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ABSTRACT

Pre-diabetes and diabetes occur secondary to a
constellation of pathophysiological

abnormalities that culminate in insulin
resistance, which results in reduced cellular
glucose uptake and
production.  Although
diabetes have a strong genetic basis, they are
largely through
lifestyle factors. Traditional lifestyle factors
such as diet and physical activity do not fully

explain the dramatic rise in the incidence and

increased  glucose

pre-diabetes  and

environmentally  driven

prevalence of diabetes mellitus. Sleep has
emerged as an additional lifestyle behavior,
important for metabolic health and energy
homeostasis. In this article, we review the
surrounding the

current evidence

sleep-diabetes association.
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INTRODUCTION

The onset, progression and management of type
2 diabetes mellitus remain a major challenge.
Given the many accompanying complications
and comorbidities of diabetes, a comprehensive
understanding of all factors underpinning its
development and progression is absolutely
essential. A profusion of literature surrounds
the role of sleep and type 2 diabetes. Sleep is a
significant and modifiable lifestyle behavior.
Understanding the relationship between sleep
and diabetes mellitus is crucial and will enable
the development of strategies to improve the
life of those with diabetes.

Sleep is regulated by two interconnected
processes, named Process S (homeostatic drive)
and Process C (circadian drive) [1]. Process S is
appetitive in that a sleep debt
throughout the day and this increases the

occurs

pressure to sleep. This sleep debt is repaid
once sleep occurs. If the sleep debt is not
sufficiently repaid, it accumulates, resulting in
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poor daytime function

metabolic abnormalities. Process S is associated

and potentially

with central adenosine accumulation. Caffeine
is an adenosine receptor blocker. Therefore,
caffeine intake around bedtime will reduce the
homeostatic drive and reduce sleep duration. If
Process S were the only regulator, then because
of accumulated sleep debt, one would fall asleep
in the early evening. This is prevented by
Process C, which determines the timing of
sleep. Circadian regulation occurs via the
hypothalamic suprachiasmatic nucleus and is
synchronized by light via the
retino-hypothalamic Thus,  light
exposure near bedtime delays sleep, and if this

tract.

is combined with early morning awakening for
work, then sleep duration is reduced. Many
hormones are released in a circadian manner, a
typical example being cortisol, which is high in
the morning and low in the evening. If Process S
and Process C are desynchronized, as occurs in
jet lag or night shift work, then metabolic
consequences can ensue, secondary to
sleep occurs,
several hormones are released specifically

linked to sleep stages. For example, growth

hormonal alterations. Once

hormone and prolactin are released during the
deep stages of sleep. Thus, sleep loss can also
impact the release of hormones that regulate
metabolic function. Sleep is assessed using
approaches,
advantages and disadvantages (Table 1).

The aim of this review is to highlight and
discuss the relevant literature surrounding the

several each with its own

relationship between sleep parameters and
diabetes outcomes. Specifically, we provide a
comprehensive review of the literature for
sleep (quantity,
quality and timing, circadian misalignment
and daytime sleep) and diabetes outcomes,
which we present according to study design

multiple components of

(case-control, cross-sectional, prospective and

experimental). We further discuss potential

mechanisms, limitations of the current

literature as well as future directions.
Compliance with Ethics Guidelines

This article is based on previously conducted
studies and does not involve any new studies of
human or animal subjects performed by any of
the authors.

Study Selection Criteria

Our review focused on the literature
surrounding multiple sleep features and the
relationship with measures/indicators of type 2
diabetes mellitus. Specifically, we reviewed the
human, adult (=18 years)

populations and excluded animal studies or

literature for

studies not published in the English language.
We selected studies using a comprehensive
search of the electronic databases, PubMed
and MEDLINE. The search terms entered into
these in May 2015
included: type 2 diabetes mellitus, insulin

electronic databases

resistance, insulin  sensitivity,  glycemic
control, glucose control and sleep duration,
sleep quality, circadian misalignment, circadian
preference, chronotype and napping. The
search highlighted a total of 83 studies of
which

cross-sectional, 15 prospective cohort and 21

there were 6 case-control, 41

experimental studies.

Sleep Quantity, Insulin Resistance
and Diabetes

Sleep curtailment is now widespread, usually to
lifestyles
contemporary society, mirroring the increases
in global diabetes mellitus [2]. The use of
modern technology is also

accommodate busy within

increasingly
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Table 1 The advantages and limitations of the various methods used to measure sleep

Sleep measure Measure Advantages Limitations
Polysomnography ~ Objective Accurate for determining multiple sleep  Expensive
(PSG) parameters

Gold standard

Physiological

Sleep
architecture
(stages 1, 2, 3
and REM
sleep)

Actigraphy (wrist) Objective

estimate

Worn on wrist

Based on

movement

Actiheart Objective

estimate

Can be used to diagnose sleep disorders

Can be combined with other
physiological measures (hormone

sampling under controlled conditions)

Determines sleep architecture (sleep

stages and percentages of cach stage)

Measures brain activity as well as other
physiological outcomes (muscle
relaxation, eye movements respiratory

effort and more)

Objective measure of sleep-wake timings

Can be used in the individual’s natural

environment in free-living conditions

Some devices have been validated for

sleep duration against PSG

Ability to collect data over prolonged
periods of time (up to 3 consecutive

months)

Cost-effective alternative to PSG

Noninvasive

Objective

Additional physiological measures are
obtained (heart rate) for sleep

determination

Experienced/trained technicians are

needed to score the data

May not be able to capture usual sleep
because of equipment and/or

environment (first night effect)

Invasive/uncomfortable

Unsuitable for long-term sleep
assessment; unless portable requires

laboratory attendance

Inter-/intraobserver variation

Cannot determine sleep architecture
(sleep stages)

Provides an estimate of sleep-wake
timings

Some devices are not waterproof and

will not capture information upon

removal

Absence of physiological measures to

determine sleep

Requires concurrent sleep diary and

minimum wear time

May over estimate sleep during periods

of inactivity

Multiple software and cut points for

analysis

Not validated against PSG for sleep

Loss of signal if skin contact is poor or

the ECG pads become loose/removed
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Table 1 continued

Sleep measure Measure Advantages Limitations
Physiological Can be used in free-living conditions and  Does not have the ability to determine
natural environments sleep architecture (sleep staging)
Can collect data over prolonged periods  Accurate accompanying sleep diary is
of time usually required
Noninvasive May overestimate sleep during periods
of inactivity
Can be uncomfortable and/or result in
skin irritation where ECG electrodes
are placed
Expensive
Self-reported Subjective Can be administered to large populations  Subject to a number of biases (recall,
questionnaires social desirability)
Quick/easy to administer Variable response rates
Cost-effective Subjective
Some are validated in different age groups Inaccurate for detecting sleep disorders
to investigate different age-appropriate
sleep problems (pain in the elderly,
bedroom sharing in children)
Less labor intensive compared to PSG~ May be subject to missing data
Some are validated for sleep duration May result in time in bed being
against objective measures of sleep reported rather than total sleep time
Can help to ascertain information about Information collected may not be
multiple sleep parameters and other accurate and some only ask one
related factors question
Parental Subjective Inexpensive Subjective
questionnaire

Administration is quick
Immediate output

Permits data collection in large samples

relating to pediatric sleep information

Less labor intensive compared to PSG

Subject to a number of biases (recall,

social desirability)
May have missing data

Likely to be inaccurate for older
children and adolescents (parents
may be unaware of night awakenings

and/or other sleep features)

Variable response rates
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Table 1 continued

Sleep measure Measure Advantages Limitations
May result in time in bed being
reported rather than total sleep time,
thus overestimating sleep causing
inaccuracies
Sleep/time diary Subjective Obtains prospective sleep-wake data Completion is tedious

Provides additional information about
other sleep features (time in bed, sleep

duration, night awakenings, napping,

sleep quality)

Inexpensive

Permits data collection in large samples

Less labor intensive compared to PSG

Swift administration

Response rates may be low or diaries
may be only partially completed

(missing data)

Subjective
Labor intensive for the participant

Requires participants to be motivated

to complete

Subject to inaccuracies/biases (recall,

social desirability)

REM rapid eye movement, PSG polysomnography

intruding into sleep time. The Sleep Heart
Health Study is an early study that observed,
in a large sample of US men and women, that
short self-reported sleep duration (<5h per
night) was associated with a 251% increased
odds ratio (OR) of T2DM [3]. Furthermore,
compared to those with sleep duration of
7-8 h, those with sleep duration of >9 h had a
79% increased odds of T2DM and an 88%
increased odds of pre-diabetes. This early study
adjusted for age, gender, ethnicity, the apnea
hypopnea index (AHI), study recruitment site,
and waist circumference as
confounders, although data on primary drivers
of diabetes (physical activity, dietary habits,

family history) were not included in the

potential

analyses [3]. Further evidence has resulted
from a small number of case-control studies
that are highlighted in Table 2.

