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Abstract

Sensory suppression is a mechanism that attenuates selective information. As for long-

latency suppression in auditory and somatosensory systems, paired-pulse suppression,

observed as 2 identical stimuli spaced by approximately 500 ms, is widely known, though its

mechanism remains to be elucidated. In the present study, we investigated the relationship

between auditory and somatosensory long-latency suppression of change-related cortical

responses using magnetoencephalography. Somatosensory change-related responses

were evoked by an abrupt increase in stimulus strength in a train of current-constant square

wave pulses at 100 Hz to the left median nerve at the wrist. Furthermore, auditory change-

related responses were elicited by an increase in sound pressure by 15 dB in a continuous

sound composed of a train of 25-ms pure tones. Binaural stimulation was used in Experi-

ment 1, while monaural stimulation was used in Experiment 2. For both somatosensory and

auditory stimuli, the conditioning and test stimuli were identical, and inserted at 2400 and

3000 ms, respectively. The results showed clear suppression of the test response in the

bilateral parisylvian region, but not in the postcentral gyrus of the contralateral hemisphere

in the somatosensory system. Similarly, the test response in the bilateral supratemporal

plane (N100m) was suppressed in the auditory system. Furthermore, there was a significant

correlation between suppression of right N100m and right parisylvian activity, suggesting

that similar mechanisms are involved in both. Finally, a high test-retest reliability for suppres-

sion was seen with both modalities. Suppression revealed in the present study is considered

to reflect sensory inhibition ability in individual subjects.

Introduction

A preceding sensory stimulus attenuates the response to a following stimulus, which is consid-

ered to reflect inhibitory processes and sometimes referred to as sensory suppression.

Although these suppression mechanisms have yet to be fully elucidated, they have been
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extensively studied, especially in regard to auditory sense [1]. Such suppression is based on

sensory memory [2, 3], thus novel sounds diminish responses to succeeding stimuli [4, 5],

while suppression is also observed as other than simple sound changes, such as spatial change

[6], and incongruence between auditory and visual information [7]. As for the responsible

neural mechanisms, both a pyramidal cell-pyramidal cell depressing synapse and an inhibitory

circuit are possible [5, 8].

Paired pulse suppression, an electrophysiological measurement of cortical responses to 2

consecutive identical auditory stimuli spaced 500 ms apart [9, 10], is used to detect long-

latency suppression, in which the amplitude of an evoked response at approximately 50 ms

(P50) is compared between the first and second stimuli. This measurement technique is clini-

cally important, as previous studies have shown deficits in paired-pulse suppression in patients

with schizophrenia [10–14], bipolar disorder [15], panic disorder [16], epilepsy [17], and

attention-deficit/hyperactive disorder [18]. In addition, paired-pulse suppression is also

related to increased risk for developing schizophrenia [19] as well as deficits in attention pro-

cessing in schizophrenia [20]. Hence, a paired-pulse suppression paradigm is expected to be

useful in a wide range of clinical situations.

As for somatosensory suppression, similar to auditory paired-pulse suppression, responses

in the secondary somatosensory cortex contralateral on the stimulated side (cSII) to the second

stimulus are suppressed in healthy individuals [21–23]. On the other hand, patients with

schizophrenia were found to have deficits in SII suppression, but not in the primary somato-

sensory cortex (SI) [24], whereas there were no deficits of suppression in those with autism

spectrum disorder [25]. In patients with fibromyalgia, somatosensory suppression was shown

to be impaired, while auditory paired pulse suppression was normal [26].

Change-related cortical responses are specifically elicited by an abrupt change in a continu-

ous sensory stimulus, and can be clearly recorded using magnetoencephalography (MEG) or

electroencephalography (EEG) without subject attention required [27–31]. Because these

activities show high test-retest reliability [32–34], the results are considered to be reliable for

examining higher order brain functions. Change-related activities are present in the somato-

sensory, visual, and auditory systems [35–39], and we recently developed methods to observe

sensory suppression using change-related cortical responses [5, 34, 40]. As for long-latency

suppression of auditory change-related responses, we previously found that suppression peaks

at a conditioning-test interval (CTI) of 500–700 ms with modest effects at shorter CTIs, a weak

leading stimulus that itself evokes only a weak or no response to cause suppression, and that

long-latency suppression has high thresholds as compared to short-latency suppression [5, 41].

