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Abstract
Single-cell RNA sequencing (scRNA-seq) has recently 
undergone rapid advances in the development of this 
technology, leading to high throughput and accelerating 
discovery in many biological systems and diseases. The 
single-cell resolution of the technique allows for the 
investigation of heterogeneity in cell populations, and the 
pinpointing of pathological populations contributing to 
disease. Here we review the development of scRNA-seq 
technology and the analysis that has evolved with the 
ever-increasing throughput. Finally, we highlight recent 
applications of scRNA-seq to understand the molecular 
pathogenesis of lupus and lupus nephritis.

Introduction
Kidney involvement in patients with systemic 
lupus erythematosus (SLE), or lupus nephritis 
(LN), can affect up to 50% or more of all 
lupus patients and remains an important 
source of morbidity and mortality. Although 
the exact mechanism of LN progression is 
still a matter of ongoing research and debate, 
there are several distinctive features of the 
disease including immune complex deposi-
tion on the glomerular basement membrane, 
which can result in inflammation and ulti-
mately reduced glomerular function.1 Addi-
tionally, hyperproliferation of the resident 
mesangial and endothelial cells, and fibrosis 
affecting the renal interstitial and glomer-
ular compartments are often observed as the 
disease progresses.2 3 Examination of renal 
tissue obtained by a percutaneous biopsy 
reveals that glomerular involvement can be 
highly variable even within the same patient. 
Moreover, patients with a similar histological 
classification can have variable responses to 
treatment, even when similar protocols are 
employed. Thus, the examination of kidney 
biopsy tissue by light and electron micros-
copy alone do not provide sufficiently accu-
rate prognostic information, and additional 
modes for assessing disease progression must 
be developed to optimise patient care. Lupus 
renal biopsies demonstrate notable histo-
logical differences between patients which 
are reflected in the classification scheme in 
widespread use; however, the mechanisms 
underlying these distinct histopathological 

classes are not well understood, and at the 
molecular level, they may even display more 
heterogeneity than the proliferative and 
membranous patterns currently recognised. 
Finally, studies of LN and kidney diseases, in 
general, have traditionally relied on visualis-
ation-based approaches such as microscopy 
and flow cytometry. These approaches do not 
provide sufficient data regarding gene expres-
sion changes within specific cell types. Such 
an understanding may further elucidate the 
communication between cells and the patho-
logical processes contributing to heteroge-
neity in ultimate tissue injury.

More recently, approaches such as tran-
scriptome profiling with microarrays and 
RNA sequencing (RNA-seq) have been 
applied in LN to RNA isolated from whole or 
laser-capture micro-dissected renal tissue. For 
instance, Fu et al used RNA-seq to elucidate the 
molecular basis for the efficacy of combina-
tion therapy in LN, finding that combination 
therapy with tacrolimus and mycophenolate 
mofetil as compared with either drug given 
alone suppressed the IL-6/STAT3 pathway 
and inhibited Toll-like receptor 7 expression.4 
‘Bulk’ RNA sequencing of tissues yields infor-
mation regarding the average expression of all 
cell types contributing to the isolated RNA. 
Therefore, even in cases where glomeruli 
alone are sequenced, expression changes may 
come from any of the cell types found within 
the glomerulus and cannot be unambigu-
ously assigned to a specific cell type. This can 
potentially cause changes in interesting genes 
to be overlooked within the average espe-
cially if they are expressed in a rare cell type 
which may be only present at the level of a 
few percents of a tissue. Although cytometric 
sorting of cell populations before sequencing 
can greatly increase the cell type specificity of 
RNA-seq analysis, heterogeneity within a cell 
type such as proliferating versus resting cells 
still may remain unrecognised.

