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A B S T R A C T   

The biosynthetic potential of actinobacteria to produce novel natural products is still regarded as immense. In 
this paper, we correlated a cryptic biosynthetic gene cluster to chemical molecules by genome mining and 
chemical analyses, leading to the discovery of a new group of catecholate-hydroxamate siderophores, noba-
chelins, from Nocardiopsis baichengensis DSM 44845. Nobachelin biosynthesis genes are conserved in several 
bacteria from the family Nocardiopsidaceae. Structurally, nobachelins feature fatty-acylated hydroxy-ornithine 
and a rare chlorinated catecholate group. Intriguingly, nobachelins rescued Caenorhabditis elegans from Pseu-
domonas aeruginosa-mediated killing.   

1. Introduction 

The rapid accumulation of genome sequence information has 
revealed the vast microbial biosynthetic potential and metabolic di-
versity that has yet to be fully explored, where actinobacteria are 
especially rich in structurally diverse and biologically active natural 
products [1]. However, the traditional methods of natural product dis-
covery from actinobacteria are time-consuming and labor-intensive and 
often result in the rediscovery of known compounds [2]. Therefore, 
more efficient approaches are needed. One strategy is to combine bio-
informatics and mass spectrometry to rapidly identify and characterize 
novel natural products from genomic and metabolomic data [3,4]. 
Automated bioinformatics platforms can compare biosynthetic gene 
clusters (BGCs) in genomic sequence data to those of previously 
sequenced microorganisms [5]. This enables the rapid estimation of the 
biosynthetic potential for natural products and the inference of their 
structures from biosynthetic principles. The mass spectrometry-based 
techniques can detect and analyze the metabolites produced by 

actinobacteria under different conditions and match them with the 
predicted structures [4,6,7]. This integrated approach can significantly 
accelerate the discovery and characterization of novel natural products. 

Siderophores are an important class of natural products with a high 
affinity for binding and solubilizing ferric iron (Fe3+), essential for many 
bacterial species’ growth, survival, and pathogenesis [8]. Siderophores 
offer promising opportunities for medical applications [9], such as the 
treatment of iron overload [10], delivery of antibiotics in infection 
therapy [11], molecular imaging of infection [12], and as inhibitors of 
metalloenzymes for the treatment of cancer [13]. Moreover, side-
rophores have recently been shown to inhibit the Pseudomonas aerugi-
nosa-mediated killing of Caenorhabditis elegans, even though they have 
no direct bactericidal activity [14]. This finding highlights the exciting 
potential of siderophores in anti-infection research by modulating 
host-pathogen interactions. Therefore, the nonbactericidal siderophores 
could be an attractive target for discovering anti-infectives with novel 
mode-of-action that may help to prevent the rapid emergence of resis-
tance frequently observed with bactericidal antibiotics. Siderophores 
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are generally classified according to the functional group for the metal 
binding, including catecholate, phenolate, hydroxamate, and carbox-
ylate compounds [15]. However, siderophores are also often found to 
contain different functional groups in the same molecule [16]. Side-
rophore biosynthetic pathways are diverse, mainly distinguished as 
nonribosomal peptide synthetases (NRPSs) or NRPS-independent en-
zymes [17], making them readily identifiable by bioinformatic predic-
tion. Moreover, recent genome mining efforts have shown that 
siderophore BGCs are widely distributed in Actinobacteria [14,18]. 

So far, many siderophores have been identified from various bacte-
rial species [19]. To find uncharacterized siderophores with potential 
bioactivity, we focused on rare Actinobacteria in the absence of previous 
reports of siderophores, such as strains from the genus Nocardiopsis, 
which has been recognized to be a prolific source of bioactive natural 
products [20–22]. The in-silico genome mining highlighted one putative 
siderophore BGC from the strain Nocardiopsis baichengensis DSM 44845. 
Herein, we report the isolation, structure elucidation, biosynthesis 
proposal, and anti-infection bioactivity of nobachelins A-C (1–3), a new 
hybrid-type catecholate-hydroxamate siderophore containing fatty 
acyl-modified hydroxy-ornithine and a rare 4-chloro-2,3-dihydroxy--
benzoic acid (CDB). 