Based on those findings, we speculated that suppression reflects long-latency inhibitory post-

synaptic potentials (IPSPs) via a specific type of interneuron, with the most probable candidate

Martinotti cells, as they induce long-latency IPSPs and have higher thresholds than other cells

[42]. It is considered that the purpose of such mechanisms is to prevent runaway of pyramidal

cells.

Our paradigm may be useful for evaluating inhibitory function in individual subjects in

clinical situations, because many diseases such as epilepsy [17] are considered to cause deficits

in inhibitory mechanisms. However, it remains unclear whether inhibition of a specific audi-

tory system reflects the fundamental functions of inhibitory circuits in an individual, as only a

few studies have evaluated the relationships among auditory and sensory systems in healthy

subjects [43]. In this regard, it is known that the same laminar organization and patterns of

connections are present throughout the neocortex [44, 45]. As for basket and Martinotti cells,

the major classes of interneurons, non-specific dense connections to neighboring pyramidal

cells, which function to blanket inhibition, have been reported in whole-cell recording studies
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[46, 47]. Furthermore, the anatomical connections of Martinotti cells and their long-latency

IPSPs are similar across cortical areas and species [47–49].

In the present study, we utilized MEG to record long-latency suppression using change-

related cortical responses, and then examined correlations between the somatosensory and

auditory systems. Given that suppression comes from a synaptic pathway ubiquitous across

sensory cortices [44], we found a significant association.

Methods

The study protocol was approved in advance by the Ethics Committee of the National Institute

for Physiological Sciences, Okazaki, Japan, and all subjects provided written consent prior to

participation. None had a history of mental or neurological disorders, or substance abuse in

the most recent 5 years, and all were free of medication at the time of testing.

Auditory stimuli

Repeats of a 25-ms pure tone at a frequency of 800 Hz were used (rise/fall, 5 ms). The sound

was created by 140 repeats of a 25-ms tone at 65 dB SPL of sound pressure, yielding a total

duration of 3500 ms. Fig 1 shows the stimulation paradigm. For the test sound, a 25-ms tone at

80 dB was inserted at 3000 ms. The conditioning stimulus was also 25 ms in duration and 80

dB in sound pressure, and presented at 600 ms before the test stimulus. Thus, the CTI was 600

ms. In Experiment 1, sound stimuli were presented binaurally, while in Experiment 2 they

were presented only to the left side. Ear pieces (E-A-Rtone 3A, Aero Company, Indianapolis,

IN) were used in each experiment. Pure tones instead of clicks were used in the present study

based on a previously reported auditory long-latency suppression paradigm showing condi-

tioning stimuli to be a substitute for a Test alone response [41] and because results of our pre-

liminary study showed that pure tones could elicit clearer change-related cortical responses as

compared to clicks. It has also been shown that change-related cortical responses are elicited

Fig 1. Paired stimulation paradigm using auditory and somatosensory change-related cortical responses. Data from a representative subject are

presented. Shown is the stimulation paradigm, superimposed MEG waveforms from all 204 sensors, and source strength waveforms for each cortical

activity in the auditory (A) and somatosensory (B) experiments. T, sensory threshold. Arrowheads show peaks of source activity used for amplitude

measurements.

https://doi.org/10.1371/journal.pone.0199614.g001
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by an abrupt change in sound feature, regardless of whether the sound is composed of clicks or

pure tones [28].