Single-cell RNA-seq (scRNA-seq) addresses 
these technical challenges by providing tran-
scriptomic profiling at a single-cell resolution. 
This methodology allows for the charac-
terisation of cells represented in tissue and 
independent from each other without prior 
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knowledge of lineage markers.5 Furthermore, scRNA-seq 
facilitates the identification of cell-state-specific expres-
sion patterns and offers unique insights into cell differ-
entiation and cell–cell ligand–receptor interactions. 
Advances in microfluidic technology have lowered the 
cost per cell and dramatically increased the throughput, 
propelling the technology into a new age. In this paper, 
we review the promise of scRNA-seq and its potential 
application to different diseases involving the kidney.

scRNA-seq Protocols
scRNA-seq is fundamentally similar to traditional RNA-seq 
in that it involves reverse transcription and prepara-
tion of a cDNA library followed by DNA sequencing. 
The most important difference is that scRNA-seq yields 
many libraries carrying cell-specific barcodes instead 
of one single library from the RNA pool of many cells. 
In bulk RNA-seq, small cell populations contribute 
little when averaged with larger cell populations, but 
in scRNA-seq, they contribute unique profiles at a rare 
frequency (figure  1). This is accomplished in different 
ways depending on the technique and can be broadly 
categorised into two distinct approaches: (a) plate/
tube-based and (b) microfluidic-based strategies. These 
two categories share common workflows starting with 
the isolation of a single-cell suspension from tissue or 
sample, physical capture of single cells in distinct cham-
bers, lysis, reverse transcription, amplification, library 
preparation and next-generation sequencing. scRNA-seq 
methods differ in the way single cells are captured and 
physically separated and in the chemistry used to amplify 
and create libraries for sequencing (figure  2). Regard-
less, the amplification step can introduce biases due to 
the kinetics of cDNA amplification leading to artefactual 
over-representation of certain mRNAs. This has been 
dealt with in many scRNA-seq protocols by the integra-
tion of unique molecular identifiers (UMIs) which tag 
sequence reads originating from an mRNA molecule. 
UMIs provide a digital expression approximating actual 
count of mRNAs sequenced rather than relative abun-
dance which is typical of traditional RNA-seq, and in this 
way remove PCR bias. scRNA-seq originated as a tube-
based or plate-based methodology and evolved as micro-
fluidic technology advanced, each evolution increasing 
the throughput from single-digit numbers of profiles per 
experiment to thousands per preparation.

Plate-based and tube-based scRNA-seq
Plate-based and tube-based methods include the original 
method of scRNA-seq by Tang et al where individual cells 
were manually transferred into PCR tubes for reverse 
transcription, amplification and library preparation.6 
Single-cell tagged reverse transcription (STRT-Seq)7 
and switching mechanism at 5’ end of RNA template 
(SMART-Seq)8 both increased the scale of scRNA-seq 
by transitioning to a 96-well plate format where cell 
barcodes were introduced during the library preparation 
step. This allowed for the pooling and sequencing of 96 

single-cell libraries in a single sequencing run, decreasing 
the cost of sequencing and increasing the throughput. 
Cell expression by linear amplification and sequencing2 
(CEL-Seq2)9 improved further on this method by intro-
ducing UMIs into the reverse transcription allowing for 
the reduction in noise due to non-linear PCR amplifica-
tion. This process furthermore relies on 3’ end counting 
and thus does not generate full-length sequences of 
cDNA, which precludes the examination of splice varia-
tion and isoform. When paired with an automated cell 
capture method such as fluorescence activated cell sorting 
(FACS), or the Fluidigm C1 integrated fluidic chip,10 the 
automation resulted in an order of magnitude increase 
in throughput. The Fluidigm C1 system has the added 
benefit of reducing the reaction volumes from μL to nL 
volumes for reverse transcription and improves on the 
efficiency of some enzymatic steps during cDNA library 
preparation. In addition, this system allows imaging of 
individual cells before processing. Fluidigm also released 
a high throughput platform with an integrated fluidic 
chip capable of capturing 800 cells per experiment 
instead of 96 per experiment in the previous generation, 
further increasing the throughput capacity in scRNA-seq. 
The cost per cell, however, remains relatively high with 
this level of throughput, approximately US$3–5 per cell.

Droplet-based scRNA-seq
Droplet-based approaches utilise microfluidic technology 
to capture single cells in buffer-oil emulsion droplets for 
cDNA capture and/or reverse transcription with droplet 
volumes in the nL range. This technology has the largest 
throughput potential, limited only by sample material 
and cost. The best technologies conduct reverse tran-
scription and barcoding within the droplet.

