Edelman & Karpinski, 2014) is a new, high-level

language designed for technical computing and that approaches the performance of C

and Fortran.6 It contains extensive libraries for linear algebra and signal processing and

6 http://julialang.org/benchmarks/ provides distributed parallel execution. It also easily interoperates with existing scientific

languages, such as C, Fortran, and Python, making it an excellent glue language for

scientific computing. Interested readers can get a flavor of Julia’s simultaneous efficiency

and simplicity with the example in Listing 1.

In short, Julia feels like MATLAB, which is simple and familiar to many investigators,

but runs faster and is completely free. In particular for DCE-MRI, Julia’s simple and

flexible parallel computing model allows excellent parallelization of the nonlinear least

squares fitting problem.

Goals
We developed DCEMRI.jl with five features in mind: open source, free, fast, flexible,

and simple. Open source enables auditing, bug finding, and community improvement.

Free software reduces the barrier to use and adoption. A faster package saves investigator

time and is more clinically practical. Flexibility anticipates new uses and heterogeneous

adoption. And simple code design reduces bugs through easier auditing and yields greater

didactic value. Here we present the results of the effort to produce such a package.
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MATERIALS AND METHODS
Units
All input variables are assumed to be in SI units, except flip angles which should be given

in degrees. All output is in SI units except for Ktrans which is scaled to units of min−1 to

maintain convention within the DCE-MRI community.

Reproducible research
DCEMRI.jl is maintained under version control in a GitHub7 archive. The exact version of

7 http://github.com/davidssmith/
DCEMRI.jl

the code used to produce the results here may be obtained by “pinning” module at version

0.1.0 using the command Pkg.pin("DCEMRI", v"0.1.0") in the Julia shell. This will ef-

fectively reverse any code changes committed to the repository after the publication of this

paper. The command Pkg.free("DCEMRI")will “unpin” and get the latest updates again.

Bugs and suggestions can be filed by users at the GitHub repository by filing “issues.”

Each issue is tracked and can be connected to subsequent code patches so that every change

to the code base can be traced in case of a breaking change or feature addition. Additionally,

each and every line can be traced back to the user that last changed it using GitHub’s

“blame” system.

Input parameters
For simplicity and maximum compatibility, DCEMRI.jl reads and writes input as Matlab

MAT v5 files. This allows users to call DCEMRI.jl from any language that can read and

write MAT files. This list includes MATLAB, Octave, Python, and R. The input MAT file

must include

1. vector t of imaging time points,

2. vector Cp of the arterial input function,

3. n-D array DCEdata of dynamic data with time in the first dimension, and

4. either a map of the pre-contrast R1 relaxation rate R1(x,0) and associated signal S(x,0)

(R10, S0) or a series of T1-weighted multiflip data and associated flip angles (T1data,

T1flip).

Note that for data with unreliable flip angle information, a separately computed R1 and

S0 map is preferred for the best accuracy. All other parameters are optional and will

be supplied with defaults if not provided. The defaults may be overridden by supplying

additional parameters in the MAT file, command-line arguments, or function parameters.

T1 mapping
DCEMRI.jl can accept as input an R1 longitudinal relaxation rate map (R1 ≡ 1/T1) or

multiple flip angle (multiflip) T1-weighted dynamic data. If the multiflip data is supplied,

the code will fit R1 and signal density maps using the signal equation for a spoiled gradient

echo sequence:

S(x,t) = S(x,0)sin θ
1 − exp[−R1(x,t)TR]

1 − cos θ exp[−R1(x,t)TR]
, (1)
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where S(x,t) is the signal as a function of space x and time t, θ is the flip angle, and TR is the

repetition time. Here we have ignored R∗
2 decay because we are assuming that the echo time

TE is much shorter than 1/R∗
2 .

If an R1 fit is required, only voxels with a mean signal intensity of at least 10% of the

maximum intensity are fit, to avoid fitting voxels that are dominated by noise. This cutoff

was chosen empirically and can be customized to the signal distribution in a given data set.

Voxels selected for fitting are then split evenly across CPU cores for Levenberg–Marquardt

fitting to the signal equation. The results for each voxel subset are returned to the parent

process, where full maps of R1(x,0) and S(x,0) are formed. The fact that fitting of

individual voxels is independent of neighboring voxels is crucial to allowing this problem

to be efficiently parallelized. All models implemented so far in DCEMRI.jl take voxels to be

independent of their neighbors.