Somatosensory stimuli

A train of current-constant square wave pulses (pulse duration, 0.5 ms) at 100 Hz was applied

to the left median nerve at the wrist using a felt-tip bipolar electrode for 3500 ms. For the test

and conditioning stimuli, 2 pulses at 100 Hz were inserted at 2400 and 3000 ms, respectively,

so as to be similar to the auditory stimuli. The intensity of the test and conditioning stimuli

was 1.5 times that of the sensory threshold, and that of the background pulse was 1.2 times

above the threshold. We used a CTI of 600 ms for both auditory and somatosensory suppres-

sion. It has been shown that auditory suppression has at least 3 peaks at CTIs of 10–30, 40–60,

and 500–700 ms [5, 41]. As for somatosensory long-latency suppression, some studies have

tested effects of a CTI in which SI was suppressed at least until 100–200 ms and SII until 500–

800 ms [21, 23, 50].

Recordings

Each subject sat in a chair and watched a silent movie on a screen placed 2 m in front of them,

and was instructed to ignore sound and somatosensory stimuli throughout the experiment.

Magnetic signals were recorded using a 306-channel whole-head type MEG system (Vector-

view, ELEKTA Neuromag, Helsinki, Finland), which was comprised of 102 identical triple sen-

sor elements. Each sensor element consisted of 2 orthogonal planar gradiometers and 1 mag-

netometer coupled to a multi-superconducting quantum interference device (SQUID), thus

providing 3 independent measurements of the magnetic fields. In the present study, we ana-

lyzed MEG signals recorded from 204 planar-type gradiometers, which were sufficiently pow-

erful to detect the largest signal just over local cerebral sources. Signals were recorded with a

bandpass filter of 0.1–300 Hz and digitized at 1000 Hz. Auditory and somatosensory stimuli

were randomly presented. Analysis was conducted from 100 ms before to 4000 ms after stimu-

lus onset. The period of 2300–2399 ms was used as the DC offset. Epochs with MEG signals

larger than 2.7 pT/cm were rejected from averaging.

Procedures

Experiment 1. We examined the correlation between somatosensory suppression follow-

ing left median nerve stimulation and auditory suppression following binaural stimulation in

13 healthy volunteers (10 males, 3 females; mean age 33.0±9.7 years). In previous studies con-

ducted by our group, binaural stimulation has been used for investigating auditory suppres-

sion. For the present investigation, somatosensory and auditory stimuli were randomly

presented, with at least 100 artifact-free epochs averaged for each somatosensory and sound

stimulus.

Experiment 2. Eleven subjects from Experiment 1 also participated in Experiment 2 (8

males, 3 females; mean age 34.6±9.7 years), as 2 could not join for personal reasons. The 2

experiments were spaced by more than 2 weeks. The protocol for Experiment 2 was identical

to that of Experiment 1, except that auditory stimulation was applied to the left ear alone, with

at least 100 artifact-free epochs averaged for each somatosensory and sound stimulus.

Analysis

Dipole analyses of the responses to the conditioning stimulus were performed using the Brain

Electrical Source Analysis (BESA) software package (NeuroScan, Mclean, VA), as previously
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described [51]. A pass-band filter of 1–100 Hz was used for both somatosensory and auditory

responses. The abrupt increase in intensity of the somatosensory stimuli elicited clear mag-

netic responses in 3 areas; the parietal area contralateral to the stimulation and temporal area

in both hemispheres. We measured the peak latency and amplitude of the parietal component

peaking at 40–100 ms, contralateral temporal component at 40–110 ms, and ipsilateral tempo-

ral component at 70–160 ms [31]. The percent inhibition of the test response by the condition-

ing stimulus (%suppression) was calculated as follows: (Conditioning response–(Conditioning

+ Test response) / Conditioning response)�100 [41]. We then compared the values for %sup-

pression between the somatosensory and auditory systems within each experiment, and

between both experiments.