Cross-Sectional Studies

The cross-sectional evidence linking
duration to T2DM has
accumulate (Table 3). The majority of studies
have indicated an increased possibility of
various diabetes with differing
definitions of short sleep duration [4-17].
Understanding pre-diabetes provides a key
insight of T2DM.
Chaput and colleagues performed an oral
glucose tolerance test in 740 participants, aged
21-64 years diabetes
diagnosis. Sleep duration (h) was self-reported

sleep
continued to

outcomes

into the development

without a known

from only one question, inserted into a
physical

After adjustment for

self-administered activity

questionnaire. major
confounders such as physical activity and
energy intake (self-reported) along with age,

marital and employment status, education,
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& household income, alcohol and coffee
§ v 2 § consumption, hypertension and heart disease,
& ¢ = ¢ % the OR for insulin resistance, determined using
@ L 9 =~ o~
g 7 5 ~al g the homeostasis model assessment (HOMA-IR),
- NG 1
= g S 2Ly for men and women reporting short sleep
§D ) duration (5-6 h per night) was 2.27 and 1.82,
o) é respectively (both p<0.05). Long sleep
-
7‘3 i duration (9-10h per night) was also
s -é significantly associated with pre-diabetes in
o
= E both men and women, but with smaller ORs
i ; of 1.51 and 1.67, respectively [4]. While this
" E f—é study included many potential confounders
Q @
= o = and benefited from a relatively large sample, a
= [=
g = '§ 3 major concern is the limited subjective sleep
O m 5 £ : .
g 2 information.
[
I~ . s s
E E iﬁ To overcome the issue of subjective sleep
@ 2
g 3 8 _—§ § reports, Vgontzas and colleagues employed
2 = g E—gg polysomnography (PSG; the gold-standard
_§ i § s 5 sleep measure) to investigate the relationship
« J‘;; — w w
Al & {5:‘3 between sleep and T2DM. A fasted blood
9
g% glucose sample was obtained the morning
[P]
5 < < g after 1 night’'s PSG had been conducted to
20 = S &
g 5 %EE screen  participants  for  sleep-disordered
ay
Y E ;fb ;} breathing (SDB), known to be closely
7|3 = = associated with T2DM. Severe short sleep
o
&l = = t § duration (<5h) was significantly associated
‘2| B CA e with a 2.95 times odds of T2DM [18]. While
Tl Eally S5 : ,
2§ B the authors adjusted for a range of potential
g 5" e = = g*é confounders including age, race, sex, BMI,
&n
= sampling weight, smoking, alcohol, depression
8 g g g and SDB, the two major lifestyle drivers (diet
—~ 2 = . L . .
.. E =8 g & and physical activity) and family history of
g B § 5 2 % diabetes were unaccounted for. Investigating
2 5 2 . . .
Sl 2 f%” Py sleep in those susceptible to diabetes has
~ 5 o
<, "g g g - % é provided key information regarding the
E ﬁ E 6P E 2 sleep-diabetes  relationship. Darukhanavala
8% et al. studied 47 at-risk participants with a
B3 < 5 . . .
ER RS = 53 family history of diabetes but who were
g E = N otherwise healthy and monitored them with
~—~ Q".a
SlEl @ [ wrist actigraphy for 14 consecutive days/nights.
- s 3
_% | S = Insulin sensitivity was determined using
=] =}
SlE | 5 S 2 HOMA-IR, and a significant linear relationship
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Table 3 Cross-sectional studies investigating the association between sleep features and diabetes outcomes

First author Sample/country  Sleep measure Diabetes measure Covariates Findings
(year)
Gottlieb (2005) 722 men; 764 Self-reported sleep  Fasting blood sample  Age, gender, T2DM <Sh
(3] women; age duration OGTT; T2DM ethnicity, AHI, HR = 2.51%
53-93 years; (h) from and IGT (ADA study site, waist T2DM >9h
uUsS questionnaire and WHO) circumference HR = 1.79%
IGT <S5h
HR = 1.33;
IGT >9h
HR = 1.88*
Fiorentini 220 (men and Self-reported sleep Diagnosed T2DM None Prevalence of

(2007) [43]

range provided;

Italy

Knutson
(2006) [41] women);
African
American;
mean age

57 years; US

Chaput (2007) 323 men, 417
(4] women;
21-64 years;
Canada

women); no age

161 (42 men; 119 Sleep quality and

quality (PSQI)  (ADA)

Diagnosed T2DM

sleep duration patients; measure

from of glycemic control
self-reported determined using
PSQL HbAlc

additional

question on
preferred sleep
duration to
calculate

perceived sleep

debt
Self-reported sleep  IGT and T2DM
duration (one (ADA/WHO)
question) from fasting bloods
and OGTT

Age, marital status,
employment
status,
education,
income, physical
activity, alcohol,
caffeine, energy
intake,
hypertension,
heart disease,

WC/BMI/BF%

T2DM was
19.4% in ‘poor
sleepers’ versus
8.8% in ‘good
sleepers’

(p < 0.0001)

3 h sleep debt
p/night
associated with
1.1% significant

increase in

HbAlc

Men: 5-6 h sleep
OR 2.27%,
9-10 h OR
1.51*; women:
5-6h OR 1.82%
9-10h OR
1.67*; both
genders 5-6 h
OR 2.09%,
9-10h OR
1.58*
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Table 3 continued

First author
(year)

Sample/country

Sleep measure

Diabetes measure

Covariates

Findings

Tuomilehto

(2008) [5]

Suarez (2008)
(54]

Cunha (2008)
[44]

1336 men, 1434
women aged
45-74 years;
Finland

115 men, 95
women; aged
18-65 years;
[ON

50 diabetes

patients; Brazil

Questionnaire

PSQI

PSQI

OGTT

Fasted blood sample

to assess insulin
and glucose;
HOMA-IR

calculated

Previous physician

diagnosed T2DM

Age, BMI,
medication(s),
possible OSA,
smoking,

physical activity

None

Women with
diagnosed
T2DM: <6 h
OR 2.55%, >8 h
OR 1.76%
diagnosed
T2DM or
screened T2DM
>8 h OR 1.71*
no association

for men

SOL associated
with HOMA-IR
F =4.79,

» = 0.004:
frequent
problems with
sleep initiation
associated with
greater IR
mean = 1.96 vs.
1.10 (no
problems);
women taking
>30 m to
initiate sleep had
significantly
increased
HOMA-IR, vs.
those <30 m

HbAlc >7%,
33.3% had poor
sleep quality
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Table 3 continued

Sleep measure

Diabetes measure

Covariates

Findings

First author Sample/country
(year)
Vgontzas 1714 (48% men);
(2009) [18] mean age
49 £ 14 years;
us

Kim (2009) [6] 1652 men, aged
20-60 years
with central
adiposity;

Korea

Chao (2011)
(7]

3470 adults;

Taiwan

Knutson 115 without
(2011) [39] ~ T2DM, 40
with T2DM;
18-30 years;
uUsS
Luyster (2011) 300 with T2DM;
[45] mean age
64 years; US

One night PSG
and
questionnaire
with 3 groups:
>6 h (normal),
5-6h
(moderately
short), <Sh

(severely short)

Self-reported
from

questionnaire

Self-reported
questionnaire
(<6 h,
6-8.49 h,
>85h)

Wrist actigraphy
for 6 days/
nights and
questionnaires

(PSQ], Berlin)

