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Abstract

Background: Wildlife populations are difficult to monitor directly because of costs and logistical challenges associated with
collecting informative abundance data from live animals. By contrast, data on harvested individuals (e.g., age and sex) are
often readily available. Increasingly, integrated population models are used for natural resource management because they
synthesize various relevant data into a single analysis.

Methodology/Principal Findings: We investigated the performance of integrated population models applied to black bears
(Ursus americanus) in Minnesota, USA. Models were constructed using sex-specific age-at-harvest matrices (1980–2008), data
on hunting effort and natural food supplies (which affects hunting success), and statewide mark–recapture estimates of
abundance (1991, 1997, 2002). We compared this approach to Downing reconstruction, a commonly used population
monitoring method that utilizes only age-at-harvest data. We first conducted a large-scale simulation study, in which our
integrated models provided more accurate estimates of population trends than did Downing reconstruction. Estimates of
trends were robust to various forms of model misspecification, including incorrectly specified cub and yearling survival
parameters, age-related reporting biases in harvest data, and unmodeled temporal variability in survival and harvest rates.
When applied to actual data on Minnesota black bears, the model predicted that harvest rates were negatively correlated
with food availability and positively correlated with hunting effort, consistent with independent telemetry data. With no
direct data on fertility, the model also correctly predicted 2-point cycles in cub production. Model-derived estimates of
abundance for the most recent years provided a reasonable match to an empirical population estimate obtained after
modeling efforts were completed.

Conclusions/Significance: Integrated population modeling provided a reasonable framework for synthesizing age-at-
harvest data, periodic large-scale abundance estimates, and measured covariates thought to affect harvest rates of black
bears in Minnesota. Collection and analysis of these data appear to form the basis of a robust and viable population
monitoring program.
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Introduction

Age-at-harvest data are commonly collected for many wildlife

populations, including those of ungulates and carnivores, and a

variety of methods have been developed to assess population

abundances and trends from these data [1]. Recently, several

authors have suggested applying modern statistical age-at-harvest

models to monitor population trends, either in concert or as an

alternative to more labor intensive survey methods [1–7]. Methods

for analyzing age-at-harvest data have largely been adapted from

fisheries’ statistical catch-age models [8–9], which fall under the

broader classification of integrated population (or ‘‘hidden

process’’) models [10–13]. Integrated population models synthe-

size demography with multiple sources of data, such as age- and

length-frequencies, abundance indices, annual harvest, and life-

history information, into a comprehensive analysis. A key issue

with these models is that age-at-harvest data alone are insufficient

to estimate population parameters (such as abundance, survival,

and recruitment), in part because not all animal deaths are

accounted for through hunter harvest; strong assumptions or

auxiliary data are typically needed to eliminate parameters or to

make them estimable [2]. Thus, a relevant question of practicality

is, ‘‘what assumptions or auxiliary data are necessary to reliably

estimate population trends with age-at-harvest data?’’

Auxiliary datasets previously considered have included those

generated by radio telemetry studies to inform survival probabil-
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ities [1,2] and mark-recovery studies to inform survival and

harvest rates [6]. Several authors have used hunter effort data to

estimate harvest rates [4,5,14], and independent indices of

abundance have been used to provide additional structure on

changes in population size [5]. Laake [14] stressed that hunter

effort needs to have sufficient temporal contrast to be useful for

estimating model parameters, if it is the sole source of auxiliary

data.

In Minnesota (MN), USA, abundance and population trends of

black bears (Ursus americanus) are monitored to inform each year’s

allocation of hunting licenses. Whereas trend information has been

gleaned from a variety of indices, including harvest data, periodic

statewide mark–recapture estimates have provided the primary

tool for assessing the status of the population. Marking occurs via

ingested tetracycline-laced baits spread across the bear range, and

recaptures consist of bone samples (examined for tetracycline

marks) submitted by hunters [15]. These estimates are labor and

cost intensive, and therefore have been conducted infrequently

(,5–6 year intervals). Moreover, uncertainty associated with each

yearly estimate has hampered assessment of population trend [16].

As such, we were interested in determining whether age-at-harvest

modeling could aid or supplant statewide population estimates as a

means of estimating changes in bear abundance.

We built plausible models of MN black bear population and

harvest dynamics by integrating age-at-harvest data with statewide

mark–recapture estimates of abundance available for 1991, 1997,

and 2002. In addition, we used data from a long-term (nearly 30

year) radio-telemetry study (Appendix S1) to provide guidance on

the form of the model (e.g., structure of harvest rates), but not to

estimate model parameters. Although these additional data could,

in principle, have been integrated into the model fitting process,

we chose to reserve these data for the purposes of testing the

validity of model outputs. We had two primary research objectives.

First, we aimed to evaluate the robustness of these models using a

large-scale simulation study. Although integrated population

models are gaining momentum in wildlife studies, surprisingly

little testing has been conducted on their behavior (but see

[13,17]). Second, guided by the simulation study, we applied the

models to actual data with the intent of informing natural resource

management.

Methods

Model Development
Our application is based loosely on the ‘‘stock synthesis’’

framework [18,19], which has been used widely in fishery stock

assessments since the early 1990s. The model is conditioned on

initial (estimated) abundance at age, and then it projects the age-

structured population forward through time, fitting to available

data. The dynamics of the population are determined by estimated

births (cubs) and mortality, including harvest.