2. Materials and methods 

2.1. General experimental procedures 

One-dimensional (1D) and two-dimensional (2D) nuclear magnetic 
resonance (NMR) spectra were recorded on a 500 MHz (megahertz) 
Avance III (UltraShield) spectrometer or a 700 MHz Avance III (Ascend) 
spectrometer, each equipped with a Helium-cooled CryoProbe (TCI). All 
observed chemical shift values (δ) are given in ppm (parts per million) 
and coupling constant values (J) in Hz. The spectra were recorded in 
DMSO-d6 (dimethyl sulfoxide-d6), and chemical shifts of the solvent 
signal at δH 2.50 ppm and δC 39.5 ppm were used as reference signals for 
spectra calibration. High-resolution electrospray ionization mass spec-
troscopy (HRESIMS) spectra were measured on a maXis4G high reso-
lution TOF (time of flight) mass spectrometer (Bruker Daltonics) 
coupled with a Dionex high-performance liquid chromatography 
(HPLC) (Thermo Scientific). 

2.2. Fermentation and isolation of compounds 1–3 

The strain N. baichengensis DSM 44845 was obtained from the DSMZ 
strain collection (Braunschweig, Germany) and its genome sequence 
was retrieved from GenBank (GCA_000341205.1). The strain was 
maintained on the ISP4 agar plate (10 g/L soluble starch, 1 g/L dipo-
tassium phosphate, 1 g/L magnesium sulfate, 1 g/L sodium chloride, 2 
g/L ammonium sulfate, 2 g/L calcium carbonate, 1 mg/L ferrous sulfate, 
1 mg/L manganous chloride, 1 mg/L zinc sulfate, 20 g/L agar). For 
fermentation, fresh spores were collected from the agar plate and 
inoculated into TSB medium (17 g/L tryptone, 3 g/L soytone, 2.5 g/L 
glucose, 5 g/L sodium chloride, 2.5 g/L dipotassium hydrogen phos-
phate) and incubated at 30 ◦C with shaking. The resulting seed culture 
was used to inoculate fresh M1 medium (10 g/L glucose, 7 g/L peptone, 
3 g/L meat extract, 3 g/L sodium chloride and 2 g/L dipotassium 
hydrogen phosphate, pH 7.0). The fermentation was continued for 8 
days at 30 ◦C while shaking at 120 rpm. 

To the fermentation culture (2L), XAD-16 resin was added and 
shaken for 2 h. The XAD-16 resin was extracted with acetone three 
times, and solvents were then combined and dried under reduced 
pressure to give the crude extract. The resulting crude extract was first 
dispersed in water and then partitioned using ethyl acetate three times. 
The organic phase was combined and dried in vacuum and subsequently 
fractioned using Sephadex LH20 column (GE Healthcare), with meth-
anol as the mobile phase. Fractions were collected and pooled based on 
the LC-MS analysis. Further purification was performed using a Dionex 

Ultimate 3000 low pressure gradient system equipped with a Waters 
XSelect Peptide CSH C18 column (5 μm, 10 × 250 mm). Purification was 
carried out under the following HPLC conditions: solvent A, Milli-Q 
water (0.1% formic acid); solvent B, acetonitrile (0.1% formic acid); at 
45 ◦C with a flow rate of 5 mL/min. The gradient was 35% B to 50% B in 
20min. 1 was eluted at 11.08 min (3 mg), 2 was eluted at 14.60 min (9 
mg), and 3 was eluted at 18.19 min (4 mg). 