PSQI

T2DM diagnosis and
treatment or
fasting blood
glucose >126 mg/
dl on the morning

after sleep study

T2DM: previous
physician
diagnosis/use of
diabetes
medication/fasting
blood glucose
>7.0 mmol/]

Pre-diabetes and
T2DM diagnosed
from either fasted

blood sample or

OGTT

Fasting bloods to
measure insulin/
glucose and

calculate

HOMA-IR

Physician diagnosis of
T2DM for at least
ly and taking oral

medication

Age, race, sex,
BMI, sampling
weight, smoking,
alcohol,
depression,
sleep-disordered
breathing

Age, smoking,
alcohol, physical
activity,
education,
income,
residential area,
hypertension,
obesity,
abdominal
obesity, high
triglycerides, low
HDL-C, high

cholesterol

Age, sex, smoking,
alcohol, caffeine,
physical activity,
family history of
diabetes, obesity

Age, race, sex,
BMI, education,

income

T2DM associated
with insomnia
(<5 h) OR
2.95*

OR 2.40* for
T2DM if <5 h
without
abdominal
obesity

Short sleep and
T2DM OR
1.55*% long sleep
and T2DM OR
2.83; no
association with

pre-diabetes

Sleep
fragmentation
and positively
associated with

insulin and

HOMA-IR

55% of the sample
had poor sleep

quality
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Table 3 continued

First author Sample/country  Sleep measure Diabetes measure Covariates Findings
(year)
Darukhanavala 47 healthy 14 days/night OGTT, HOMA-IR  Age, BMI, sex, Sleep duration

(2011) [19] individuals with ~ wrist actigraphy

parental history
of T2DM (26
women, 21

men); mean age

26 years; US
Tsai (2012) 46 with T2DM;  PSQI HbAIc from blood
[46] aged draw
43-83 years;
Taiwan
Liu (2011) [8] 854 men, 640 Sleep duration Fasting plasma
women; aged self-reported glucose and
20-70 years; from PSQI HOMA-IR
twin cohort;
China

St-Onge (2012) 305 (122 men, Portable PSG in ~ HbAlIc, and glucose

[55] 183 women); home from fasting blood
mean age environment sample
61 years with
T2DM,
overweight or
obesity; US
Rajendran 120 with T2DM; PSQI Fasting, postprandial
(2012) [47] India blood glucose and

HbA1lc measured

familial diabetes
risk, ethnicity,
physical activity

Age, gender, BMI

Age, physical
activity,
education,
snoring, sleep
disturbances,

BMI/%TF
Study site, age,

gender,
ethnicity, WC,
smoking,
alcohol, diabetes
duration,

medication
Age, sex,

medications,

BMI, HbAlc

associated with
insulin
sensitivity

f =25 and
HOMA-IR
f=—027

OR 6.83* for sleep
efficiency and
HbA1c; Poor
quality sleep
associated with
worse glycemic
control OR
6.94*

Short sleep
duration (<7 h)
associated with
higher
HOMA-IR in

women only

Sleep efficiency
associated with

fasting plasma

glucose
p=—-053,
p=0.041

Diabetes duration
was negatively

associated with

global PSQI
B = —-0.20,
» =002
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Table 3 continued

First author Sample/country  Sleep measure Diabetes measure Covariates Findings
(year)
Harada (2012) 275 men; mean Wrist actigraphy ~ Fasting plasma Age, WC, RDI, IFG present in
[56] age 44 years; and glucose ESS, sleep 20%; sleep
Japan corresponding duration/ duration nor
sleep diary for fragmentation sleep quality

Kachi (2012)
(9]

Hung (2013)
[49]

Lou (2012)
(10]

20,744 men; aged  Self-reported

30-64 years;
Japan

1805 (healthy,
pre-diabetes,
T2DM);

Taiwan

16,893 men and
women; aged
18-75 years;
China

7 days/nights to
determine sleep

duration and

sleep quality

(continuous) and HbAIc to
then determine
categorized undiagnosed
<5h,6h,7h  T2DM (JDS)
and 8 > h

PSQI Fasting glucose or

OGTT to
determine normal
glucose tolerance
(n = 1217),

IFG =118,

IGT = 287, IFG
and IGT = 80,
T2DM = 103

Self-reported sleep Two fasting blood
samples; T2DM
defined according
to WHO criteria

quality and

duration

Fasting blood glucose Age, obesity,

smoking, alcohol
and physical

activity

Age, gender,

glycemic status,
sleep duration,
alcohol,
smoking,
physical activity,
BM]I, systolic
blood pressure,
HDL,
triglyceride

Age, sex,

education,
occupation,
BMI, family
history of
diabetes,
smoking,
alcohol,
hypertension,

sleep duration/

quality

(fragmentation)
was associated

with FPG

Untreated T2DM

(34%); <5 h
sleep associated
with T2DM OR
1525 8>h
associated with
T2DM OR
1.39*

Poor sleep quality

associated with
FPG f = 1.28",
post-prandial
glucose

f = 1.07* and
T2DM
p=227*

Poor sleep quality

associated with
T2DM OR
1.76%; short
sleep <6 h
associated with
T2DM OR
1.25*
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Table 3 continued

First author Sample/country  Sleep measure Diabetes measure Covariates Findings
(year)
Ohkuma 4870 with Self-reported sleep  HbAlc Age, sex, energy Short and long
(2013) [11] T2DM; aged duration intake, sleep duration
>20 years; depressive associated with
Japan symptoms, higher HbAlc
duration of
diabetes,
smoking,
alcohol, physical
activity, insulin
use
Merikanto 4589; aged Self-reported Fasted blood sample  Sex, age, Evening
(2013) [12] 25-74 years; chronotype and  to determine education, civil chronotypes had
Finland sleep duration glucose and insulin; status, sleep 2.6 increased

OGTT to

determine insulin

(questionnaires)

sensitivity

Chasens (2013) 107 with T2DM; PSQI and ESS Self-reported T2DM
[57] aged diagnosis;
31-82 years; questionnaire to
(0N assess diabetes care

profile

duration,

assessment time

Sex, age,
education,
marital status,

ESS

risk of T2DM
vs. morning
types; short
sleep (<6 h)
associated with
1.6 increased
risk of T2DM;
no association
with insulin

resistance

Poor sleep quality
associated with
worse diabetes
care profile;
daily
disturbance was
significantly
associated with
increased
diabetes control

problems
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Table 3 continued

First author
(year)

Covariates

Findings

Najafian (2013) 6123 men, 6391

[13]

Reutrakul
(2013) [63]

Kim (2013)
[14]

Andersson

(2013) [40]

Sample/country  Sleep measure Diabetes measure
Self-reported

women; aged and OGTT
>19 years; Iran

194 (135 women) PSQI
with T2DM; records
mean age
58 years; US

2134 T2DM Self-reported Fasting blood
(1065 men, glucose; HbAIc;

1,069 women); HOMA-IR

aged >20 years;

Korea

2816 aged Self-reported lack  OGTT to determine
30-75 years; of sleep normal glucose
Sweden (n =2314) and

IGT (n = 213)

Fasting blood glucose Age, sex, WC,

BMI

HbAlc from medical Age, sex, race,

BM], insulin

use, depressed
mood, diabetes
complications,

perceived sleep

debt
Study year, age,

sex,
socioeconomic
status,
education,
marital status,
residential area,
income, alcohol,
smoking,
physical activity,
hypertension,
BMI, WC,
treatment,
T2DM
duration, calorie

intake

Age, BMI,
smoking,
education,

physical activity

Men sleeping

<5 h had 35%
increased risk of
T2DM/IGT
and women had
54% increased
risk and

<60 years had
34% increased

risk

Later mid-sleep

time positively
associated with

HbAlc level

No association

between HbAlc
and sleep
duration after
full adjustment;
highest levels of
HOMA-IR with
<6h and >9h

sleep duration

IGT and lack of
sleep OR 2.3*

for men only
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Table 3 continued

First author
(year)

Sample/country

Sleep measure Diabetes measure

Covariates

Findings

Reutrakul
(2014) [62]

Inkster (2013)
[102]

Ohkuma
(2014) [103]