Using the notation summarized in Table 1, and a timeline

guided by knowledge of life history of black bears in MN

(Figure 1A), annual changes in abundance are given by the

following set of equations:

~NNs
tz1,az1~

~NNs
t,aSs

t,a(1{hs
t,a) for 0ƒavA{1, ð1aÞ

~NNs
tz1,A~ ~NNs

t,A{1Ss
t,A{1(1{hs

t,A{1)z ~NNs
ASs

t,A(1{hs
t,A) ð1bÞ

These quantities are related to observed data through predictions

of age-at-harvest records each year, where

~CCs
t,a~

~NNs
t,a 1{Ss

t,a

� �
hs

t,a for all a: ð2Þ

This formulation assumes no mortality between the end of the

hunting season and the time at which new individuals are

recruited into the population (Figure 1A). This is a realistic

assumption for MN black bears, which enter winter dens (where

mortality is nearly zero) during or immediately after the

September–October hunting season, and give birth in January.

The model as articulated thus far is overparameterized; that is,

it is impossible to estimate all parameters with an age-at-harvest

dataset alone. Thus, we made several simplifying assumptions to

reduce the dimensionality of the problem. We assumed 50% of

cubs were male and set survival rates of cubs to 0.76 for males and

0.88 for females, values estimated from den checks of radio-

collared adult bears near the center of MN’s bear range (Appendix

S1). Because bears are not legally hunted until 1.5 years old,

parameters for cub and yearling survival from den emergence to

the fall hunting season at age 1.5 are confounded with fecundity

parameters (number of cubs produced per year). Thus, we also

fixed yearling survival of males (at a value of 0.88), but estimated a

parameter that reflected the difference between male and female

annual survival, constrained to provide the biological realism of

higher female survival. In addition, we assumed non-hunting

mortality rates were constant with respect to age and time for all

bears age 2 or older. Thus, our models captured non-hunting

Table 1. Parameters, functions of parameters, and statistics
used in the age-at-harvest model and auxiliary analyses for
Minnesota black bears.

Parameter or function of
parameters Description

~NNs
t,a

Predicted abundance of age a, sex s
individuals in year t (s~M denotes
males; s~F denotes females) by the
statistical age-at-harvest model.

hs
t,a Finite harvest probability of age a, sex s

individuals in year t

Ss
t,a Finite probability of surviving all non-

hunting sources of mortality for age a,
sex s individuals in year t

~CCs
t,a

Predicted harvest of age a, sex s
individuals in year t by the statistical
age-at-harvest model. This quantity is

given by ~NNs
ta(12Ss

ta)hs
ta .

Statistics

Cs
t,a Number of age a, sex s individuals

harvested in year t (observed age-at-
harvest matrix, corrected for sex
misclassification rates, and inflated to
account for bears that were not aged).

A Number of ages included in the
population model. Once an individual
reaches age class A, they are assumed
to stay in that age class until they die
(i.e., it is treated as a ‘plus’ group, and
thus, labeled as A+).

T Number of years age-at-harvest data
are available

doi:10.1371/journal.pone.0012114.t001
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mortality using three estimated parameters (one each for females

age 1, males ages 2+, and females ages 2+).

We considered two different sub-models for harvest rates,

parameterized on a complementary log-log scale, and applied to

an age-at-harvest data matrix consisting of 29 years (1980–2008)

and 10 age classes (ages 1–9, 10+). In the first configuration, we

modeled temporal variation in harvest rates by regressing on an

index of natural food availability and an index of hunting effort

(the number of estimated bear hunters; [20]); additional harvest

vulnerability parameters were estimated in the first four years since

these covariates were not available for 1980–1983. In this

approach, a total of seven regression parameters were used to

account for temporal variability in harvest probabilities (Box S1).

In the second configuration, we estimated annual fluctuations in

harvest vulnerabilities using an unstructured model. This ap-

proach required 29 parameters (1 for each year) to account for

temporal variability. With both approaches, we modeled a

nonlinear effect of age using natural cubic regression splines with

3 degrees of freedom (interior knots were set at ages 2 and 7, and

outer knots were set at ages 1 and 10), and we included an extra

parameter to account for sex differences. Age, sex, and temporal

effects were assumed to be additive on the log-log scale. We

created the regression spline basis functions using the ‘ns’ function

in R [21,22]. We chose age = 2 as an interior knot to allow greater

flexibility to fit early ages and age = 7 to allow for an inflection

point shortly after maturity. We refer to these two different harvest

sub-models as H(a, s, f, e) and H(a, s, yr), where the subscripts refer

to age (a), sex (s), food availability (f), hunting effort (e) and

individual year effects that were unstructured by food or hunting

effort (yr).

Model Fitting
Model fitting was accomplished by minimizing the difference

between observed and predicted harvest at age via a x2 objective

function [23],

L0~
X

s

X
t

X
a

Cs
ta{

~CCs
ta

� �2
.

~CCs
ta: ð3Þ

The x2 objective function was appealing because its evaluation

only required specification of the population dynamics model to

project counts and estimate harvests through time, rather than a

large set of distributional assumptions meant to reflect both

sampling and process variability. In addition, it avoided potential

numerical problems associated with large combinatoric terms in

product binomial or multinomial likelihoods sometimes used for

fitting age-at-harvest models. Lastly, in limited initial testing, we

found the optimizer was also more likely to converge to a

minimum (as indicated by a positive definite Hessian matrix)

when using a x2 objective function compared to least squares.

Assuming the population dynamic model gives a reasonable

approximation to reality, L0 should converge to a x2
n{p{1

distribution, where n = 580 is the number of unique cells (2

sexes629 years610 age classes) and p is the number of estimated

model parameters.