The first microfluidic-based approaches were DropSeq11 
and InDrops,12 which were developed and published at 
the same time. Both methods rely on a microfluidic chip 
to control the flow of oil, cell suspension and barcoded 
beads suspended in lysis buffer and reaction reagents, for 
optimal droplet formation. Millions of droplets form at 
the intersection of the three inlets with the aim of simul-
taneously capturing one cell and one bead per droplet. 
One of the critical components of these methods are the 
barcoded beads, which in the case of DropSeq are micro-
particle beads covered with oligonucleotides containing 
a PCR handle, a unique cell barcode (UMI) and a 3′ 
terminal polyT segment typically 30 nucleotides in length. 
The polyT segment is for capturing polyA mRNA and 
priming of reverse transcription, and although the polyA 
tail length can vary, a 30-nucleotide oligo-dT is sufficient 
for the capture of mature mRNAs. During reverse tran-
scription, the cell barcode, UMI and PCR handle are 
incorporated into each cDNA molecule. This allows for 
the pooling of all cDNAs during subsequent PCR steps 
as the cell identity and UMIs are specific for each cDNA 
(figure 3). Although millions of droplets can be formed 
in this manner, the beads and cell suspension flow rates 
need to be adjusted to minimise doublet cell capture, yet 
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Figure 1  Bulk sequencing versus scRNA-seq. In bulk sequencing, a pool of extracted RNA from a population of cells is 
sequenced, providing expression data representing the average expression of a particular gene across all cells. In contrast, 
scRNA-seq retains the originating cell-specific transcript information. If many cells of the same cell type were identified, the 
averaging of sequence reads across all cells yields cell-type-specific expression information similar to bulk RNA-seq profiles. 
Hypothetical outputs for a gene in bulk sequencing and scRNA-seq are shown. scRNA, single-cell RNA sequencing; tSNE, 
t-Distributed Stochastic Neighbour Embedding.

maximise the frequency of a droplet containing both a 
cell and a barcoded bead. The capture rates for DropSeq 
were suboptimal and near 5%–10% of total input cells. 
InDrops uses hydrogel beads packed with oligonucle-
otides. These beads are deformable and can be passed 
through narrower channels in comparison with DropSeq 
solid beads, which allows for improved fluidic control and 

increased cell capture rates of 60%–90%. Both methods 
significantly reduced the cost per cell over the plate-based 
scRNA-seq methods to US$0.60–0.90, though the total 
cost per experiment overall remains similar.

Several commercial adaptations of microfluidic 
scRNA-seq approaches have emerged after the DropSeq 
and InDrops publications. The most notable two are the 
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Figure 2  ScRNA-seq workflows. The basic workflow of scRNA-seq follows similar steps regardless of the platform. Tissue 
is disaggregated into single-cell suspensions and loaded onto the scRNA-seq platform of choice (ie, Dropseq or Fluidigm C1). 
Lysis, reverse transcription, PCR amplification and sequencing are followed by downstream analyses. scRNA, single-cell RNA 
sequencing.

10X Genomics Chromium platform and the Illumina/
Bio-Rad system. Both are more expensive per cell than 
DropSeq or InDrops custom-built devices, but offer more 
standardisation and convenience, analytical software and 
technical support. 10X Genomics has recently introduced 
an approach to also capture the 5′ ends of mRNAs. This 
enables T-cell receptor and B-cell receptor sequencing in 
tandem with mRNA 3′ end sequencing, in order to eval-
uate the clonality of B and T cells.

Protein integration
One of the major limitations of scRNA-seq is that not all 
mRNAs are captured by this approach and only a small 
percentage are sampled so that statistical methods need to 
be employed for assigning cell-type identity. Furthermore, 
the sparse sampling of transcripts per cell is prohibitive 
to estimating RNA abundance per cell. However, lineage 
assignment and combination of reads from the same 
cell types ultimately leads to cell-type-specific expression 
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Figure 3  Droplet-based scRNA-seq integration of cell barcodes and UMIs. Droplet-based scRNA-seq platforms use barcoded 
beads to retain information both on the cell of origin and mRNA sequence. This is accomplished by use of beads conjugated 
to oligonucleotides-containing sequences for the PCR priming, a cell barcode unique for each bead and a UMI randomised 
sequence distinguishing oligonucleotides per bead. The end of the oligo is a polyT tail which binds to polyA tails of mature 
mRNAs. This allows reverse transcription of the mRNA into a cDNA molecule which now contains the PCR handle, cell barcode 
and UMI. in this way, during PCR amplification, the information regarding input cell of origin and mRNA of origin is retained. 
When the library is prepared and sequenced, both ends are sequenced. The first read will sequence the cell barcode and UMI, 
whereas the second read sequences the cDNA. Together these reads provide the gene encoding the mRNA, the cell it was 
expressed in, and further, by summing UMIs, the total number of mRNAs for the specific gene in that cell. scRNA, single-cell 
RNA sequencing; UMI, unique molecular identifiers.