DCE fitting
To fit a model to the supplied DCE data, the raw MR signal is converted first to an effective
R1(x,t) relaxation rate by inverting the signal equation (Eq. (1)):

R1(x,t) = −
1

TR
log


1 − s(x,t) + s(x,t)exp[−R1(x,0)TR] − exp[−R1(x,0)TR]cos θ

1 − s(x,t)cos θ + s(x,t)exp[−R1(x,0)TR]cos θ − exp[−R1(x,0)TR]cos θ


,

(2)

where s(x,t) = S(x,t)/S(x,0) is the signal normalized at time t = 0, θ is the flip angle

(assumed constant), and TR is the repetition time. Note that we have eliminated all terms

involving sin θ . Since the error in sin θ is larger than the error in cos θ when θ is close to

zero, eliminating sin θ reduces sensitivity to inhomogeneities in the volume excitation

(also known as B1 transmit radio frequency field inhomogeneities). If a B1 field map is

available, it can be used to generate an R1 map separately that can be used as an input to

DCEMRI.jl. Currently DCEMRI.jl does not support R1 mapping with spatially varying

flip angles, although nothing precludes adding that functionality in the future.

In the next stage of the processing, the effective relaxation rate R1(x,t) is converted to

the concentration in tissue Ct of the contrast agent using

Ct(x,t) =
R1(x,t) − R1(x,0)

r1
,

where r1 is the relaxivity of the contrast agent. For our in vivo experiment, Gd-DTPA

was used, for which we take the relaxivity to be 4.5 s−1 mM−1 at 3.0 T because that was

the relaxivity used in the validation data, and this same value has been found in in vivo

studies Sasaki et al. (2005). This value can also be specified by the user.

Next an optional mask of voxels to process can be supplied in the MAT file as the

variable mask. If not supplied, an automatic mask is generated from a variation of the

signal enhancement ratio (SER, Hylton et al., 2012), defined here as the mean signal in

each voxel in the last three dynamics divided by the mean of the signal in the voxel in the

first three dynamics. (Note that this requires the acquisition of three pre-contrast time
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points.) By default any voxels with an SER above 2.0 will be included in the processing

mask. This cutoff can be changed by the user.

Tissue models
Three main tissues models are included by default: the Standard and Extended Tofts-

Kety models (Yankeelov & Gore, 2009) and a plasma-only model (no exchange limit).

Other models can be added easily by the user. The Extended Tofts-Kety model is a two-

compartment model that assumes that the blood vessel supplies the CA to the tissue at a

slow and fixed transport rate Ktrans. The volume of the extracellular, extravascular tissue

space is labeled ve, and the volume fraction of the blood vessels is vp. Under this model,

the tissue concentration can be written as

Ct(x,t) = Ktrans(x)

 t

0
Cp(s)exp


kep(x)(s − t)


ds + vp(x) Cp(t), (3)

where the efflux rate constant

kep(x) ≡
Ktrans(x)

ve(x)
. (4)

Fitting the derived tissue concentration curves Ct to this model involves finding the

Ktrans,ve, and vp that best reproduce the observed Ct given an AIF Cp(t). In the Stan-

dard Tofts-Kety model, vp is assumed to be zero, and in the plasma-only model Ktrans

is assumed to be zero. Formulating the integral using kep instead of the ratio Ktrans/ve

produces better fits. To get ve, Ktrans can be divided by kep, taking care to handle cases

where kep = 0.

The models to use are specified with a bitmask supplied in either the input MAT file

or as a command line argument, and multiple models can be fit to the same voxel. The

code will then choose the best fitting model based on the reduced χ2. For each model

selected, numerical integration is performed using a trapezoidal rule, and the nonlinear

least squares fitting is performed in parallel for each voxel independently using the

Levenberg–Marquardt method. All fitting code is written in pure Julia—no external

libraries are called.

Postprocessing
Parameters were clamped in voxels that where the fit produced unphysical values. The

volume fractions ve and vp were clamped to the [0,1] interval, while Ktrans was clamped

to the [0,5] interval. The original fit residuals were retained for filtering as well. If a fit

residual is large, one can safely assume that either the signal in the voxel was too low to

provide an accurate fit or the model assumptions were violated at that location. In either

case, poorly fitted voxels should be omitted in an imaging analysis. The user should select

the correct, data-dependent cutoff residual, so DCEMRI.jl does not automatically filter

by residual.
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Finally, all results are saved to an output MAT v5 file. The name of this file can be

customized through a command line argument or the variable outfile in the input

MAT file.