Cho (2014)
(48]

Iwasaki (2013)
[65]

898 with T2DM
(51% men);
mean age

68 years; UK

Self-reported Existing T2DM
daytime diagnosis; history
sleepiness from of severe
ESS hypoglycemia

obtained by

questionnaire

4402 with T2DM  Self-reported sleep  Fasted bloods to

(2494 men and
1908 women);
aged >20 years;
Japan

614 with T2DM
(381 men, 233
women); mean
age 60 years;

Korea

101 men with
T2DM;
40-65 years;
Japan

duration, determine HbAlc,
including glucose;
daytime nap(s) HOMA-IR

calculated in 3816

PSQL ESS, Sleep OGTT
Disorders
Questionnaire
Sleep Apnea;
poor sleep
quality used as

outcome

HbAlc from blood

sample

MEQ, PSQI

Age, sex, T2DM
duration,
HbA1c%, BMI,
T2DM
medications,

insulin use

Age, sex, DM
duration, energy
intake, smoking,
alcohol, physical
activity,
depression, DM
medication,

insulin use,

BMI/WC

Age, sex, sleep
apnea score,
depression,
T2DM duration

Age, BMI, systolic
blood pressure,
HDL-C,
LDL-C, T2DM
duration,

triglycerides

Late chronotype
associated with
higher HbAlc

levels

ESS was a
significant
independent
predictor of
severe
hypoglycemia
B =0.537*

After adjustment
for BMI/WC,
no significant
association was
found between
HOMA-IR and

sleep duration

No significant
association
between glucose
regulation and
any sleep
variable; T2DM
duration
associated with
significantly
higher PSQI

HbAlc negatively
associated with
chronotype;
HbAlc and
PSQI were
lower in

morning types
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Table 3 continued

First author Sample/country  Sleep measure Diabetes measure Covariates Findings
(year)
Pyykkonen 722 without Basic Nordic OGTT Age, sex, sleep Long (=9 h) sleep
(2014) [104] T2DM (400 Sleep apnea duration
women, 322 Questionnaire: complaints, associated with

men); Finland sleep duration,
complaints of
sleep apnea and

insomnia

Zheng (2015)  18,121(6412 men  Self-reported sleep Fasting plasma

[105] and 11,709 duration glucose; OGTT
women); aged and classified:
>40 years; normal glucose
Japan (n =9578),
impaired glucose
regulation
(n = 4318),
T2DM (n = 4225)
Osonoi (2014) 725 with T2DM  Self-reported Fasting blood sample
[64] (63% men); chronotype to determine
mean age from MEQ HbAlc and glucose
58 years; Japan (n=117
morning types;
n =424
neither type;
n=184

evening type)

insomnia, family
history of
T2DM,
smoking,
alcohol, physical
activity,
occupation,
BMI, depressive
symptoms

Age, sex, BMI,
snoring,
depressive

symptoms

Age, gender, BMI,
PSQL depressive
symptoms,
energy intake,
smoking,
alcohol, physical

activity

increased insulin

resistance

Long sleep
duration (>9 h)
associated with
higher HbAlc,
fasting glucose
and
post-prandial

glucose

Evening
chronotypes had
significantly
higher mean
fasting glucose
and HbAlc
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Table 3 continued

First author Sample/country  Sleep measure Diabetes measure Covariates Findings

(year)

Baoying (2014) 7568 (3060 men, Self-reported sleep  OGTT to determine Age, gender, Longer daytime

[106] 4508 women) duration HOMA-IR fasting blood nap duration
without glucose, (>1h) positively
T2DM; mean hypertension, associated with
age 51 years; FHD, HbAlc level
China dyslipidemia, >6% OR 1.26*
smoking, and insulin

Wong (2015)

[15]

Tang (2014)

[16]

Byberg (2012)

[69]

224 without
T2DM (52%
women); mean
age 45 years;
[ON)

551 with T2DM;
China

771; mean age
47 years;

Denmark

alcohol, snoring
frequency,

physical activity,
education, BMI,

waist-hip ratio

Self-reported sleep  IVGTT to determine

duration insulin sensitivity

PSQI to HbAlc; HOMA-IR  Gender, age, BMI,
determine sleep T2DM duration
quality and
quantity

Self-reported sleep  OGTT; HOMA-IR
duration
(including
naps) and sleep
quality

resistance OR
1.69*%; long sleep
duration (>8 h)
had protective
effect on
HbA1c% and
insulin
resistance OR
0.57* and OR
0.84*

Short sleep
duration was
associated with
reduced insulin
sensitivity in
Caucasians and

men

Short sleep
associated with
poorer glycemic
control; poor
sleep quality
associated with
increased insulin

resistance

2% increase in
insulin
sensitivity with
improving sleep

quality
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Table 3 continued

First author Sample/country  Sleep measure Diabetes measure Covariates Findings
(year)
Zuo (2012) 1124 without Self-reported sleep  HOMA-IR OR 3.26* for those

[17] T2DM (45% duration
men); mean age

~ 48-49 years;
China

with short sleep
(<7 h) and low
physical activity
for insulin
resistance; no
association for
sleep duration

alone

OGTT oral glucose tolerance test, 72DM type 2 diabetes mellitus, /GT impaired glucose tolerance, AD.A American Diabetes
Association, WHO World Health Organization, AHI apnea hypopnea index, OR odds ratio, OSA obstructive sleep apnea,
BMT body mass index, W C waist circumference, BF% body fat percent, HOMA-IR homeostasis model assessment-insulin
resistance, PSQI Pittsburgh Sleep Quality Index, PSG polysomnography, HDL-C high density lipoprotein-cholesterol,
LDL-C low high density lipoprotein-cholesterol, IFG impaired fasting glucose, FPG fasting plasma glucose, RDI respiratory
disposition index, ESS Epworth Sleepiness Scale, MEQ morningness-eveningness questionnaire, I['GTT intravenous glucose

tolerance test
*p<0.05

was observed between actigraphy-estimated
sleep duration and insulin sensitivity (f = 2.5,
p=0.006), after
confounders such as physical activity and
diabetes family history [19].

there
studies that have objectively investigated the

adjustment of major

Currently, are no cross-sectional
sleep-diabetes link while adjusting for the three
key drivers of diabetes (energy intake, energy
expenditure and diabetes family history). The
issue with obtaining data from populations
with existing diabetes comorbidities, such as
SDB, is that sleep insufficiency may be a result
of the condition itself, which may have already
physiological Thus,
case-control (Table 3) and prospective studies
provide key evidence for unraveling this and

driven alterations.

clariftying temporal associations.

Prospective Studies
A summary of prospective studies that have
examined the sleep-diabetes relationship can be

found in Table 4. The Niigata Wellness Study,
which prospectively studied 38,987 Japanese
participants without diabetes over an 8-year
period, found that
(<60 years old) who reported sleeping <5.5h
per night had a 53% significant increased risk of

younger individuals

developing diabetes compared to those that
slept for 7-7.5h per night, after adjustment
[20]. Gangwisch and colleagues reported a
similar significant risk for incident diabetes
with short sleep. Participants, aged 32-86 years
(n =8992), recruited into the National Health
and Nutrition Examination Survey were
examined over a 10-year period. Short sleep
duration was defined as <5 h and was associated
with 1.47 increased odds of incident diabetes
[21]. Other prospective data suggest similar
effect sizes but vary according to adjustment
of confounders and short sleep duration
definition [22, 23]. The prospective evidence
is, however, less consistent with some reporting
a diminished relationship after adjustment for
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BMI [24]. Furthermore, at least one study has
reported an increased risk for incident diabetes
in long sleepers by more than three-fold [25].
The longitudinal data are less convincing than
the cross-sectional evidence with several
prospective studies indicating no association
between sleep duration and incident diabetes
[26-28]. Further prospective data are necessary
to determine cause-effect associations, and
while the majority of studies benefit from
large samples, including both genders and
incorporating different ethnic backgrounds,
the lack of objective sleep data is a significant
[20-30]. Also, the majority of
prospective studies assessing sleep duration

limitation
and diabetes outcomes have focused on
incident diabetes, with few investigating sleep
with pre-diabetes [29, 30]. Both
however, documented similar effect sizes that

studies,

were statistically significant for short sleep
duration (albeit with different definitions and
varied  adjustments).  Uncertainty  from
prospective data has been somewhat offset by
evidence from studies.
Experimental

controlled laboratory environment has shown

experimental
sleep manipulation in a
a consistent relationship between sleep
duration and diabetes outcomes.