Results

Experiment 1

Somatosensory change-related responses were evoked in 3 cortical areas. Dipoles were esti-

mated to be located in the postcentral gyrus of the contralateral hemisphere (SI) and contralat-

eral perisylvian region including SII. All subjects had activity in SI, while cSII and iSII were

activated in 12 of 13. Fig 1 shows the original MEG and source strength waveforms of a repre-

sentative subject, with grand-averaged waveforms for each activity in both experiments shown

in Fig 2. Table 1 and Fig 3 show %suppression in both Experiment 1 and 2. Response to the

test stimulus (test response) was significantly smaller in amplitude as compared to the

response to the conditioning stimulus (conditioning response) for cSII (p = 0.012) and iSII

(p = 0.003), but not for SI (p = 0.52). There was no correlation between cSII and iSII for %sup-

pression (r2 = 0.09, p = 0.41).

The equivalent current dipole for the main component of the auditory evoked responses,

N100m, was estimated in and around the supratemporal plane of both hemispheres [41] in all

subjects. Similar to SII, N100m was suppressed by the conditioning stimulus (Fig 1B) in both

Fig 2. Grand-averaged waveforms for all subjects. Test responses, except for SI, were suppressed in both Experiment 1 (A) and 2 (B).

https://doi.org/10.1371/journal.pone.0199614.g002
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the left (p = 2.8�10−3) and right (p = 8.7�10−3) hemispheres, and the degree of suppression was

correlated between the hemispheres (r2 = 0.63, p = 1.2�10−3).

When %suppression was compared between the somatosensory and auditory systems, the

correlation coefficient r2 value between cSII and right N100m was 0.27 (p = 0.08), while that

between iSII and left N100m was 0.35 (p = 0.06). There was no correlation between SI and

right N100m (correlation coefficient, r2 = 0.02, p = 0.65). There was also no significant differ-

ence in latency between the conditioning and test responses for SI (p = 0.73), cSII (p = 0.59),

iSII (p = 0.96), left N100m (p = 0.31), and right N100m (p = 0.14). The peak latency values for

each cortical activity are shown in Table 2.

Experiment 2

All subjects showed activity in SI, cSII, and auditory N100m, and 10 of 11 had activity in iSII.

The effects of the conditioning stimulus were similar to those in Experiment 1, with significant

suppression of the test response for cSII (p = 0.012), iSII (p = 2.6�10−3), left N100m

(p = 3.1�10−3), and right N100m (p = 2.9�10−5), but not for SI (p = 0.54). Furthermore, %sup-

pression was correlated between cSII and right N100m (r2 = 0.57, p = 0.008), but not between

iSII and left N100m (r2 = 0.06, p = 0.50). Also similar to the results of Experiment 1, the degree

of suppression was correlated between left and right N100m (r2 = 0.36, p = 0.052). Peak latency

did not differ significantly between the conditioning and test responses for both the somato-

sensory and auditory systems (p>0.36).

Correlations between Experiment 1 and 2

Fig 4 shows %suppression values in Experiment 1 and 2. There was a significant correlation

between the experiments for N100m (r2 = 0.22, p = 0.027) (Fig 4A) and somatosensory

responses (r2 = 0.52, p = 2.8�10−6) (Fig 4B). When data obtained in both experiments were

Table 1. Amplitude and rate of inhibition in Experiment 1 and 2.

Amplitude (nAm) %suppression (SD)

Conditioning (SD) Test (SD)

SI cSII iSII SI cSII iSII SI cSII iSII

Experiment 1 18.9 (10.8) 27.8 (19.7) 17.5 (11.0) 18.1 (11.7) 19.4 (12.0) 10.1 (6.4) 5.62 (5.8) 28.1 (27.7) 39.2 (37.1)

Experiment 2 16.1 (6.9) 24.1 (13.4) 18.5 (7.8) 15.5 (8.5) 15.5 (7.9) 9.04 (5.0) 6.90 (23.0) 33.7 (14.0) 50.4 (17.2)

L R L R L R

Experiment 1 19.2 (10.0) 20.5 (9.2) 10.9 (4.1) 11.4 (6.0) 40.8 (40.9) 38.9 (38.3)

Experiment 2 22.4 (14.7) 27.2 (10.8) 10.9 (6.4) 13.1 (5.6) 47.3 (15.9) 51.7 (9.7)

https://doi.org/10.1371/journal.pone.0199614.t001

Table 2. Latency in Experiment 1 and 2.