Note that DCEMRI.jl does not implement PACS archival, because the results are

stored as MAT files. Additional software is needed to convert the MAT file to DICOM

format for PACS archival. If a record of the required patient, exam and image metadata

is maintained, it is theoretically straightforward to implement a conversion to DICOM

format for PACS archival. However, support for that conversion is beyond the scope of

this work.

QIBA phantom data
The Quantitative Imaging Biomarkers Alliance8 has provided virtual DCE phan-

8 https://www.rsna.org/QIBA.aspx toms in the DICOM format for validating DCE-MRI analysis codes. Several phan-

toms are available for benchmarking both DCE model fitting and T1 mapping, with

a range of noise and timing errors added. Here we chose the noise-free Standard

and Extended Tofts phantoms (versions 6 and 4, respectively). The Standard Tofts

phantom contains 10 × 10 squares of all combinations of six values of Ktrans
∈

{0.01,0.02,0.05,0.1,0.2,0.35} min−1 and five values of ve ∈ {0.01,0.05,0.1,0.2,0.5},

for 30 regions total. The phantom contains 1,361 time points for each voxel. The Ex-

tended Tofts-Kety phantom (version 4) contains 10 × 10 patches of all combinations

of the parameters Ktrans
∈ {0.0,0.01,0.02,0.05,0.1,0.2} min−1, ve ∈ {0.1,0.2,0.5}, and

vp ∈ {0.001,0.005,0.01,0.02,0.05,0.1}, for 108 regions total. This phantom contains 661

time points for each voxel. Figure 1 shows an example dynamic from the version 6 QIBA

phantom along with its associated AIF.

In the noisy cases, we followed Ortuño et al. (2013) and added complex Gaussian noise

with standard deviation σ = 0.2 relative to the pre-contrast baseline to the images. We

then went a step further and took the magnitude of the resulting data, transforming the

noise distribution into the more realistic Rician distribution. The difference between a

Gaussian and a Rician distribution is minimal for voxels with signal-to-noise ratios &10.

No noise was added to the AIF for simplicity and to allow faithful comparisons between

this work and Ortuño et al. (2013).

We extracted just one voxel from each region in the noise-free cases to reduce the

computation time, since all voxels were identical in each region. We retained all 100

voxels in each region for the noisy cases, however, in order to sample the effects of the

added noise.

In vivo data collection
In vivo breast data were acquired using a Philips9 Achieva 3.0 T MR scanner. The scan

9 Philips Healthcare, Best, Netherlands. protocol was optimized for use with the quantitative modeling in an IRB-approved10

10 Vanderbilt Ingram Cancer Center
Institutional Review Board Protocol BRE
0588: MRI Evaluation of Breast Tumor
Growth and Treatment Response.

ongoing clinical trial of response to neoadjuvant chemotherapy (Li et al., 2014), so it used

a higher temporal resolution and lower spatial resolution than clinical protocols.

For the T1-weighted data, a 3D gradient echo multiple flip angle approach was used

with TR = 7.9 ms, TE = 1.3 ms, and flip angles of 2–20 deg in 2 deg increments. Flip

Smith et al. (2015), PeerJ, DOI 10.7717/peerj.909 7/19

https://peerj.com
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
https://www.rsna.org/QIBA.aspx
http://dx.doi.org/10.7717/peerj.909


a

b

Figure 1 Example validation data. (A) The noise-free v6 QIBA phantom contains a numeric label of its
order in the time series in the upper left, the tissues regions in the middle, and a vessel strip at the bottom,
from which the AIF may be extracted. (B) The AIF extracted from this phantom. (A) The noise-free
v6 QIBA phantom contains a numeric label of its order in the time series in the upper left, the tissues
regions in the middle, and a vessel strip at the bottom, from which the AIF may be extracted. (B) The AIF
extracted from this phantom.

angles were uniformly spaced instead of optimized because of the broad range of tissue

properties found in tumors. The acquisition matrix was 192 × 192 × 20 (full breast)

over a sagittally oriented field-of-view of 22 cm × 22 cm × 10 cm. Scan time was just

under 3 min. The DCE sequence used identical parameters but with a single flip angle of

20 deg. Each 20-slice set was collected in 16.5 s at 25 time points for approximately 7 min

of scanning. A catheter placed within an antecubital vein delivered 0.1 mmol kg−1 of the

contrast agent Magnevist at 2 mL s−1 (followed by a saline flush) via a power injector

after the acquisition of three baseline dynamic scans for the DCE study. A population AIF

was used Li et al. (2011).