Experimental Studies

Increasing numbers of experimental sleep
studies (summarized in Table 5) have explored
the association between sleep and diabetes
using objective measures to confront the
problems associated with subjective sleep. One
of the earliest experimental sleep studies to
examine the effects of sleep upon glucose
metabolism recruited healthy, young, male
volunteers (n=11) for 16 consecutive nights
of laboratory attendance [31]. Participants spent
3 nights of 8 h time in bed (TIB) for baseline
assessment, followed by 6 nights of sleep

restriction with 4 h TIB and finally 7 nights of
sleep recovery with 12 h TIB. PSG was used to
monitor sleep outcomes on the last nights of
each of the three conditions and blood
sampling performed at the end of the sleep
restriction and sleep recovery conditions to
assess multiple hormones and carbohydrate
metabolism. An intravenous glucose tolerance
test (IVGTT) and breakfast meal response were
performed to investigate insulin sensitivity and
glucose effectiveness. Findings from the study
indicated a 40% reduced glucose clearance after
the IVGTT following sleep restriction compared
to sleep recovery. The insulin response to
glucose was reduced by 30% after sleep
restriction, an early indicator of diabetes.
Furthermore, glucose effectiveness, which is
independent of insulin, was significantly
reduced by 30% after sleep loss versus sleep
recovery [31].

To overcome several issues including the
potential confounding effect of the presence of
diabetes-related comorbidities as well as
laboratory attendance and
restriction, Zielinski et al. studied 40 healthy
50-70 years)
continuous wrist actigraphy monitoring for

extreme sleep

individuals  (aged utilizing
10 weeks [32]. Two weeks of baseline sleep was
acquired for determination of habitual sleep
habits/duration, and volunteers were
subsequently randomized into one of two
conditions: (1) 90-min TIB reduction,
compared to the pre-determined baseline
median TIB, with fixed bedtimes for 8
consecutive weeks (n=22), or (2) control
condition with fixed bedtimes, matching the
baseline TIB (n = 18). An oral glucose tolerance
test was conducted to determine glucose and
glucose

assessed

tolerance; insulin
using the

insulin-sensitivity check index. The results

sensitivity was
quantitative

were not consistent with the findings from
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Spiegel and colleagues [31]. No significant
associations were discovered between sleep
condition and insulin resistance. There are
various explanations, possibly from differences
between study protocols, that may account for
these observed discrepancies. First, volunteers
were permitted to increase caffeine intake

reduced by 11-20%
after sleep restriction;
glucose tolerance

Insulin sensitivity
decreased

Findings

during  sleep  restriction to  promote
wakefulness [32]. Second, sleep restriction
strategies were discussed between the
volunteer and researcher to ensure facilitation,
which may have resulted in different
approaches to different individuals according
to circadian preference that were not obtained
and therefore not adjusted for within the

Covariates
None

analyses [32]. Third, a number of individuals
completed the OGTT 2-5 days after the end of
the 8-week manipulation [32]. These volunteers
were instructed to continue with the allocated
TIB until the OGTT had been performed, but
reporting on continued compliance was not
documented and may have biased the findings.

hyperinsulinemic-euglycemic

Diabetes measure
clamp

IVGTT and

Furthermore, extended time periods beyond the
experimental period may have resulted in
differences, although comparisons were not
made in the analyses for these subijects.

Sleep measure

PSG

Fourth, a reduction of 90 min in Zielinski’s
protocol [32] may be inadequate to observe a
significant effect and is less extreme than
Spiegel’s 4-h TIB [31]. Finally, the study
recruited older individuals with a prolonged
amount of TIB (9h) versus total sleep time
(7.4 h) [32], as compared to young healthy men
in Spiegel’s study [31].

Recent detailed study of hepatic and

study with 2

Experimental sleep
conditions

peripheral insulin sensitivity, as well as

20-35 years;

[ON)

Sample/country Study design
aged

20 healthy men;

substrate utilization, in response to sleep
restriction has been investigated. Rao and
colleagues have revealed that an acute bout of
extreme sleep reduction can result in profound
metabolic alterations [33]. Participants received

[117]

incident diabetes mellitus, WHO World Health Organization, HR hazard ratio, 7B time in bed, 72DM type 2 diabetes mellitus, CGM continuous glucose

monitoring, 78D total sleep deprivation

PSG polysomnography, SWS slow wave sleep, IVGTT intravenous glucose tolerance test, IGT impaired glucose tolerance, OGTT oral glucose tolerance test, IDM
*» < 0.05

Table 5 continued
First author
Buxton (2010)

(year)

2 nights of laboratory acclimatization followed
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by two conditions in a randomized crossover
approach undertaking S5 nights of sleep
restriction (4h TIB) and normal sleep (8h
TIB), monitored using ambulatory PSG. At the
end of the S5-night sleep restriction period,
peripheral and whole-body insulin sensitivity
significantly decreased by 29% and 25%,
respectively. No changes were noted for
hepatic  insulin
gold-standard

clamp technique [33]. An OGTT was also
administered and HOMA-IR calculated, which
revealed a 20% increase in insulin secretion
following sleep restriction [33]. The authors of
other experimental

sensitivity  using  the

hyperinsulinemic-euglycemic

studies have reported
comparable findings [34-37]. Similar effect
sizes have also been reported following just 1
night of sleep reduction (4-h TIB) [38],
suggesting that acute, extreme sleep restriction
may result in metabolic disruption and a
predisposition to diabetes.

The advantages of experimental sleep studies
are that
gold-standard measure to monitor sleep and
incorporate accurate diabetes outcomes under
very tightly controlled conditions, thereby

they wusually benefit from the

removing the effect of known confounders.
However, laboratory attendance may interfere
with the sleep patterns and/or
architecture, thereby introducing potential

natural

biases including environmental change (room
temperature, altered noise/lighting, different
bed comfort and more) and equipment to
monitor sleep and diabetes (PSG wiring,
catheters for repeated blood sampling). While
laboratory studies are usually conducted under
strictly controlled conditions, this may alter
naturally behaviors

occurring during

attendance  and determined
retrospective aspects of participant lifestyles

and/or previous related events may not be

objectively

considered but are crucial and may influence

the findings.
restriction is usually enforced but is not
representative of voluntary small amounts of

Furthermore, extreme sleep

sleep loss experienced in societal behaviors.
Finally, the majority of experimental work has
been performed in healthy, young and male
participants; therefore, the findings may not
extend to other groups. That said, results of
sleep studies
findings from large
suggest a definitive association between sleep

experimental coupled with

observational studies
loss and diabetes. PSG monitoring confirms
adherence to  sleep
determining the total sleep time, but the
authors do not usually report on other sleep

manipulation by

features, despite the availability of output.
Although the majority have focused on sleep
duration

and/or sleep loss, other sleep

characteristics have also emerged to be

important.

Sleep Quality in Relation to Insulin
Resistance and Diabetes

Severely short sleep, defined by some as <5h
per night, as well as insomnia has been
previously linked to a significantly increased
risk of T2DM [18] and increased insulin
resistance  [39] through validated sleep
measures. Lack of self-reported sleep [40] as
well as sleep debt [41] has also been linked to
the condition. These sleep outcomes (insomnia,
lack of sleep and sleep debt) may be due to
poor-quality sleep, which has resulted in
researchers investigating this in relation to
diabetes.