In addition to fitting age-at-harvest data, we explored the

usefulness of incorporating independent abundance estimates from

statewide, tetracycline mark-recapture studies conducted in 1991,

1997, and 2002 [15,16]. To accomplish this, we added a penalty

term to the x2 objective function, minimizing

L~L0zw
X

t~(1991,1997,2002)

PA
a~1

~NNt,a{ĥht

SE(ĥht)

0
BBB@

1
CCCA

28>>><
>>>:

9>>>=
>>>;

, ð4Þ

where ĥh and SE(ĥh) represent the point estimate and standard error

associated with the mark-recapture study in year t [16] and

PA
a~1

~NNt,a is the model-based estimate of abundance in year t,

excluding cubs (which were not part of the mark-recapture study).

Because ~NNt,a is a function of model parameters, this compound

objective function provides a means to tune parameters to both

harvest data and independent mark-recapture abundance esti-

mates, with w determining the relative weights given to these two

sets of information.

Figure 1. A visual depiction of the timeline used in black bear population models. A number of processes (including non-hunting
mortality, harvests, and recruitment) govern annual changes in abundance and age composition (Panel A). These processes are summarized in a
Markovian model for population dynamics (Panel B) where abundance parameters (Nt,a) pertain to the number of animals in age class a in January of
year t. Model fitting is accomplished by minimizing the difference between observed and expected bear harvests via a x2 objective function.
doi:10.1371/journal.pone.0012114.g001
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Application to MN black bears
MN hunters were required to register harvested bears and

report the sex. For the purposes of modeling, we used registered

harvest data for 1980–2008, except that we corrected these data

for mis-reported sex using data from harvested radio-collared

bears of known sex. Of 159 harvested radio-collared female bears,

17 were misclassified as males, whereas only 1 of 183 harvested

males was misclassified as female.

Age-at-death data for harvested bears were obtained from teeth

submitted by hunters. Ages were estimated by decalcifying, cutting

and staining tooth samples, and then counting annuli under a

microscope. Tooth submission was initially voluntary, but made

mandatory in 1986; compliance, however, was imperfect, and some

submitted teeth were broken. Usable teeth averaged 71% of the

annual harvest. We inflated age-at-harvest records accordingly,

assuming that the distribution of ages from submitted teeth

represented the overall harvest. We also assumed that age

interpretations from teeth were made without error. Potential errors

in age interpretations were partially alleviated by grouping all ages .9

years old into a single category (10+), as teeth with many annuli are the

most difficult to count. Although each year some cubs were harvested,

this was not legal, and cubs were eliminated from the dataset.

We fit both harvest sub-models to our MN black bear data and

integrated the mark-recapture abundance estimates using three

different penalty weights, w = (0, 1, or 200) in eq. 4; note, w = 0

indicates the mark-recapture estimates were not used in the model

fitting process. The largest value was chosen because it put the two

sets of information (age-at-harvest and mark-recapture data)

roughly on the same scale. We refer to these six estimators as

H(a, s, f, e; w = 0, 1, or 200) and H(a, s, yr; w = 0, 1, or 200).

We used a bootstrap approach to explore parameter uncertain-

ty. For each of 1000 bootstrap replicates, we: 1) resampled the

dataset of harvested bears with known ages to form a new

observed age-at-harvest matrix; 2) resampled the telemetry data

set used to estimate sex misclassification rates; 3) applied bootstrap

estimates of correction factors (from step 2) to the data formed in

step 1 and then inflated the resulting sex-specific age-at-harvest

matrices for the percentage of harvested bears that were aged in

each year; and 4) used a parametric bootstrap (sampling normal

random deviates) to generate new mark-recapture estimates in

1991, 1997, and 2002. We then applied each of the 6 estimators to

the bootstrap data sets and summarized the output using

percentile based intervals. All models were fit using AD Model

Builder software [24], and we utilized ADMB2R [25] to facilitate

post-processing in R. We provide sample AD Model Builder code

in an accompanying online supplement (Appendix S4).

Simulation Study
We conducted a set of eight simulation experiments to test

robustness of the overall modeling approach, to narrow the list of

candidate models, and to better understand model results (see

Appendix S2 for a detailed description of the simulation study). In

each case, we tested the models using the same basic process: 1)

starting with an initial population structured by age and sex, we

applied an operating model that described population and harvest

dynamics; 2) time series of abundance and harvest were sampled

to generate data available for building integrated population

models; and 3) integrated population (estimation) models were

applied to the simulated data to determine if characteristics of the

operating model (e.g., abundance trends) could be recovered.

These simulations included scenarios in which the operating and

estimation models differed.

We began with a ‘‘Baseline’’ simulation scenario using the H(a,

s, f, e) sub-model to capture temporal variability in harvest rates.

Specifically, we set harvest regression parameters to values

estimated from analyzing harvest mortality of radio-collared bears

(Figure 2; Appendix S1). These data indicated that harvest rates

varied temporally as a function of food availability and hunter

effort, and also varied nonlinearly with age. We also set survival

rates for cubs (0.76 for males, 0.88 for females), male yearlings

(0.88), and the sex ratio at birth (50:50) in the estimation model to

values applied in the operating model. Demographic stochasticity

in harvest and survival was simulated using binomial random

variates in each of the 29 simulated years (1980–2008), but

otherwise, the projections were deterministic (e.g., the number of

cubs in each year was constant across simulations). The model

resulted in a mean abundance trajectory that steadily increased

during the first 15 years (1980–1995) before leveling off for the

remainder of the time series, similar to trends suggested by the

mark-recapture data.