Latency (ms)

Conditioning (SD) Test (SD)

SI cSII iSII SI cSII iSII

Experiment 1 56.8 (14.8) 87.8 (9.1) 118 (30.2) 55.5 (19.3) 85.5 (21.1) 119 (30.3)

Experiment 2 58.5 (17.4) 86.2 (12.9) 119 (32.2) 58.1 (17.7) 86.4 (18.3) 120 (30.5)

L R L R

Experiment 1 120 (9.6) 115 (11.4) 117 (10.5) 108 (11.7)

Experiment 2 119 (10.7) 104 (10.2) 117 (20.5) 100 (16.3)

https://doi.org/10.1371/journal.pone.0199614.t002
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compared, a significant correlation was seen between cSII and right N100m (r2 = 0.32,

p = 0.005) (Fig 5).

Fig 3. Mean %suppression value for each cortical activity. Values are shown as the mean ± SD. All cortical activities, except for SI, showed a

significant reduction in amplitude for the test response.

https://doi.org/10.1371/journal.pone.0199614.g003

Fig 4. Correlation of %suppression between experiments. Plots showing the relationship of %suppression between Experiment 1 (x axis) and Experiment 2 (y axis) for

the auditory (A) and somatosensory (B) experiments. The r and p values presented were obtained from all collected data.

https://doi.org/10.1371/journal.pone.0199614.g004
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Discussion

Relationship between tactile and auditory long latency suppression

Auditory suppression was significantly correlated between the 2 present experiments despite

different settings, in which the sound was presented in a binaural manner in Experiment 1 and

monaurally in Experiment 2. Similar to SII, the most lateral part of Heschl’s gyrus or the supe-

rior temporal gyrus, which is considered to be the secondary auditory cortex (AII) [51], is

bilaterally activated by sensory inputs or abrupt changes in a continuous sensory stimulus.

Behaviors of SII and auditory STG activities are similar in some aspects, including sensitivity

to inter-stimulus intervals for onset response [38], sensitivity to change in magnitudes for

change-related response [28, 35], and suppression mechanisms [43]. Therefore, we consider

that these 2 cortical areas have similar physiological functions including change detection. In

the present experiments, the degree of suppression was correlated between N100m and SII,

suggesting the existence of a similar inhibitory mechanism between auditory and somatosen-

sory change-detecting systems.

In this study, we did not record responses in the primary auditory cortex (AI), because of

its deep location and MEG is only able to detect signals weakly from deep brain areas. On the

other hand, magnetometers can separate activities from primary and secondary auditory areas

[51]. In future studies, it will be necessary to compare activities in different auditory areas.

Jääskeläinen et al. showed differences in regard to adaptation across different parts of the audi-

tory cortex [4]. The properties of S2 suppression by preceding stimuli resemble those previ-

ously documented for non-primary auditory cortex areas.

Fig 5. Correlation of %suppression between cSII and right N100m. Plots showing the relationship of %suppression between cSII (x axis) and

N100m (y axis).

https://doi.org/10.1371/journal.pone.0199614.g005
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The principal organization of the neocortex in cortical areas is relatively uniform [44, 52]

and inhibitory innervation of neighboring pyramidal cells, a basic structure of the cerebral cor-

tex, is similar [53]. Furthermore, the same basic brain structure throughout the neocortex is

applicable to inhibitory neurons [45]. As for Martinotti cells, they are densely connected to

nearby pyramidal cells and inhibit them in a non-specific manner throughout the cerebral cor-

tex [46, 54]. Since the same basic structure exists across the sensory cortices and the same cells

are involved in suppression, a similar degree of suppression across sensory modalities is

expected in individual subjects. The present results and EEG data [43] support this specula-

tion, as we found a correlation in regard to suppression between the somatosensory and audi-

tory systems, as well as between left and right N100m. Furthermore, they indicate the

possibility that long-latency suppression of any sensory modality reflects the ubiquitous inhibi-

tory mechanism of an individual. To confirm this, additional empirical data are necessary,

such as suppression in visual and pain systems.