The most commonly used validated sleep
quality questionnaire is the Pittsburgh Sleep
Quality Index (PSQI). It is 24-item survey with 7
subcategories (sleep duration, disturbance,
medication, latency, quality and efficiency as

well as daytime dysfunction) that can be totaled

A\ Adis



Diabetes Ther (2015) 6:425-468

455

to provide an overall score [42]. A combined
score of more than five is suggestive of poor
sleep quality. Some have investigated the
prevalence of sleep quality, as determined by
the PSQI, among T2DM.
colleagues reported a higher prevalence of
T2DM in those
(19.4%) compared to those with good quality

Fiorentini and

with poor-quality sleep
sleep (8.8%) [43]. Similarly, another study
reported 33.3% of 50 participants with an
HbAlc level of >7% had poor quality sleep
[44]. Another reported 55% of 300 T2DM
patients had poor-quality sleep [45]. Further, a
sample of 551 patients in China revealed that
the prevalence of poor sleep quality was
significantly greater in those with poorer
glycemic control and that average insulin
resistance was higher among those with poorer
sleep quality [16]. A larger effect size was
observed by Tsai et al. using HbAlc levels to
compare sleep quality using the PSQI [46]. After
adjustment for age, gender and BMI in a sample
of 46 T2DM patients, poor sleep quality was
associated with poorer glycemic control OR
6.94, p=0.002 [46]. Small studies with
subjective sleep quality measures may be the
result of chronic complications or ‘side effects’
of T2DM. In an attempt to disentangle the
chronic impact of diabetes on sleep, Rajendran
and colleagues administered the PSQI to
investigate the relationship between sleep
quality and duration of T2DM in 120 patients.
Diabetes duration was negatively associated
with the global PSQI score (f=—-020,
p=0.02), independent of age, gender, BMI,
HbA1c and medication [47]. This association is
consistent with another larger study (n= 614
older patients with T2DM) [48].

Aside from the existing data from diabetic
populations, the relationship between sleep
quality and insulin resistance has also been
investigated in healthy individuals as well as

those at risk of developing T2DM. Hung et al.
examined 1805 participants, of whom 1217 had
normal glucose tolerance (healthy) and 118 had
impaired fasting glucose (IFG), impaired glucose
tolerance (IGT) was present in 287, a total of 80
had both IFG and IGT, and 103 had newly
diagnosed T2DM [49]. Comparisons among
these groups were made according to sleep
quality wusing the PSQI. The IGT group,
compared to the healthy group, was positively
associated with global PSQI when assessed
through linear regression after adjustment for
a range of confounders including self-reported
physical activity, BMI, demographics, lipids,
blood pressure and lifestyle factors, f=0.63
(95% CI 0.33-0.94). A similar observation was
reported for individuals with IFG and IGT,
compared to the healthy group, where
p=0.61 (95% CI 0.06-1.15). The greatest
effect size for poorer sleep quality was present
in those with T2DM versus healthy individuals,
f=0.86 (95% CI 0.37-1.35). PSQI was then
dichotomized into poor quality (>5) and good
quality (<5) was used as the referent category.
Comparing all groups to the healthy group,
only those with an existing diagnosis of T2DM
showed a significant effect of poor sleep quality,
OR 2.27 (95% CI 1.39-3.70), after adjustment
[49]. Although cross sectional, this study partly
controls for the potential chronic and
psychological impact of diabetes on sleep
given that those with diabetes were unaware
of their diagnosis.

A broad range of characteristics can be used
to measure sleep quality. Sleep efficiency, sleep
fragmentation, number of wake episodes, wake
after sleep onset and length of awakenings are
all indicators. Sleep efficiency (the percentage of
time spent in bed sleeping) has been used to
explore the relationship with diabetes. The
Coronary Artery Risk Development in young
Adults (CARDIA) study recruited young
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individuals (aged 18-30 years) with (n = 40) and
without (n=115) T2DM [39]. A fasting blood
sample was drawn, and insulin resistance was
measured using HOMA-IR. A wrist actigraphy
device was worn for 3 consecutive days/nights
and repeated around 2 years later to estimate
sleep fragmentation, an indicator of sleep
quality. Insulin resistance was positively and
sleep
fragmentation in those with T2DM only before
and after adjustment, where = 0.36, p <0.001
and f=0.35, p <0.001, respectively. Insomnia,
but not sleep duration, was positively associated
with insulin resistance in those with T2DM but

significantly associated with

not those without [39]. The relationship
between insulin
sensitivity has been confirmed by others in
studies [50, 51] as well as

experimental manipulation [52]. Two nights of

sleep fragmentation and

case-control

induced sleep fragmentation in controlled
laboratory conditions has been shown to
significantly decrease insulin sensitivity by
25.2% and glucose effectiveness by 20.9% [52].
Sleep fragmentation is a common feature of
sleep-disordered breathing (SDB), specifically
obstructive sleep apnea (OSA), a condition
closely linked to T2DM (for brief discussion,
see the section titled “The role of other sleep
teatures upon insulin resistance and diabetes”).

The majority of studies highlighting a
sleep
quality and  diabetes are based on
cross-sectional data [10, 16, 39, 41, 43-49,
53-57],
association [56], causality remains the main

relationship between indicators of

and while just one found no
issue. A small number of case-control studies
have aided comparisons of differences in sleep
quality between those with and without T2DM
[50, 51, 58]. There are, however, limited
convincing prospective data. Early work by
Nilsson et al. wused a non-validated

questionnaire (two questions) to determine

the difficulty of initiating sleep and use of
hypnotics along with subjectively reported
T2DM with a mean follow-up of 15 years,
reporting a 52% and 78% increased risk of
incident T2DM in those with one or both sleep
features, respectively [59]. Similar findings have
those with difficulty
maintaining sleep [53]. Conversely, another
group
difficulties initiating sleep and objectively
T2DM  [26]. Thus,
initially healthy, young
populations incorporating regular prospective
follow-ups paired with objective sleep/activity
monitoring in the natural environment is

been reported by

found no  association between

confirmed incident
recruitment of

required to confirm or refute the relationship
between sleep quality and diabetes.

The Emerging Effect of Sleep-Wake
Misalignment Upon Insulin Resistance
and Diabetes

While the majority of focus has been on sleep
quantity and quality relative to diabetes, there
is now emerging evidence suggesting that
circadian rhythms, chronotype and sleep-wake
timings play an important role in diabetes
onset, development and management. It is
well established that shift workers have a
higher prevalence of metabolic disorders [60].
In particular, night-shift workers and rotating
shift workers are among those worst affected as
they not only experience circadian disruption
but also sleep loss. These extreme patterns are in
conflict with human evolution and challenge
our internal circadian pacemakers, regulated by
the hypothalamic suprachiasmatic nucleus.
suggests  that
sleep-wake timings are not necessary to cause

Recent evidence extreme
metabolic alteration, but that even slightly
shifted changes and/or circadian preferences

can influence diabetes.
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Buxton and colleagues examined the effects
of sleep restriction combined with gradual
circadian misalignment (eventually simulating
shift-work patterns) upon glucose metabolism.
A total of 21 healthy participants were
examined across a 39 consecutive day/night
period in a strictly controlled laboratory setting
[61]. A 32% reduction in insulin response to a
standardized meal was reported, resulting in
inadequate glucose regulation. The resting
metabolic rate was also reduced following
experimental manipulation of sleep restriction
and circadian desynchrony, although levels
reverted back to baseline subsequent to 9 days/
nights of recovery sleep [61].

Leproult et al. examined a healthy
population of young (21-39 years) individuals
(n = 26). Wrist actigraphy was used to monitor
standardized sleep-wake schedules 1 week prior
to the circadian misalignment intervention
[36]. Upon laboratory attendance, sleep was
monitored using PSG and volunteers underwent
3 baseline days/nights, then 8 days/nights of 5 h
TIB  (centered 03:00:
alignment). Half of the sample experienced an
8.5-h delay in bedtimes (09:00-14:00) for 4 of
the 8 nights (circadian misalignment), followed

around circadian

by 3 nights of sleep recovery. All participants
amount of sleep
opportunity (24h  over 8 days/nights),
ensuring the effect of circadian misalignment
per se was examined. An I[IVGTT was performed
following an overnight fast on the 2nd baseline
day as well as on the 2nd to last day of the

encountered the same

intervention, and multiple blood samples were
obtained. Insulin sensitivity was decreased in
96% of the sample, which was unaccompanied
by an increase in responsiveness of f-cell
function. The decrease in insulin sensitivity
was almost double in the misaligned group
(—58%) versus the controls (—32%), p =0.011.
Similarly, a greater effect was observed in the

experimental group where C-reactive protein
(an indicator of inflammation)
increased by 146% from baseline compared to

systemic

the control group (4+64%).