Figure 2. Estimates of harvest rates from telemetry data. Harvest rates for males (black solid lines) and females (tan lines) were estimated by
fitting the H(a, s, f, e) sub-model to telemetry data collected from 1982–2004 and regional estimates of food availability and hunting effort (Appendix
S1). Data were collected from the central part of the state of Minnesota. In each panel, covariates not displayed on the x-axis were held constant at
values of age = 5, food index = 6.5, and hunting effort 6.5. Shaded areas represent pointwise 90% confidence intervals constructed using asymptotic
likelihood methods (standard errors were calculating using the inverse of the Hessian matrix, and confidence limits were calculated on the scale of
the linear predictor and then transformed to the nominal [harvest rate] scale).
doi:10.1371/journal.pone.0012114.g002
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Six other scenarios were constructed by altering, one at a time,

single facets of this ‘‘Baseline’’ scenario: temporal variability in

non-hunting mortality and harvest rates (labeled ‘‘Stochastic

Rates’’), temporal trends in harvest rates (‘‘Trends in Harvest’’),

temporal trends in survival probabilities (‘‘Increasing S(t)’’),

underreporting of yearling bears (‘‘Reporting Error’’), incorrect

assumptions regarding cub and yearling survival (‘‘Incorrect

Survival’’), or an interaction effect on harvest between natural

food availability and sex (‘‘Food6Sex Effect’’). A final scenario

(‘‘Kitchen Sink’’) was constructed by including all of those

deviations simultaneously.

Additionally, we estimated trends using the Downing popula-

tion reconstruction method [26], a procedure that others have

tested and employed on bears and other game mammals [3].

Downing’s method is a conceptually simpler approach that

‘‘reconstructs’’ the population from total harvest and age-at-

harvest data, using calculations that can be implemented easily

with common spreadsheet software. It assumes a constant ratio of

natural to hunting mortality, and ignores the former in the

reconstruction, thus, providing an estimate of abundance for the

portion of the population that is ultimately killed by hunters. Davis

et al. [3] used extensive computer simulations to test this method,

and concluded that it provides a robust approach to trend (but not

total abundance) estimation, even with collapsed older age classes,

which is necessary to estimate trends for recent years. Thus, the

Downing method may be useful as a simple alternative to more

complex integrated age-at-harvest models for population moni-

toring. In our simulations, we applied the Downing method with

older ages collapsed to 3+ years old (as recommended by [3]) for

males only, females only, and males and females combined.

For each scenario, we simulated 1000 datasets and applied each

of the six estimators (two harvest configurations6three penalty

weights [w = 0, 1, or 200]), as well as the three Downing

reconstructions (males, females, or both). For the estimation

approaches that included mark-recapture data, we generated

abundance estimates in 1991, 1997, and 2002 as random normal

deviates with mean set equal to the true population size and

standard deviations set to achieve a CV of 8% (the average CV

observed in our mark-recapture studies); in all cases, we set SE(ĥht)
to the value that resulted in an 8% CV.

Evaluation of Simulation Results
During initial simulation testing, we observed cases where

estimates of abundance were scaled too high or too low, yet

exhibited similar trends as the true abundance time series

generated by the operating model. Because trends in abundance

are often useful for management, we desired performance metrics

that would allow us to separately evaluate 1) the model’s ability to

return the correct overall abundance scale, and 2) the model’s

ability to accurately portray changes in abundance. To evaluate

(1), we compared the true mean abundance (averaged across years

and simulation runs) to the average estimated abundance (again,

averaged across years and simulation runs). To evaluate (2) we

compared true and estimated yearly transitions, lt = Nt+1/Nt, as

well as the mean squared error (MSE) of estimated transitions

(again, over years and simulations). For the purposes of this paper,

we define MSE(l̂lt) =
P1000

j~1

P28

i~1

li,j{l̂li,j

� �2

=(28|1000); however

for reporting MSE, we multiplied values by 1000.

Results

Simulation Experiments
We highlight the main results of the simulation study here, but

refer the reader to Appendix S2, Table S1, and Figure S1 for a

more detailed summary, including performance statistics for all six

age-at-harvest model estimators and three Downing reconstruc-

tion estimators applied to each simulation scenario. Age-at-harvest

models converged to values that minimized the objective function

(as indicated by positive definite Hessian matrices output from AD

Model Builder) in .96% of the simulations for each scenario.

When averaged across time steps (and simulations), the abundance

estimator H(a, s, f, e; w = 0) was biased high in seven of the eight

scenarios (the exception was Food6Sex Interaction scenario in

which it was biased low), whereas the H(a, s, yr; w = 0) estimator

was biased high in five scenarios and biased low in three scenarios

(Table S1). However, the bias was often small. For example, in the

Baseline Scenario the true mean abundance (in thousands) was

�NN = 13.96 compared to E �̂NN�NN
h i

= 14.09 and E �̂NN�NN
h i

= 15.33 for the

H(a, s, f, e; w = 0) and H(a, s, yr; w = 0) estimators, respectively

(Table S1). Incorporating the mark-recapture data into the

objective function always resulted in less biased estimators of

mean abundance, and in some cases, no bias at all (Table S1).

Although the abundance estimators were biased in several of the

simulation scenarios, estimates of annual trends were remarkably

accurate and robust to model mis-specification (Figure 3). For

most scenarios and estimators, the distribution of log(l̂lt) values

over time was similar to the distribution of true log(lt) values. One

exception was the H(a, s, yr; w = 0) estimator in the Stochastic

Rates scenario, where the model was occasionally unstable,

resulting in large initial abundances and negative values of log(lt)

(Figure S1). In addition, trend estimates for the last 4–5 years of

the time series were highly variable for the H(a, s, yr) sub-models in

the Stochastic Rates and Kitchen Sink scenarios (Figure 3).