2.3. Marfey’s method 

Compound 2 was hydrolyzed in 6 N HCl (200 μL) at 110 ◦C for 1 h 
and then dried under nitrogen flow. The obtained hydrolysate was dis-
solved in H2O (110 μL), and the solution was split into two (50 μL each). 
To each aliquot, 20 μL 1 N NaHCO3 and 20 μL 1% Marfey’s reagent (one 
L-FDLA and the other D-FDLA) were added. The reaction mixture was 
incubated at 45 ◦C, 700 rpm for 2 h. The reaction solutions were 
neutralized with 2 N HCl (10 μL) and diluted with 300 μL acetonitrile. 
Standards were derivatized in the same fashion. Derivatives were 
centrifuged and analyzed by LC-MS. The condition used was as follows: 
ACQUITY BEH column (100 × 2.1 mm, 1.7 μm, 130 Å); flowrate at 0.6 
mL/min and column temperature at 45 ◦C; H2O (0.1% formic acid) as 
eluent A and acetonitrile (0.1% formic acid) as eluent B. 0–1 min: linear 
increase of eluent B from 5% to 10%; 1–15 min: linear increase of eluent 
B to 35%; 15–22 min: linear increase of eluent B to 55%; 15–22 min: 
linear increase of eluent B to 80%; The MS detection was performed in 
positive mode. Retention times of FDLA-derivatized amino acids are 
listed in Table S4. 

2.4. P. aeruginosa-C. elegans pathogenesis assay 

The P. aeruginosa-C. elegans liquid killing assay was performed as 
previously described [23–25]. Briefly, the sek-1 (km4) mutant animals at 
the late L4 larval stage were infected by P. aeruginosa PA14 and then 
incubated on agar plate. Tested compounds were added into the medium 
when preparing agar plates. Allow the worms to recover for a few hours, 
and then start the first time point, score the worms as dead or alive at 
different times. Survival rate = (Number of alive worms/Total worms) 
× 100. Assays were performed in quadruplicate; each biological repli-
cate contained 20 worms. 

3. Results and discussion 

3.1. Identification of a catechol-peptide siderophore gene cluster 

In-silico analysis of the genome of N. baichengensis DSM 44845 by 
antiSMASH identified one nonribosomal peptide synthetase (NRPS) 
gene cluster (nch) (Fig. S1, Table S1) [5]. Nch is mainly comprised of two 
NRPS encoding genes (nchG and nchH), a predicted 2,3-dihydroxyben-
zoate (2,3-DHB) recognizing stand-alone adenylation (A) domain 
encoding gene (nchC), a discrete peptidyl carrier protein (PCP) gene 
(nchF), as well as a 2,3-DHB formation cassette (nchABD), in line with 
the general feature of aryl-capped type siderophore gene cluster [14, 
26]. We also found a lysine/ornithine N-monooxygenase (NchE) and a 
GCN5-related N-acetyltransferase (NchJ) encoding genes in nch that 
show homology to reported siderophore biosynthesis enzymes [27,28]. 
Combining the in-silico analysis, the backbone sequence of the product 
was predicted to be (2,3-DHB)-(Gly)-(Gly)-(-
Ser)-(Ser)-(δ-N-acyl-δ-N-hydroxy-ornithine (haOrn))/(δ-N-hydrox-
y-ornithine (hOrn))-(hOrn). However, no clear consensus prediction 
could be made about the substrate specificity of the first A domain in 
NchH (Fig. S1, Table S2). The predicted structure was used to query the 
CAS database (American Chemical Society). No hits with the same 
peptide sequence were found, suggesting the nch cluster might produce 
new siderophores. 
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3.2. HRMS analysis reveals the production of nobachelins 