profiles, as obtained from ‘bulk’ RNA sequencing from 
purified cell populations. Sparse sampling is a particular 
problem when assigning cell states of small cell types 
with little cytoplasm and lower mRNA content, espe-
cially leukocytes. This has prompted efforts of combining 
scRNA-seq with simultaneous antibody-based protein 
detection referred to as RNA Expression And Protein 
sequencing assay (REAP-seq) 13 and Cellular Indexing of 
Transcriptomes and Epitopes by sequencing (CITE-seq).14 

Similar to flow cytometry, but instead of labelling anti-
bodies with a fluorophore or heavy metal ion tags, they 
are conjugated to polyA-tail-containing oligodeoxynucle-
otides to be sequenced simultaneously with the single-cell 
transcriptome. The initial proof of concept experiment 
labelled with 16 distinct antibodies. Although promising, 
these techniques have not yet been applied to kidney 
tissue, and it is likely that further careful optimisation of 
each antibody will be necessary to ensure that the relevant 
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epitopes are not cleaved during the tissue disaggregation. 
The potential for surface protein expression to be altered 
during preparation for scRNA-seq has also not yet been 
explored in kidney cells.

Data analysis
Nearly every scRNA-seq platform relies on Illumina 
sequencing to provide sequence read files in FASTA or 
FASTQ format for downstream analyses. However, due 
to the distinct barcode, UMI and sequencing adapter 
usage, each methodology also relies on custom bioinfor-
matic pipelines, whereas commercial platforms may addi-
tionally distribute analysis software with their platforms. 
Common to these pipelines, FASTQ sequence read 
files are trimmed from adapters and need to pass filters 
controlling for sequencing quality. Sequence reads are 
then aligned against the genome in order to assign the 
reads to genes. Platforms using UMIs generate a digital 
expression matrix based on a number of transcripts 
captured per single cell. Platforms that do not incorpo-
rate UMIs generate a matrix composed of relative tran-
script abundances.

Following the computation of the expression matrix, 
many different kinds of analyses may be performed which 
is also an area of active new development. The most prev-
alent analysis is dimensionality reduction analysis such as 
principal component analysis and t-Distributed Stochastic 
Neighbour Embedding11 to visualise clusters of similar 
cells identified by unsupervised graph-based population 
identification algorithms (figure 4A). These tools facili-
tate the detection of novel cell types and subpopulations 
of cells representing different cell states, such as resting 
versus proliferating. Pathways of differentiation and cell 
lineage positioning can be studied by ‘pseudotime’15 
analysis integrating computational machine learning 
approaches (figure 4B).

There are several recognised limitations of scRNA-seq. 
First, certain cell types sensitive to tissue dissociation may 
be lost or under-represented and the relative cell counts 
may not be representative of the original tissue. Second, 
although gene expression analysis by scRNA-seq provides 
a very good representation of the expression pattern 
found by conventional bulk sequencing approaches, 
application of scRNA-seq shares a limitation present also 
in the standard method of biopsy analysis, and that is, 
both methods analyse only a relatively small piece of the 
whole tissue which may not be sufficiently representative 
of the entire organ. Third, due to incomplete sampling 
of cellular gene expression, statistical approaches are 
required for cell type identification and clustering. 
Multiple imputation-based software packages have been 
established to computationally address this issue.16 17 Last, 
spatial information is not preserved as tissue needs to be 
dissociated for preparing single-cell suspension. Consid-
ering the rapid development of scRNA-seq methods and 
instruments, specific software platforms were developed 
for integrative analysis of data generated on diverse 
platforms.