MSE(l̂lt) was nearly always smaller when mark-recapture

estimates were included without weighting (w = 1) compared to

estimators that weighted this component of the objective function

(w = 200), and this held true for both harvest model parameter-

izations (Table S1). In six of the eight scenarios, the H(a, s, f, e;

w = 1) estimator resulted in the smallest MSE(l̂lt). In the other two

scenarios, Trend in Harvest and Kitchen Sink, the H(a, s, yr; w = 1)

resulted in the smallest MSE(l̂lt). In these latter two scenarios, the

H(a, s, f, e) sub-models underestimated harvest rates at the start of

the time series and overestimated harvest rates at the end of the

time series because these simulation scenarios included a

systematic trend in harvest rates not attributable to changes in

food availability or hunting effort (Appendix S2). As a result, these

models overestimated abundance at the start of the time series and

underestimated abundance at the end of the time series (Figure

S1). By contrast, the H(a, s, yr) sub-models estimated a separate

harvest vulnerability in each year, and were thus not impacted by

trending harvest rates.

MSEs of annual changes in abundance from all of the age-at-

harvest models were an order of magnitude smaller than those

derived from Downing’s reconstruction method (Table S1).

Although the Downing method largely captured the long-term

trend in the population (increasing trajectory at the start of the

time series, fairly stable trajectory at the end of the time series),

collapsing age classes smoothed over the true trajectory, resulting

in yearly transition estimates that were often out-of-phase with the

true annual growth rates (lt) (Figure 3, bottom row).

Application to MN black bears
The H(a, s, f, e) sub-models, when fit to MN black bear data,

estimated an initially increasing abundance trend, followed by a

leveling off around 1995, whereas the H(a, s, yr) sub-models all

resulted in rapidly increasing populations at the end of the time

series (Figure 4). The recent increase in the H(a, s, yr) sub-models

Integrated Population Models
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coincided with estimates of decreasing harvest rates (Appendix S3).

Similar to the simulation study, bootstrap intervals for both harvest

sub-models suggested estimators with w = 1 were least variable,

followed by those with w = 200, then w = 0.

Given the relative instability of the H(a, s, yr) sub-models in the

Stochastic Rates scenario and the biologically unrealistic trends

and abundance estimates obtained from fitting these models to the

MN black bear data, we limit subsequent focus to the H(a, s, f, e)

sub-models. The H(a, s, f, e; w = 0) estimated abundance was

significantly higher than the corresponding mark-recapture

estimate in 1991, but model-based estimates passed through the

95% confidence intervals for the 1997 and 2002 mark-recapture

estimates (Figure 4). Models with w.0 will be penalized most

heavily for not fitting the 1991 mark-recapture estimate, since this

estimate had an associated SE that was considerably lower than

those in 1997 and 2002. Correspondingly, the H(a, s, f, e; w = 1)

abundances were lower than those of the H(a, s, f, e; w = 0)

estimator. Yet, they remained above the 1991 mark-recapture

estimate and also passed below the 2002 mark-recapture estimate.

The H(a, s, f, e; w = 200) population trajectory passed through the

confidence intervals associated with all three mark-recapture

estimates. Although the estimated abundance trajectories for the

different H(a, s, f, e) sub-models appeared to differ substantially,

population growth trends depicted by log(lt) = log(Nt+1)2log(Nt)

were largely similar (e.g., the models agreed on the sign of log(lt)

in all but 1 year, 1993; Figure 5).

Estimates of harvest rates (as a function of age, sex, food

availability, and hunting effort) were similar for the three H(a, s, f,

e) sub-models (Appendix S3), so we will subsequently only focus on

the H(a, s, f, e; w = 1) estimator, which provided a good overall fit

to the harvest data (Figure 6A,B).

Estimates of harvest rates increased with decreasing levels of

natural foods and increasing hunting effort (Figure 6E,F),

similar to relationships estimated from telemetry data

(Figure 2B,C). On the other hand, the fitted age-at-harvest

models resulted in a highly non-linear relationship as a function

of age, with harvest rates of 2-year-old bears higher than those

of yearlings, a decrease in harvest rates from age 2 through age

7, and then increasing harvest rates from age 7 to age 10+
(Figure 6D). By contrast, estimates from radio-telemetry

suggested that harvest rates decreased nearly linearly with age

(Figure 2A).

The estimated number of cubs divided by the estimated number

of females ($age 5), a model-based estimate of recruitment

strength, exhibited 2-point cycles (Figure 6C). This pattern occurs

because females tend to produce cubs every two years, and in MN

(and elsewhere) they become somewhat synchronized by wide-

spread food failures when many fail to produce but then produce

the following year [27]. That these cycles resulted, without directly

fitting data on cub production, validates the models’ ability to

capture real biological phenomena. Such validation should be

reassuring to wildlife managers.

Figure 3. Performance of yearly trend estimators with simulated data. In each panel, the y-axis depicts values of log(lt), where lt = Nt+1/Nt.
Red lines correspond to (2.5th, 50th, and 97.5th percentiles) of the true population dynamics (across stochastic simulations). Gray polygon
encompasses 95% of the estimated values. Rows correspond to different estimators (see Box S1) and columns correspond to different simulation
scenarios. In all plots, the horizontal dashed black line corresponds to log(lt) = 0.
doi:10.1371/journal.pone.0012114.g003
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Discussion

Animal populations are notoriously difficult to monitor because

of costs and logistical challenges associated with collecting

informative data on population trends and abundance. Mark-

recapture studies are particularly difficult to apply on large

geographical scales, and provide only a snapshot of abundance.