To access the putative siderophores, we cultured N. baichengensis 
using the previously developed strategy [14], specifically by examining 
variations between media with and without the addition of iron. As 
expected, a panel of peaks observed in medium M1 was not found when 
supplemented with 100 μM FeCl3 (Fig. 1A) and were thus assumed to be 
the targeted siderophores. We applied Global Natural Product Social 
Molecular Networking (GNPS) [7] to the mass spectrometry data and 
found that the potential targets clustered together (Fig. 1B). The two 
most prominent mass peaks (1, 2) with m/z 839.406 [M + H]+ and 
873.392 [M + H]+ were further analyzed. The MS/MS data of 1 showed 
a distinct and evident fragmentation pattern (b2-b5 and y2-y5) consis-
tent with a DHB-Gly-Gly-Ser-Ser peptide sequence (Fig. 2, Fig. S6). A 
major MS/MS fragment ion (b5) with m/z 425.1306 [M + H]+ (calcd. 
425.1306) resulting from the loss of two C-terminal residues was 
observed, which could be associated with the pentapeptide ion of 
DHB-Gly-Gly-Ser-Ser. In addition, fragment ions corresponding to the 
sequential loss of two Ser residues and one Gly residue were readily 
detected (b2-b4), strongly indicating that 1 is the targeted compound. 
On the other hand, 2 exhibited a fragmentation pattern that was highly 
similar to that of 1. The major difference was the mass shift of +34 Da 
for the b ions (Fig. S6). Moreover, the HRMS spectrum of 2 showed a 
characteristic isotope pattern, with two peaks separated by 2 m/z units 
showing an intensity ratio of 3:1, indicating the presence of one chlorine 
atom (Fig. 1C). Furthermore, manual inspection revealed a mass peak 
(3) with m/z 887.3902 [M + H]+, which showed a fragmentation 
pattern that closely resembled that of 2 (Fig. S6). 

3.3. Structure elucidation of nobachelins 

Next, we sought to purify these compounds from scaled-up fermen-
tation to confirm their structures. After several rounds of purification, 
sufficient amounts of nobachelins were obtained for structure elucida-
tion by extensive NMR experiments, chemical degradation and 
derivatization. 

Nobachelin A (1) has a molecular formula of C37H58N8O14 deduced 
based on the ion mass at m/z 839.4141 [M + H]+ (calcd. for 839.4135), 
implying thirteen degrees of unsaturation. Careful interpretation of the 
1D and 2D NMR spectra revealed that 1 contains two glycine, two serine 
and two ornithine residues, and one 2,3-dihydroxybenzoate unit. In 
addition, one unexpected fatty acyl group, 8-methylnonanoate, was 
revealed by analysis of the NMR data (see Table 1). This acyl group was 
found attached to the δ-N of one ornithine residue, as evidenced by the 
HMBC (heteronuclear multiple bond correlation) correlations from H-5 
(δH 3.50, δH 3.40, haOrn5) and H-2′ (δH 2.32, haOrn5) to C-1′ (δC 173.0, 
haOrn5). On the other hand, the other ornithine was assigned as cyclo- 
δ-N-hydroxy-ornithine (chOrn6) based on the HMBC correlation from H- 
5 (δH 3.45, chOrn6) to C-1 (δC 164.7, chOrn6). Furthermore, 1 contained 
eight peptide bonds while only six α-amide protons were observed, 
together with the MS/MS data, indicating the δ-N-hydroxylation of the 
two ornithine residues. The presence of two hydroxamate groups was 
further corroborated by the 1H–15N HMBC correlations observed for 2 
(Table S3). Finally, the connectivity of 2,3-DHB and six amino acid 
residues was unambiguously determined according to the HMBC cor-
relations in accordance with the MS/MS data. 