Modes of operation
Three modes of operation are provided for DCEMRI.jl. First, it can be called as a com-

mand line tool using the provided script dcefit. This mode is appropriate for batch

processing, or as part of shell scripts or larger analysis programs written in languages

other than Julia.

Smith et al. (2015), PeerJ, DOI 10.7717/peerj.909 8/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.909


The second model of operation is through the supplied MATLAB interface. Results

can be saved as a MAT file, and then passed to the MATLAB function dcefit.m. Saving

a MAT file is not as fast as direct parameter passing, but the data sizes in DCE MRI are

typicall small enough relative to the computational complexity of the problem that saving

and reading from disk is fast compared to the total processing time.

Finally, the preferred interface is as a direct Julia module. The DCEMRI.jl package

is built as a proper Julia module. It can be loaded with the command using DCEMRI,

and then inside a Julia program the provided functions can be called directly. In fact, the

dcefit command-line interface does exactly this, with some intermediate command-line

argument parsing. Loading the module in an interactive Julia session will exploit the

precompilation to make subsequent executions faster. For example, in our testing, the in

vivo demo required 47 s to run (including environment loading and writing plot files)

for the first run in an interactive session, but a second complete run finished in 8.5 s.

This is extremely advantageous for iterative development and batch processing, when the

analysis might need to be run many times.

RESULTS AND DISCUSSION
Validation: QIBA phantom data
The first validation set was performed on the QIBA version 6 Standard Tofts-Kety phan-

tom.11 We installed DCEMRI.jl on a 2.4 GHz Intel Xeon E5-2665 workstation running

11 https://dblab.duhs.duke.edu/modules/
QIBAcontent/index.php?id=1

Ubuntu 14.04.1 LTS (GNU/Linux 3.8.0-30-generic) using Julia version 0.3.1 (commit

c03f413). Eight CPU workers were used. For the noise-free case with 30 voxels × 1,321

time points, fitting progressed at 5.2 voxels s−1, requiring 5.8 s total; for the noisy data

with 3,000 voxels, the fitting rate was 5.7 voxels s−1 and required 525 s total.

In the noise-free case, the recovered parameters matched the true values to within an

RMS error of 0.419% for Ktrans and 0.126% for ve. The maximum error in the fitted

parameters was 2.17% for Ktrans and 0.570% for ve. The concordance correlation coef-

ficients (CCCs) were >0.999 for Ktrans and ve. The fits with the largest error relative to

the true value occurred in the regions with the lowest ve and the highest Ktrans.

In the noisy case, using σ = 0.2, the recovered parameters agreed with the true pa-

rameters to within an RMS error of 21.5% for Ktrans and 16.1% for ve. The CCCs were

0.866 for Ktrans and 0.871 for ve. In contrast to the noise-free case, the lowest Ktrans and

ve values had the largest relative error. The resulting parameter maps and associated

errors are shown in Figs. 2 and 3.

The second validation set was performed on the QIBA version 4 Extended Tofts-Kety

phantom. For this example, we removed the regions with Ktrans
= 0 min−1 from the

phantom, since no transfer from the blood to the tissue violates the two-compartment

model assumptions and precludes any estimation of ve. The same software and hardware

setup was used as in Validation 1. Again eight CPU workers were used. For the noise-free

case with 90 regions and 661 time points, fitting progressed at 20.8 voxels s−1, requiring

4.3 s total; for the noisy data with 9,000 voxels, the fitting rate was 19.7 voxels s−1 and

required 456 s total.
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Figure 2 Fitting Standard Tofts-Kety model parameters to the QIBA v6 noise-free phantom. The RMS
error was 0.419% for Ktrans (A, C) and 0.126% for ve (B, D). CCCs were >0.999 for both parameters.

In the noise-free case, the recovered parameters matched the known truths to within

an RMS error of 6.97% for Ktrans, 18.0% for ve, and 23.8% for vp. The CCCs for both

parameters were >0.999 for Ktrans, 0.890 for ve, and >0.999 for vp. The fits with the

largest error relative to the true values occurred in the regions with the lowest Ktrans and,

to a lesser extent, lowest vp.

In the noisy case, using σ = 0.2, the recovered parameters agreed with the true pa-

rameters to within an RMS error of 11.3% for Ktrans, 18.2% for ve, and 12.7% for vp. The

CCCs were 0.974 for Ktrans, 0.703 for ve, and 0.972 for vp. Against the fits with the largest

relative error occurred in regions of interest with the lowest Ktrans and vp. The resulting

parameter maps and associated errors are shown in Figs. 4 and 5.