Somatosensory suppression

We noted clear suppression of the test response seen in cSII and iSII, but not in SI, results that

are consistent with previous studies that reported SII suppression with a conditioning stimulus

presented at 500 ms before the test stimulus [23, 55]. In the present study, the degree of sup-

pression was not correlated between SI and SII, and %suppression for SI was very weak in

spite of an approximately 30% suppression of cSII activity. In addition, findings of previous

anatomical [56, 57] and electrophysiological [50, 58, 59] studies support the presence of serial

and hierarchical processing through SI and SII, suggesting greater or specific inhibitory mech-

anisms for SII.

There are 2 possibilities for the origin of iSII activation; cSII via the corpus callosum [60,

61] and sequential activation in the ipsilateral hemisphere driven by direct inputs from the

ipsilateral periphery [60, 62]. In our study, we found no significant relationship between iSII

and cSII in regard to inhibition rate, suggesting that suppression of iSII activity is not depen-

dent on cSII suppression, thus indicating that iSII and cSII receive their own inhibitory inputs.

However, we also noted that iSII had a lower signal-to-noise ratio than cSII, which might con-

tribute to mask their correlation.

There was no significant suppression in SI, though it is possible that we could not detect SI

suppression because of the low signal to noise ratio or methodological problems. In neuroim-

aging and cellular level studies, when long latency suppression was lacking, SI suppression was

indicated [63] and SI suppression is known to have a relationship with chronic pain [64].

Electrophysiological studies have shown several types of suppression in relation to an effective

conditioning-test interval [5, 8]. Additional studies are necessary to clarify the suppression

mechanisms in the primary sensory cortex.

Somatosensory suppression paradigm

In the present study, somatosensory suppression showed a high level of test-retest reliability

(r2 = 0.52, Fig 4), supporting the possibility of its usefulness as a clinical test. Furthermore, our

results showed suppression in SII of 30–50%, though only 10% in SI. Therefore, it is possible

that each component shows specific changes under certain clinical conditions. This informa-

tion may also be useful for testing conducted with EEG.

We did not use a test alone condition in the present examinations, because responses to the

conditioning stimulus do not differ from those to the test stimulus when there is an adequate

steady state duration prior to the conditioning stimulus [41]. Similar to auditory change-

related cortical responses, it is known that change-related somatosensory responses are

Long-latency suppression of auditory and somatosensory change-related cortical responses

PLOS ONE | https://doi.org/10.1371/journal.pone.0199614 June 26, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0199614


dependent on past sensory history. When the duration of the steady state prior to the change

onset is varied, the amplitude of the change-related response increases steeply at 500–1500 ms,

whereas the increment becomes more modest at longer durations because of the non-linear

temporal nature of haptic memory [35]. Therefore, for the present examinations the duration

of the steady state prior to the test stimulus was set at 2400 ms.

Approximately 6 minutes was required for the present somatosensory paradigm. Somato-

sensory suppression is an important sensory mechanism that requires further elucidation,

though it is expected to find use in clinical situations [24–26]. Particularly, patients with autism

or fibromyalgia may have deficits specifically in the somatosensory inhibitory mechanism [25,

26]. Taken together, the present paradigm is anticipated to become a useful clinical tool.

Conclusions

In the present study, we examined paired pulse suppression using change-related cortical

activity, and compared the degree of suppression between the auditory and somatosensory sys-

tems. Our results showed a significant correlation between those systems as well as between

the hemispheres for the auditory system. In addition, they suggest that the present measure-

ment findings reflect the effects of long-latency inhibitory circuits in individuals. A variety of

diseases are known to be related to deficits in sensory inhibition, thus such a functional mea-

surement method may be useful for assessment of the inhibitory system.
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