Nobachelin B (2) and C (3) were assigned a molecular formula of 
C37H57ClN8O14 and C38H59ClN8O14, respectively. The occurrence of 
chlorine in 2 and 3 was recognizable by the characteristic isotope 
pattern (Fig. 1). The 1H and 13C NMR spectra of 2 were almost identical 

Fig. 1. LC-MS analysis of the culture extract of N. baichengensis DSM 44845. (A) Base peak chromatogram from LC-MS analysis of culture extracts in M1 medium or 
ferric-supplemented M1 medium. (B) Selected molecular network generated from GNPS. (C) HRMS chromatogram of nobachelins A-C (1–3). 2–3 showed charac-
teristic isotope patterns indicating the presence of chlorine. 
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to that of 1, except for the H-5 (δH 6.92, 2,3-DHB) in 1 which was absent 
in 2. Together with the mass spectrometric analysis mentioned above, 
we were able to deduce that the only difference between 2 and 1 was the 
chlorination of the 2,3-DHB unit at C-5, resulting in 4-chloro-2,3-dihy-
droxybenzoate (CDB) moiety. The molecular mass of 3 is increased by 
CH2 relative to 2, along with the changes of chemical shifts and splitting 
pattern of methyl groups, suggesting 2 and 3 differed in the fatty acyl 
groups. Detailed analysis of the NMR data showed that 3 contains an 8- 
methyldecanoate moiety attached to the δ-N-haOrn5 instead of the 8- 
methylnonanoate unit in 1 and 2 (Fig. S8). Thus, the planar structures 
of nobachelins A-C (1–3) were characterized (Fig. 2). To the best of our 
knowledge, CDB is rarely found in natural products, and only a few 
halogenated siderophores have been reported, such as chlorocatechelins 
A-B from Streptomyces sp. and teredinibactins from Teredinibacter turn-
erae [29,30]. 

In addition, several minor products with different acyl groups 
attached to the δ-N-haOrn5 were detected through LC-MS analysis 
(Fig. S9). Although we did not obtain sufficient amounts of these minor 
products for NMR analysis, their structures were deduced based on the 
MS/MS fragmentation data (Fig. S10). 

The absolute configuration of the amino acids was determined using 
Marfey’s method. The nobachelin B acid hydrolysate was derivatized 
using FDLA. The resulting reaction mixture was subjected to LC-MS 
analysis and compared with commercially available amino acid stan-
dards, which revealed the presence of L-Orn, L-Ser, and D-Ser in noba-
chelin B (Fig. S5). Considering the presence of one epimerization (E) 
domain in module 4 of NchH, the stereochemical configuration of the D- 
Ser in nobachelins was further corroborated. 

Fig. 2. Structure of nobachelins. (A) MS/MS fragmentation data observed for 1. 
(B) Key NMR correlations for 1 (COSY correlations in red and HMBC correla-
tions as blue arrows). (C) Chemical structures of 1–3. Abbreviations of moieties 
are shown: dihydroxybenzoate (DHB), 4-chloro-dihydroxybenzoate (CDB), 
glycine (Gly), serine (Ser), δ-N-acyl-δ-N-hydroxy-ornithine (haOrn), cyclo-δ-N- 
hydroxy-ornithine (chOrn). 

Table 1 
NMR spectroscopic data of nobachelin A-C (1–3) (DMSO-d6).  

no. 1  2  3   

δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC 

DHB/ 
CDB       

1  169.8  169.8  169.7 
2  115.2  113.3  113.2 
3  149.3  150.9  150.8 
4  146.2  142.5  142.6 
5 6.92 (1H, 

dd, 7.9, 
1.4) 

118.9  123.8  123.6 

6 6.69 (1H, t, 
7.9) 

118.1 6.89 (1H, d, 
8.8) 

118.8 6.88 (1H, 
brs) 

118.7 

7 7.31 (1H, 
dd, 7.9, 
1.4) 

117.7 7.37 (1H, d, 
8.8) 

117.8 7.34 (1H, d, 
8.8) 

117.8 

Gly1       
1  168.9  168.7  168.7 
2 3.94 (1H, d, 

5.8) 
42.3 3.95 (1H, d, 

5.8) 
42.2 3.94 (1H, d, 

5.4) 
42.2 

NH 9.08 (1H, t, 
5.8)  

9.22 (1H, t, 
5.8)  

9.23 (1H, 
brs)  