Several factors likely contribute to the accuracy of retrieving perfusion parameters

from the QIBA phantom data. Most importantly, the Jacobian of the Tofts-Kety model
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Figure 3 Fitting Standard Tofts-Kety parameters to the QIBA v6 phantom with sigma = 0.2 noise
added. The RMS error was 21.5% for Ktrans (A, C) and 16.1% for ve (B, D); CCCs were 0.866, and 0.871,
respectively.

includes terms of the form

∂Ct(t)

∂Ktrans
=

 t

0
Cp(s)exp


Ktrans

ve
(s − t)


1 +

(Ktrans)2

ve
(s − t)


ds, (5)

∂Ct(t)

∂ve
= −

(Ktrans)2

(ve)2

 t

0
Cp(s)exp


Ktrans

ve
(s − t)


(s − t) ds, (6)

and

∂Ct(t)

∂vp
= Cp(t). (7)

With such strong dependences on Ktrans and ve, the Ktrans and ve columns of the Jaco-

bian may become ill-conditioned when Ktrans or ve take on extreme values, leading to a

loss of numerical precision. For example, in the Standard Tofts-Kety model, the difference
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Figure 4 Fitting Extended Tofts-Kety model parameters to the noise-free QIBA v4 phantom. The RMS
error was 6.97% for Ktrans (A, D), 18.0% for ve (B, E), and 23.8% for vp (C, F); CCCs were >0.999, 0.890,
and >0.999, respectively.

in dependence of the terms on ve can cause ill-conditioning when ve is close to zero,

regardless of Ktrans, since both columns depend on Ktrans in similar ways.

This hypothesis is strengthened by observing that the largest error in Figs. 2 and 3 are

when ve = 0.01 and is roughly independent of Ktrans. We also note that for the model

assumptions to be valid ve must be non-zero. Thus the error increases as the parameters

get closer to violating the model assumptions.
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Figure 5 Fitting Extended Tofts-Kety parameters to the QIBA v4 phantom with sigma = 0.2 noise
added. The RMS error was 11.3% for Ktrans (A, D), 18.2% for ve (B, E), and 12.7% for vp (C, F); CCCs
were 0.974, 0.703, and 0.972, respectively.

For the Extended Tofts-Kety model, the situation changes because the Jacobian has a

different term, vp, that is independent of Ktrans and ve. Because of this, Ktrans alone can

now cause ill-conditioning. Figures 4 and 5 are consistent with these limits. The largest

error occurs for Ktrans
= 0.01 min−1 and ve = 0.5. The error in the fits can also be said to

be largest when kep is small. This suggests that the numerical precision of the fits should
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be much lower in regions of low transfer and high extravascular, extracellular volume,

such as the central, necrotic regions of some tumors.

Quantitatively, the two validation data sets recovered the parameters extremely accu-

rately when Ktrans
≥ 0.05 min−1. Because of this, we recommend caution when including

voxels where Ktrans < 0.05 in analyses.

As an aside, a very slight underestimation Ktrans and ve is apparent in the pinkish

tint of the error maps of Fig. 2, and a slight overestimation can be seen in the greenish

tint of the error maps in Fig. 4. Neither of these effects is large when compared to the

other fitting issues, however. We have no explanation for this, but note it here as a point

of curiosity.

At any time, the QIBA validations may be run automatically by the user with the

command validate(). This allows subsequent software versions to be validated, or the

results of this section to be reproduced.

Application: in vivo breast DCE-MRI
The third validation was not a test of accuracy of parameter recovery, but rather a proof

of concept for in vivo applications. In vivo data is more hetereogeneous and subject

to measurement error and voxel averaging, so not all measured voxels may follow the

Standard or Extended Tofts-Kety model.

The same hardware and software setup was used as in Validations 1 and 2. A standard

Tofts-Kety model was used because of its robustness to noise and for simplicity of expo-

sition here. DCEMRI.jl selected 18,327 voxels as containing significant signal and created

R1 and S0 maps in 2.9 s, for a processing rate of 6,365 voxels s−1. Of the 18,327 voxels

selected for R1 fitting, 6,774 were computed to have a signal enhancement ratio of 2.0 or

more and were selected for DCE model fitting. Fitting required 0.9 s, for a rate of 7,815

voxels s−1. The resulting maps are shown in Fig. 6.