Black bears pose their own set of problems, as ear tag loss [28] and

behavioral responses to baiting [16] may bias estimators. Further,

repeated surveys are necessary to yield information on population

trend, which still may be equivocal due to estimation errors or an

inadequate time series of population estimates [16]. Nevertheless,

jurisdictions that hunt species like black bears require estimates of

abundance and information on population trend to make effective

adaptive management decisions. For bears, management agencies

rarely rely strictly on population estimates to assess trend [29],

instead often employing a loose collection of information,

including indices derived from harvest data (e.g., changes in age

structure, sex ratios, hunting success, bears killed per unit of

hunting effort, etc.) despite known problems with these approaches

[30,31]. Many agencies collect age-at-harvest data, but have

underutilized this information as a population monitoring tool.

Our study has shown that these data can be highly informative of

population trend, and when calibrated with actual population

estimates, also provide useful estimates of abundance.

Simple deterministic population reconstruction methods, such

as the Downing approach, are relatively easy to apply and may

provide reasonable depictions of population trends when harvest

rates and survival parameters do not vary greatly over time [1,3].

The Downing method shares many characteristics with our

integrated modeling approach (e.g., both model harvest rates as

a function of age and time), and one might argue that the trends

from the Downing method could be scaled by the mark-recapture

estimates to provide a similar depiction of population abundance

over time. Integrated population models require additional

auxiliary data (or assumptions) and more sophisticated technical

expertise, but they are appealing because they provide a formal

framework for combining disparate data sources, and they offer

the potential to estimate additional parameters of interest [1]. In

our example application, age-at-harvest models enabled us to

explore links between natural food availability, hunting effort, and

harvest rates – relationships that will likely prove useful for

management. In addition, these methods more accurately

reflected annual changes in abundance than the simpler Downing

reconstruction method.

In our simulation study, we found that abundance estimates

were often biased, but trends were reassuringly accurate and

robust to model mis-specification. Yet, the H(a, s, yr; w = 0)

estimator occasionally performed poorly in the Stochastic Rates

scenario. We suspect these latter models illustrate a common

Figure 4. Abundance estimates from models fit to Minnesota black bear data (1980–2008). Circles with vertical lines depict independent
mark-recapture estimates (and corresponding 95% CIs) in years (1991, 1997, 2002, 2008). H(a, s, f, e) sub-models account for temporal variability in
harvest rates as a function of food availability and hunting effort indices, whereas the H(a, s, f, yr) sub-models use an unstructured model for harvest
rates. In both cases, w refers to the weight assigned to the mark-recapture component of the objective function used to fit the model (note: the 2008
mark-recapture estimate, colored in red, was not used in the model fitting process). Shaded areas in each panel depict pointwise 95% variability
bands estimated using a bootstrap with 1000 replicates.
doi:10.1371/journal.pone.0012114.g004
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identifiability problem with age-at-harvest data: similar harvest

numbers can occur from high abundance with low harvest rates or

low abundance with high harvest rates. As such, estimates from

such models should be viewed with caution. By contrast, the H(a, s,

f, e) sub-models rely on considerably fewer parameters, instead

using patterns in natural food availability and hunting effort to

predict harvest probabilities. In essence, these models are more

constrained, resulting in greater stability. Importantly, adding the

mark-recapture abundance estimates to the objective function

substantially improved the performance of the H(a, s, yr) sub-model

in the Stochastic Rates scenario (Figure 3) and also resulted in less

biased estimates of mean abundance for both sets of model

estimators in all scenarios (Table S1). Thus, these additional data

appear crucial for correctly estimating the scale of abundance,

particularly when covariates that explain variation in harvest rates

are unavailable.

Applying our models to black bears in MN, we found that the

exponentially increasing population trends estimated for MN black

bears from the fitted H(a, s, yr) sub-models were biologically

unrealistic, with population growth rates (l) for recent years

exceeding 0.2 (Figure 5). This is not possible in a population where

bears were being harvested at rates of ,20% (estimated from

harvests of radio-collared animals across the state, MNDNR

unpublished data). Conversely, models including effects of food

and hunter effort provided highly plausible population trajectories

that not only matched trends in various population indices (e.g.,

hunting success, sightings, nuisance activity, all of which were

stable or declining in recent years; MNDNR unpublished data),

but also intersected a population estimate obtained after the

modeling work was completed (2008; Figure 4).

Inclusion of mark-recapture estimates helped scale the H(a, s, f,

e) sub-models, and also influenced estimates of population trend to

a lesser extent (Figure 5). The integrated population model

estimators with w = 1 and w = 200 attempt to strike a balance

between fitting the harvest data and the mark-recapture point

estimates, thus providing a more robust estimate of trend. Even

when weighting the mark-recapture data heavily (i.e., in the H(a, s,

f, e; w = 200) model), the integrated population models yield a

different pattern of population change than do the series of

individual mark-recapture abundance estimates. We believe these

calibrated models are likely to be more useful to managers than the

periodic statewide mark–recapture estimates alone, because 1) the

modeled estimates yield trend information, which is difficult to

glean from a limited number of population estimates, 2) the

modeled estimates smooth over sampling variability and biases

that can affect individual empirical estimates [16], and 3) the

modeled estimates provide information for the most recent years,

even if the last mark–recapture estimate was several years in the

past (Figure 4).