Taken together, findings from enforced
circadian misalignment concurrent with sleep
loss provide clues about metabolic alterations
that arise from sleep changes, which challenge
human physiology. It is well known that
physical activity is crucial for preventing
diabetes onset and progression. If sleep loss
paired with circadian misalignment results in
decreases in basal metabolic rate then a greater
amount of energy expenditure will be required
for energy homeostasis. Additional energy
expenditure is less
sleep-deprived state. Furthermore, sleep-wake
timings that are inconsistent with human

likely when in a

evolution may result in decreased insulin

sensitivity as well as increased systemic
inflammation, which 1is associated with
cardiovascular disease. Forced

desynchronization is extreme and simulates
shift work but is not necessarily representative
of societal behaviors or day workers. Other
groups have investigated less radical
approaches of circadian misalignment by
circadian

examining preferences

(morningness-eveningness). A number of
studies have investigated circadian preference
in T2DM patients with cross-sectional data [12,
62-65].

One group highlighted a significant
association between HbAlc and self-reported
circadian preference, where = —1.54, p =0.03
after adjustment for age and high-density
lipoprotein cholesterol in 101 Japanese men
[65]. Lower
morningness-eveningness questionnaire (MEQ)
indicate evening types, suggesting that ‘night
owls’ had poorer glycemic control [65]. Another

scores on the

study included 725 Japanese mixed-gender
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T2DM patients and found a dose-dependent
effect of circadian preference on HbAlc levels.
HbAlc was significantly higher in those with
(7.3%)
morning types (6.7%), and linear regression
revealed f=-2.94, p<0.01 after adjustment
for a range of established potential confounders

evening preference compared to

including physical activity, dietary intake and
demographics [64]. One further study that
recruited a random sample of 6,258 Finnish
adults, aged 25-74 years, revealed that evening
types (determined from MEQ) predicted
increased odds of T2DM (OR 2.6, p <0.0001),
after adjustment [12]. Two more studies by the
same group, and possibly data analysis from the
same sample, demonstrated significant evening
chronotype associations with diabetes [62, 63].
A total of 194 T2DM patients were assessed
using the midpoint of sleep, calculated from
self-reported estimated sleep-wake times in
circadian preference
(chronotype). Glycemic control (HbAlc) was

order to determine

obtained from medical records, and the

relationship was assessed with circadian
preference. The midpoint of sleep on free days
was positively correlated (r=0.34, p<0.001)
with glycemic control. In hierarchial regression
analysis, the association remained, where
p=0.03, p=0.001 after adjustment [63].
Similar findings were reported in the other
study where it was proposed that chronotype
mediated the association between skipping
breakfast and glycemic control [62].
Aside from experimental work, insulin
sensitivity  in relation to circadian
misalignment/preference  has not been
extensively examined, although it is a growing
area of study. The existing evidence indicates
that extreme misalignment of sleep-wake
timings in healthy individuals may promote
pre-diabetes. Furthermore, evening types with

T2DM may have poorer glycemic control,

although causality remains undetermined, and
further required  for
confirmation.

investigation  is

The Role of Other Sleep Features Upon
Insulin Resistance and Diabetes

When  sleep occurs, highly complex
physiological processes ensue including
hormone release, information processing,

cellular restoration and more. Previously, sleep
was believed to be a phenomenon for and by
the brain. Undoubtedly, the brain regulates
sleep, but evidence now indicates clear
peripheral effects on metabolic outcomes. This
is representative of gradual sleep alterations that
have occurred within contemporary society,
concomitant with the rising prevalence of
metabolic diseases. Much of the research focus
has been on sleep quantity; however, there are
many other significant sleep characteristics that
have been liked to T2DM.

Frequent and longer daytime sleep (napping/
siesta) has been linked to a higher risk of T2DM
[66-68]. It has been

suggested that napping may be a consequence

prevalence/incidence

of poor sleep quality and/or insufficient sleep
duration. In the studied populations, however,
napping is habitual and believed to have
beneficial health effects. Napping after lunch
reflects  the rhythm
(post-lunch dip) although, according to the
two-process model of sleep [1], there is
insufficient prior wakefulness to warrant sleep
initiation. Some have therefore considered
daytime napping and combined this with
nocturnal sleep duration (calculating total
sleep time) to investigate the relationship
between total sleep and metabolic outcomes

human circadian

[69, 70]. Experimental sleep studies, however,
usually prohibit napping in study protocols and
thus may not capture crucial information.
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There are many documented metabolic
consequences of daytime sleep/circadian
misalignment [36, 61, 71], with some linking
this to diabetes complications [72]. Sleep debt is
usually accumulated across the week and repaid
during weekends. Recent experimental data in
19 healthy males with at least a 6-month
history of voluntary sleep curtailment were
recruited. When ‘catch-up’ sleep was not
permitted and short sleep persisted across a
7-day period for 3 weeks, insulin sensitivity
decreased and HOMA-IR increased compared
to those with compensatory weekend catch-up
sleep [73].

Snoring may also be a risk factor for T2DM
[74], possibly as a consequence of OSA.
Undoubtedly, OSA is linked to
diabetes, although which develops first is to be

strongly
determined, given that they are both
noncommunicable. Obstructive sleep apnea
(OSA), as well as concomitant intermittent
nocturnal hypoxemia, is common in patients
with T2DM [75, 76]. Several studies have
reported an association between OSA, glycemic
diabetes
complications [77-81]. OSA appears to be

control and microvascular
more common in ethnicities where T2DM is
more common [82]. Many studies have not
been able to address the confounding effect of
OSA in the relationship between sleep and
metabolism. Interestingly, continuous positive
airway pressure (CPAP), used to treat OSA, has
also been shown to improve glycemic control
prospectively [75]. Thus, improving sleep can in
turn improve metabolic profiles. While SDB
certainly disrupts metabolic regulation and
extensive data have recently emerged in
relation to insulin resistance and other
features of diabetes, this is beyond the scope
of the current review. Clearly, the extent of
other sleep aspects on metabolic health is
slowly better

emerging, although a

understanding of all characteristics is still
required, along with mechanistic explanations.

Significant changes in sleep architecture
have also been noted in a retrospective
case-control study [58]. T2DM patients had
4.5% less slow wave sleep (SWS) and 10.3%
(REM) sleep
compared to those without the condition.

more rapid eye movement
Differences in sleep architecture between those
with and without diabetes have also been
investigated in the Sleep Heart Healthy Study
but detected different results [83]. Differences in
SWS between diabetic

volunteers diminished after adjustment, and

and non-diabetic

REM sleep accounted for a significantly reduced
proportion of total sleep time in those with
diabetes [83]. Tasali and colleagues attempted to
disentangle this relationship by suppressing
SWS for 3 consecutive nights using an acoustic
stimulus in nine healthy, young volunteers
[84]. SWS suppression was achieved and
resulted in significant reductions in insulin
sensitivity (~25%) and glucose tolerance
(~23%) compared to baseline. SWS is
considered to have a restorative effect; thus, a
reduction in this deep phase of sleep may
induce metabolic alterations that can promote
diabetes as well as other related comorbidities.
SWS declines with age and diabetes risk
increases with age; thus, age may mediate this
relationship, and future studies need to
investigate the strength of such associations in
older individuals as well as those with T2DM.