The general features of the computed maps for the in vivo are consistent with expected

results. The R1 relaxation rate is lower in the tumor than in the fatty tissue and is similar

to that in the fibroglandular tissue. The CA concentration is generally highest in the

tumor and in vascular-like structures. The signal enhancement ratio is highest in the

tumor, apart from some garbage results posterior of the chess wall due to breathing and

cardiac motion. Finally, the derived values of Ktrans, ve, and vp through the tumor are

consistent with typical tumor values and spatially consistent with neighboring voxels.

Run time
We have collected the run times and number of time points of each of the two cases for

each of the two validations along with the same for the in vivo example in Fig. 7. We

wanted to determine the scaling of run time of DCEMRI.jl with problem size so that

better comparisons with other packages can be made. We hypothesized that the run time

would be dominated by the matrix operations in the Levenberg–Marquardt routine.

Under this hypothesis, we assumed that a polynomial scaling of the run time might

occur. Since matrix multiplication can scale as poorly as O(N3), we tested low-order

polynomials in N and logN, but we found poor fits when a zero intercept was required.
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Figure 6 In vivo example. The computed R1 relaxation rate (A), signal enhancement ratio SER (B),
maximum CA tissue concentration Ct (C), the Standard Tofts-Kety parameters Ktrans (D) and ve (E),
and the fit residual (F). Only voxels with SER >2.0 were fit. Of the 36,864 voxels in the image, only 7,815
were selected for parameter fitting.
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Figure 7 Time required to fit a single voxel as a function of the number of time points in the Ct curve.

A power-law fit was found to fit better than polynomials, and we found that the best fit

power law for the run time in seconds per voxel was trun(N) = 2.2 × 10−7N1.9, where N

in the number of time points per voxel.

Comparison to other packages
We ran the two most similar packages—DCE@urLAB and dcemriS4—on a 2.4 GHz Intel

Xeon E5-2665 workstation running Ubuntu 14.04.1 LTS (GNU/Linux 3.8.0-30-generic)

using Julia version 0.3.1 (commit c03f413). Eight CPU workers were used.

DCE@urLAB by Ortuño et al. (2013) found comparable errors in fitting to this work.

While they didn’t state quantitative error measurements, their Figs. 7 and 9 were similar

in character to Figs. 2–5 here. They also stated run times of 20 s to fit 1,024 voxels and

40 dynamic frames and 5 min to fit for 16,384 voxels and 40 dynamic frames, or roughly

19 ms per pixel. According to our run time analysis, DCEMRI.jl using four CPU cores

would require only 0.80 ms per pixel which is 24× faster.

Also, DCE@urLAB contains around 20,000 lines of code, while DCEMRI.jl contains

only around 1,000 lines of code, and 500 of those are devoted to phantom validation

and plotting. DCE@urLAB does contain more models, however, so adding additional

models to DCEMRI.jl will require more code, but only on the order of tens of lines, not

thousands.

Validation results for dcemriS4 have not been published, so we cannot compare its ac-

curacy to DCEMRI.jl, but in our own testing, we found that dcemriS4 required roughly

10 s on average to fit the Extended Tofts-Kety model to the tissue curves derived from the

breast data set, while DCEMRI.jl required 0.9 s. This suggests that DCEMRI.jl may be

∼10× faster than dcemriS4.
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CONCLUSIONS
We have demonstrated an open source, free, and highly portable solution to DCE-MRI

analysis that achieves similar accuracy of derived parameters, eschews needless complex-

ity, and is 10–20× faster than comparable solutions. Many improvements are possible for

DCEMRI.jl. First, more models can be added as long as they can be validated. Many of

the existing packages include more than just the Tofts-Kety models, and DCEMRI.jl is

written such that the model to be fit is completely independent of the fitting code itself.

Thus adding new models is trivial. Second, upcoming improvements to the Julia language

will bring even more speed. The planned feature of module load caching should speed

up loading modules in Julia, which is currently one of the slowest parts of DCEMRI.jl.

A major overhaul of plotting in Julia is also in progress which should improve the speed

and quality of plotting. Finally, improvements in the low-level code translation to better

optimize vector arithmetic on modern CPUs are in the works. As these changes are

implemented, users can stay up to date simply by updating to the latest Julia stable release

and then running Pkg.update() in the Julia environment. This command will pull the

latest commits from the DCEMRI.jl git archive and patch the local copy of the module.
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