Age-at-harvest models can and should be tailored to available

data, and their performance should be evaluated in light of these

data (e.g., using realistic simulation studies). This approach to

Figure 5. Estimated annual trends in abundance from models fit to Minnesota black bear data (1980–2008). Annual trends are given by
log(lt) = log(Nt+1)2log(Nt). The horizontal line at log(lt) = 0 corresponds to a stable population. H(a, s, f, e) sub-models model temporal variability in
harvest rates as a function of food availability and hunting effort indices, whereas the H(a, s, yr) sub-models use an unstructured model for harvest
rates. In both cases, w refers to the weight assigned to the mark-recapture component of the objective function used to fit the model. Shaded areas
in each panel depict pointwise 95% variability bands estimated using a bootstrap with 1000 replicates.
doi:10.1371/journal.pone.0012114.g005
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model testing and evaluation can help to provide context for

interpreting applied results and also suggest what data should be

collected in the future to improve model performance and

resulting management advice. For example, the robustness of

trend estimates across several simulated scenarios with model

mis-specification, particularly for the H(a, s, f, e; w = 1) and H(a, s,

f, e; w = 200) estimators, helped to increase confidence in our

estimates of relative abundance when these models were applied

to the MN black bear data. Lastly, the biologically unrealistic

predictions from the H(a, s, yr) sub-models, when fit to MN black

bear data, are not surprising given the occasional instability of

these models near the end of the time series in the simulation

study. It is the end of the time series that is most important for

management, and where the Downing model lacks predictive

ability.

Although we explored the use of mark-recapture estimates of

abundance in fitting models to the age-at-harvest data, we chose

not to directly incorporate additional estimates of adult survival or

estimates of harvest regression parameters from available telem-

etry data. The latter were collected in more localized study areas

and might not agree well with statewide patterns. However, the

close agreement between the H(a, s, f, e) sub-models and models fit

independently to these telemetry data (i.e., the similar relationships

between harvest rates and food abundance, hunter effort indices

depicted in Figure 2 and Figure 6) provides further support for the

age-at-harvest models. Estimates of age-related patterns agreed to

a lesser extent, and we suspect any discrepancies likely result from

the mis-specification of one or more parts of the model. One

possibility is that the unrealistic increase in harvest rates for older

bears (age.7; Figure 6D) represents the model’s attempt to

account for an increase in non-hunting mortality rates, which were

constrained to be constant for all bears $2 years old. Although no

simulation study can fully exhaust all possible sources of error, our

testing suggests model-based estimates of abundance trends can be

fairly robust to model mis-specifications. Further, the models’

ability to translate signals from the data into known biological

phenomena (e.g., 2-point cycles in reproduction rates) is

reassuring.

One major assumption of age-at-harvest models is that the age

distribution data obtained from the harvest are reasonably

representative of the total harvest, as rarely would any manage-

ment agency have access to age information on every harvested

animal. We were missing data for 30% of the harvest, because

some hunters chose not to comply with the mandatory tooth

submission (given that there was no penalty for non-compliance),

forgot to comply, were unable to comply (e.g., left skull with

taxidermist), or tried to comply but failed (e.g., tooth broken

during extraction, or lost in mailing). We originally conjectured

that hunters who killed small (young) bears might have been less

likely to submit a tooth sample, either fearing it was a cub (illegal

Figure 6. Model-based predictions from the H(a, s, f, e; w = 1) estimator applied to Minnesota black bear age-at-harvest data. Panels
A and B give model based estimates of total female and male harvests (lines) along with the empirical data (points). Panel C gives model based
estimates of the number of cubs per female .age 5 over time. Panels D–F give model based estimates of harvest rates for males (black lines) and
females (tan lines) as a function of age, food availability, and hunting effort (covariates not displayed on the x-axis were held constant at values of
age = 5, food index = 6.35, and hunting effort = 10.21). Shaded areas in each panel depict pointwise 95% variability bands estimated using a bootstrap
with 1000 replicates.
doi:10.1371/journal.pone.0012114.g006
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to harvest), or presuming it was a yearling (and so not interested in

learning the age from the tooth sectioning). Our simulation study

suggested that this phenomenon would produce an under-

representation of yearlings in the age data, resulting in lower

estimated harvest rates for yearlings than for 2 year olds, a pattern

observed in estimates from our age-at-harvest models (Figure 6D)

but not our telemetry data (Figure 2A). Thus, another benefit of

the simulation approach is the ability to detect deficiencies in the

data, and to determine how these deficiencies might influence

model estimates and predictions. In this case, our simulation

modeling suggested that trends estimated from analyzing age-at-

harvest data should provide robust results even with underreport-

ing of yearlings. Aging error is also commonplace when relying on

cementum annuli [32]. Conn et al. [17] simulated typical patterns

of aging error from cementum annuli analysis, and found they did

not have large impacts on estimates of abundance derived from

age-at-harvest data.

We expect to see increased interest in applying age-at-harvest

models to wildlife data in coming years, particularly given recent

applications in the literature [1,2,4–6]. There are many ways to

fit age-at-harvest models and to judge model reliability. We chose

to fit models that included only fixed effects parameters, despite

recognizing that these models were clearly a simplification of

reality. We then used extensive simulation testing to evaluate how

well our approach performed when data were generated under a

variety of more complicated (and realistic) scenarios. This general

approach of using simpler models, with extensive simulation

testing, largely contrasts with the current trend in ecology to fit

rather complex models, often with hierarchical specifications

involving random effects, or state-space models that attempt

to separately model observation and process components

[12,33,34]. The latter require sophisticated numerical integration

routines, approximate likelihood techniques, or Bayesian ap-

proaches that utilize Markov Chain Monte Carlo (MCMC)

methods for parameter estimation. In such cases, long compu-

tation time for model fitting typically limits the amount of

simulation testing that can be accomplished. Simulation testing is

further complicated by parameter identifiability issues often

associated with age-at-harvest models, which may cause Fre-

quentist procedures to fail to converge. Similarly, Bayesian

applications require careful inspection of MCMC samplers for

proper convergence and additional time should be devoted to

exploring sensitivity of posterior estimates to prior distributional

assumptions.