Clinical implications
This emerging technology is already being applied to 
gain insight into the pathogenesis and heterogeneity 
of LN and other organ manifestations of SLE. Tran-
scriptomic evaluation at the single-cell level is poised to 
identify rare cell populations and evaluate the commu-
nication between renal cell types and inflammatory 
leukocytes and fibroblasts. Although other fields such 
as cancer biology and neurosciences have already begun 
to leverage this technology, it has yet to be used exten-
sively within the context of SLE and LN. Several groups, 
however, have begun characterising healthy and diseased 
kidney in murine models and humans with LN. These 
studies provide a single-cell atlases of the kidney, for 
instance, Brunskill et al used the C1/SMART-Seq plat-
form to characterise renal organogenesis in developing 
mice and provide a roadmap of renal development.18 
More recently, Park et al used the 10X Genomics platform 
to sequence 57 979 healthy adult mouse kidney cells.19 
This undertaking provided a detailed resolution of the 
cell populations of the mouse kidney and identified novel 
transition states between cell types and potentially novel 
populations of collecting duct cells. Specifically evaluating 
targets reported in GWAS studies of various renal diseases 
including tubular acidosis and nephrotic syndrome, 
the authors identified the candidate genes expressed in 
specific renal cell types indicating a possible cell-type-spe-
cific contribution of each disease. Other studies of mouse 
kidney by scRNA-seq have focused on specific sorted cell 
types including mesangial cells and collecting duct cells.

In humans, Sivakamasundari et al performed a similar 
analysis using the 10X Genomics platform, sequencing 
22 469 healthy human kidney cells.20 Similar to Park 
et al, novel cell populations as well as new markers for 
already established cell types were identified. Analysis of 
the specific expression of known LN-associated genes, 
such as NOTCH4, indicated that their expression under 
healthy conditions is high in endothelial cells, specifi-
cally ascending and descending vasa recta. Our group 
has recently characterised renal and skin biopsies from 
patients with LN and live organ donors using the Fluidigm 
C1/SMART-Seq platform.21 Single-cell transcriptomic 
analysis revealed an interferon response signature that 
correlated with clinical parameters, including histological 
features such as glomerular immunoglobulin G deposi-
tion and chronicity. Further, a high interferon response 
signature was associated with poor response to conven-
tional treatment. This finding was validated in a separate 
cohort using the high throughput Fluidigm platform and 
we have further identified a fibrotic signature that could 
predict response to treatment at 6 months postbiopsy.22 
The higher throughput and larger patient cohort in this 
latter study allowed for biopsy class-specific comparisons 
which revealed several pathways that may contribute to the 
histological differences in the disease. Another group has 
used a plate-based CEL-SEQ2 approach on the leukocytes 
sorted from the kidneys of LN patients and have reported 
the immune landscape of the kidney. They were able to 
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Figure 4  Representative plots of downstream scRNA-seq analysis. (A) An illustrative tSNE plot, where cells form clusters 
based on similarities and differences in gene expression. Different colours designate different clusters which differentiate 
between cell types and cell states. (B) An illustrative pseudotime plot, the line indicating a continuum of hypothetical 
differentiation from least differentiated (red colour) to several branches of distinct differentiated cell types. scRNA, single-cell 
RNA sequencing; tSNE, t-Distributed Stochastic Neighbour Embedding.
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identify several subsets of immune cells including cells 
that appear to be T follicular helper regulatory cells.23 
This work sets the stage for new discoveries, including an 
increased understanding of LN pathophysiology that will 
lead to novel and more targeted therapies. Further, adding 
precision diagnostics and prognostics will help guide clin-
ical treatment decisions. For example, preliminary data 
using droplet-based approaches have indicated relatively 
high variability in terms of the number and type of infil-
trating immune cells within the interstitial and glomerular 
compartments between patients, even in those identified 
with the same histopathology class (data not shown). If 
this result is confirmed, such information could drive the 
choice of B-cell depleting approaches in patients with 
high numbers of kidney-infiltrating B cells. Similarly, early 
signs of extracellular matrix expression in tubular cells, 
even in the absence of other evidence for fibrosis and 
chronicity, may suggest antifibrotic approaches. Another 
important clinical application would be a move towards 
therapy intensification, or at least shorter follow-up inter-
vals, in those patients whose gene expression patterns 
display negative prognostic indicators. scRNA-seq lays the 
foundation to usher in an era of precision medicine where 
it is anticipated that therapies based on renal transcrip-
tomics will increase response rates and guide patient-spe-
cific treatment decisions.
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