Mechanisms

There is now clear evidence linking sleep to the
onset and development of pre-diabetes and
T2DM.
involved is of great importance. It has been

Understanding the mechanisms

suggested that insufficient sleep and/or poor
quality sleep can result in oxidative stress as
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well as overactivation of the sympathetic
nervous system, and some have used heart rate
variability to support this notion [31]. Others
have shown that changes in the
appetite-regulating hormones leptin (related to
satiety) and ghrelin (related to hunger) have
been observed in response to short/insufficient
sleep duration [85, 86]. Disruption of the
regulation of these hormones from sleep loss
has also been linked to an increased appetite for
carbohydrate-dense foods [85, 86] and intake of
calories from sweet foods (snacks) [87]. Poor
dietary habits are well known to promote
T2DM; thus, the effects of sleep loss may
these
metabolic

contribute to unhealthy behaviors
Sleep
deprivation is associated with activation of the

hypothalamic

through disruption.

orexin (hypocretin)
[88-90].
(hypocretin) neurons are located in the lateral
hypothalamus and project throughout the
central nervous system and particularly to

neuropeptide system Orexin

areas important in wakefulness. Orexin

activation is associated with increased
sympathetic

increased cortisol and

nervous system activation,
suppressed growth
hormone secretion, which can all predispose
to hyperglycemia. Orexin receptor antagonists
are currently under investigation for use in
insomnia, and it would be of interest to study
their impact on metabolism. The importance of
the central nervous system in the regulation of
further

highlighted by the use of bromocriptine in the

glucose metabolism has been
treatment of T2DM. Bromocriptine is a
dopamine D2 receptor agonist, primarily used
in the
Bromocriptine has received United States Food

treatment of prolactinoma.
and Drug administration approval for the
treatment of T2DM. Its use is supported by
more recent randomized controlled trials
(RCTs) in those with diabetes [91, 92]. The

precise site of action of bromocriptine in
regulating metabolism is unknown, but
dopamine acts at several levels including the
hypothalamus and pineal gland [93], which are
key areas for the regulation of circadian
rhythms, sleep and metabolism. The timing of
bromocriptine administration in glycemic
regulation appears to be important with
greater
endogenous dopaminergic drive is at its peak.

A side effect of bromocriptine for diabetes

effects in the morning when

treatment is sleepiness. Dopamine receptor
antagonism by anti-psychotic drugs has been
observed to be associated with obesity and
subsequent insulin resistance and diabetes.

Key Limitations

Some observational data highlight a U-shaped
relationship between sleep and diabetes
prevalence, and while much of the focus has
been on short sleepers, long sleep may also be
problematic and has shown a greater effect size
compared to short sleep in a recent
studies [94].
Previously, conclusions suggested that long
possibly have wunderlying health

issue(s) that result in sleep lengthening. Of

meta-analysis of prospective

sleepers

course, this may not always be true; thus, there
is a need to identify general cut points for when
sleep may become harmful, given that sleep
extension studies are underway in an attempt to
address metabolic dysregulation. Definitions of
short/long sleep are also inconsistent, meaning
comparisons can be difficult and conclusions
misconstrued. There is a need for reliable cut
points that can be applied across all studies to
ensure uniformity.

Most of the sleep-diabetes evidence is
completely
homogeneous. Of particular concern is the

consistent although not

lack of prospective evidence for sleep quality
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and  diabetes Other
prospective discrepancies exist from a powerful
study [27]
association between sleep and
diabetes. potential
explanations for this including (1) the
possibility of OSA as a hidden confounder, an

onset/progression.
32-year follow-up finding no
incident

There are some

unrecognized sleep disorder at the time the
study commenced; (2) lack of an objective sleep
measure; (3) gender differences, given that the
study was only conducted in women; (4) dietary
habits were not considered.

Sleep perceptions are subject to several
biases; thus, objective measures in natural
environments are preferable. Participants
should be regularly monitored with validated
wrist  actigraphy to sleep-wake

information is captured. However, that said,

ensure

sleep is not static, making it incredibly difficult
to capture an accurate picture and study its
effects. Furthermore, there is no gold-standard
measure of dietary intake, an important
confounder of the sleep-diabetes relationship.
Capturing full and accurate information about
food selection, micro-/macronutrients, portion
sizes, methods of cooking, unknown
ingredients in takeaway food and more is near
impossible to reliably measure in a natural
setting.

compromise but require specific programs to

Food diaries are a reasonable
analyze the data, are time consuming to
administer, complete and analyze, may not be
completed, are subjective and can therefore
introduce bias. An improved alternative that is
accurate is urgently needed, given that energy
intake/selection = can  dramatically  alter
metabolic regulation and hormone release.
whether
prospective or
experimental, has not ascertained or adjusted
for the combination of the three factors known

The majority of the work,

observational, case-control,

to promote diabetes (energy intake, energy

expenditure, familial history). This is a major
limitation in the existing literature, and
consistency across studies of all potential
confounding factors is urgently needed.
Studies performed
usually adjust for diabetes
medications. Details of medications are usually

in diabetes patients

duration and

omitted, but specifications (name, frequency,
dosage and timings) are likely to be important,
particularly for medications shown to alter
further
possibility of psychological conditions, which
adjusted for in
sleep-diabetes studies. However, medication

sleep. One consideration is the

have sometimes been

related to these conditions, which can
influence sleep-wake behaviors, as well as the
condition itself should be considered.

Commonly used antidepressants, for example,
have significant effects on sleep architecture.
The impact of medications on the sleep-diabetes
relationship can also be complex. For example,
pregabalin enhances sleep by itself and also
reduced sleep disturbance secondary to a
reduction in neuropathic pain in diabetes [95].
In some patients, however, significant weight
gain may occur with pregabalin and other
similar drugs, which increases insulin resistance.

Finally, the majority of the experimental
work has been conducted in young, healthy
individuals, with more data available in men,
given the complexities of the female menstrual
cycle that may interfere with metabolic
hormone measurements. While findings from
these types highlighted
important and provided a
foundation for our understanding, detailed
work is required in those with T2DM as well as

of studies have
information

older individuals so that we can establish
potential interventions for improving glucose
control in those with long-standing disease or
reverse the condition in those with new
diagnoses.
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Future Directions

Interventions that target those with T2DM, as
should
incorporate sleep education in addition to

well as prevention of its onset,

energy balance advice. Emerging evidence
from a small study of healthy volunteers
randomized to sleep extension for 40 days/
nights or control has provided preliminary but
promising results for insulin
sensitivity with as little as one additional hour

of time in bed [96]. Future studies should repeat

improving

this sleep extension/improvement of sleep
quality in those with T2DM for further
comprehensive
understanding. After all, making healthy food

examination and
selection, controlling portion sizes and
achieving the recommended minimum 30 min
of daily activity require much dedication and
willpower. Conversely, compliance with staying
in bed for an extra hour may be easier and costs
the individual little, but may greatly benefit his
or her metabolic profile and could prevent the
onset and/or progression of diabetes.

The majority of sleep studies in relation to
diabetes mellitus have focused on T2DM. There
is limited information on those with type 1
diabetes, although recent preliminary evidence
has emerged suggesting that multiple sleep
parameters as well as sleep staging play a role
in glycemic control in this population [97, 98].
Sleep may play a key role in other types of
diabetes mellitus although little is known about
this, warranting further investigation.

CONCLUSION

The current evidence suggests that sleep is
instrumental to metabolic regulation and

disease management. Disruption of sleep

homeostasis, which is comprised of multiple
components (quantity, quality, timing and
architecture), can result in adverse metabolic
consequences. The effect of disruption of one
component has been established, but disruption
of multiple sleep features may worsen diabetes
although this further
investigation. Sleep imbalance may promote

control, requires
diabetes onset or hinder glucose control and
insulin sensitivity in those with pre-existing
diabetes. Cross-sectional studies as well as
prospective  cohort demonstrate
reasonably consistent findings and implicate a
role for sleep in the management of diabetes.

Furthermore, acute sleep disruption under

findings

controlled laboratory conditions has shown
significant and negative effects upon glucose
control in healthy adults. Exposure to persistent
sleep imbalance is likely to be detrimental to
metabolic health/disease status. While the
evidence is

convincing, a number of

limitations are present, including the
possibility of uncontrolled major confounders,
Further

investigation in ‘at risk’ populations as well as

which restrict robust conclusions.

those with T2DM is needed incorporating
objective and prospective sleep measures. It
may be possible to prevent incident diabetes
and smooth the current epidemic by improving
diabetes control through sleep optimization in

combination with other lifestyle advice,
particularly in newly diagnosed cases.
Promoting the importance of sleep for

improving diabetes control/management is
unlikely  to
consequences. Awareness of an additional, and
easily modifiable, lifestyle behavior among

result in any harmful

healthcare professionals is therefore

recommended.
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