We believe our general approach was useful for initial model

development and testing, and offers a foundation on which future

modeling efforts can be built. A logical next step would be to

consider models that incorporate random effects to describe

temporal (process) variability in harvest and survival rates.

Allowing the yearly vulnerability parameters in the H(a, s, yr)

models to be modeled as random effects would shrink them

towards their overall mean, and would likely lead to much more

precise (and reliable) estimates in later years when there is less

information available for estimating harvest vulnerabilities.

Random effects could also be added to the H(a, s, f, e) models to

allow for additional variability in harvest vulnerabilities not

attributable to food availability or hunting effort, adding flexibility

and biological realism to these models. Our application benefited

by the fact that harvest was the predominant source of mortality

(e.g., ,80% of 330 radio-collared bears that died during 1981–

2008 were killed by hunters; MNDNR unpublished data).

However, our models were fairly aggressive with respect to the

number of estimated parameters relative to the amount of

available information in the data, with the ratio of ‘‘cells’’

(representing unique sex6age6year combinations) to parameters

roughly equal to 1:7 for the H(a, s, yr) models and 1:9 for the H(a, s,

f, e) models. One option to reduce the number of parameters

would be to constrain the initial age distributions (e.g., by

estimating starting population sizes for males and females and a

limited number of parameters that describe the proportion of

individuals falling into each age class; see e.g.,[35]). Another

option would be to estimate a small number of fecundity

parameters rather than directly estimate the number of cubs in

each year, but this change might also require additional state

variables (mothers with and without cubs) since mothers with cubs

generally forgo reproduction.

Lastly, we would argue that additional efforts are needed to

explore the reliability of various methods for characterizing

uncertainty in population trends estimated from fitted models. A

few different approaches have been taken in the applied literature.

Gove et al. [2] used asymptotic quasi-likelihood based intervals, in

which standard errors derived from the inverse of the Hessian

matrix were inflated using x2/df, where df = (number of

ages6number of years2number of estimated parameters). We

used a x2 objective function for model fitting, and similar

asymptotic arguments may be used to construct confidence

intervals in this case [36]. Others have used bootstrapping and

Monte Carlo approaches [8], which we illustrate in our

application. Finally, Bayesian applications naturally characterize

uncertainty using posterior distributions for model parameters [6].

It is unclear how well any of these methods will perform in cases

where the estimation model is a gross simplification of reality (as it

often will be), or when certain parameters are assumed to be

known without error. Our bootstrap intervals were extremely

narrow for many of our model-based predictions (e.g., Figure 6),

and they do not account for arguably the greatest source of

uncertainty, namely that resulting from approximating the

underlying true population dynamics with a simplified process

model. At best, these intervals should be thought of as ‘‘variability

bands,’’ describing how the model might perform if the data

collection process could be repeated rather than an interval that is

likely to contain true parameters 95% of the time. Similarly, it is

unclear how well posterior credibility intervals will perform when

distributional assumptions are not met, when prior distributions

are unavoidably informative, or when parameters are only weakly

indentified. Unfortunately, the performance of these methods for

characterizing uncertainty is likely to depend on both model and

data, and testing these methods will also require extensive

computations.

We end with a quote, ‘‘You have a big approximation and a

small approximation. The big approximation is your approxi-

mation to the problem you want to solve. The small

approximation is involved in getting the solution to the

approximate problem.’’ [Doug Bates recalls George Box saying

this (D. Bates, personal communication).] In the context of our

applied problem, we viewed the task of building a model to

reflect the underlying population and harvest dynamics as the

big approximation and the approach to model fitting as the small

approximation. By choosing a modeling approach simple

enough for extensive simulation testing tailored to our available

data, we were able to focus on the implications of our big

approximation. Including random effects or making use of state-

space models would allow us to fit more realistic population

models (i.e., giving a better big approximation). Unfortunately

the difficulty in fitting such models often limits our ability to

evaluate the effect of the big approximation in real-world

dynamics. We believe this tradeoff is important to consider in

many modeling applications.
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Box S1 List of estimated parameters for the H(a, s, f, e) and H(a, s,

yr) sub-models.

Found at: doi:10.1371/journal.pone.0012114.s001 (0.03 MB

PDF)

Table S1 Summary of simulation results for each of the six

estimators in all eight simulation scenarios.

Found at: doi:10.1371/journal.pone.0012114.s002 (0.05 MB

PDF)

Figure S1 Time series of true and estimated abundances, scaled

by the inverse of the overall mean across the time series, for each

of the six estimators in all eight simulation scenarios.

Found at: doi:10.1371/journal.pone.0012114.s003 (0.08 MB

PDF)

Appendix S1 A summary of natural food availability, hunter

effort, and telemetry data considered in the integrated population

analysis of black bears in Minnesota.

Found at: doi:10.1371/journal.pone.0012114.s004 (0.19 MB

PDF)

Appendix S2 A description of the simulation study (methods)

used to test the robustness of the integrated population modeling

approach.

Found at: doi:10.1371/journal.pone.0012114.s005 (0.07 MB

PDF)

Appendix S3 Additional table and figures summarizing the fits

of integrated population models to Minnesota black bear data.

Found at: doi:10.1371/journal.pone.0012114.s006 (0.10 MB

PDF)

Appendix S4 A .zip file containing an AD Model Builder

executable, a data input file (bbM2b.dat), an R file (modrun.R),

and other associated files needed to fit the H(a, s, f, e) models to the

Minnesota black bear data.

Found at: doi:10.1371/journal.pone.0012114.s007 (1.19 MB ZIP)
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