Gly2       
1  169.0  168.9  168.9 
2 3.81 (1H, d, 

5.6) 
42.1 3.81 (1H, d, 

5.8) 
42.1 3.81 (1H, d, 

5.7) 
42.0 

NH 8.31 (1H, t, 
5.6)  

8.33 (1H, t, 
5.8)  

8.31 (1H, t, 
5.6)  

Ser3       
1  170.1  170.1  170.1 
2 4.32 (1H, 

dd, 13.0, 
5.5) 

55.2 4.32 (1H, 
dd, 13.0, 
5.5) 

55.3 4.32 (1H, 
dd, 13.0, 
5.6) 

55.2 

3 3.58 (2H, 
ma) 

61.7 3.58 (2H, 
ma) 

61.7 3.58 (2H, 
ma) 

61.7 

NH 8.06 (1H, d, 
7.4)  

8.06 (1H, d, 
7.5)  

8.05 (1H, d, 
7.5)  

Ser4       
1  169.7  169.7  169.6 
2 4.28 (1H, 

ma) 
55.4 4.27 (1H, 

ma) 
55.4 4.28 (1H, 

ma) 
55.3 

3 3.58 (2H, 
ma) 

61.7 3.58 (2H, 
ma) 

61.6 3.58 (2H, 
ma) 

61.6 

NH 7.97 (1H, d, 
7.8)  

7.96 (1H, d, 
7.5)  

7.94 (1H, d, 
7.8)  

haOrn5       
1  171.2  171.2  171.2 
2 4.25 (1H, 

ma) 
52.3 4.25 (1H, 

ma) 
52.3 4.26 (1H, 

ma) 
52.2 

3 1.68 (1H, 
m) 

29.4 1.68 (1H, 
m) 

29.3 1.68 (1H, 
m) 

29.3 

1.48 (1H, 
m) 

1.48 (1H, 
m) 

1.48 (1H, 
m) 

4 1.56 (1H, 
m) 

22.9 1.56 (1H, 
m) 

22.8 1.56 (1H, 
m) 

22.8 

1.50 (1H, 
m) 

1.50 (1H, 
m) 

1.51 (1H, 
m) 

5 3.50 (1H, 
m) 

46.8 3.50 (1H, 
m) 

46.8 3.50 (1H, 
m) 

46.8 

3.40 (1H, 
m) 

3.40 (1H, 
m) 

3.40 (1H, 
m) 

NH 7.95 (1H, d, 
8.5)  

7.93 (1H, d, 
8.3)  

7.92 (1H, d, 
8.3)  

1′  173.0  172.9  172.9 
2′ 2.32 (2H, t, 

7.3) 
31.8 2.32 (2H, t, 

7.6) 
31.7 2.32 (2H, t, 

7.3) 
31.7 

3′ 1.46 (2H, 
m) 

24.3 1.45 (2H, 
m) 

24.2 1.46 (2H, 
m) 

24.2 

4′ 1.24 (2H, 
m) 

29.0 1.24 (2H, 
m) 

28.9 1.24 (2H, 
m) 

28.9 

5′ 1.24 (2H, 
m) 

29.3 1.23 (2H, 
m) 

29.2 1.24 (2H, 
m) 

29.3 

6′ 1.23 (2H, 
m) 

26.8 1.23 (2H, 
m) 

26.7 1.25 (2H, 
m) 

26.4 

(continued on next page) 
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3.4. The biosynthesis proposal of nobachelins 

In-silico analysis of the nch BGC and characterization of nobachelins 
allowed us to propose a biosynthesis pathway for the catecholate- 
peptide siderophores in N. baichengensis DSM 44845 (Fig. 3). The 2,3- 
DHB building block, synthesized from chorismate (by NchA, NchB, 
NchD), is activated by the stand-alone A domain protein, NchC and 
loaded onto the free-standing aryl carrier protein NchF. The resulting 
2,3-DHB-S-NchF species serves as the starter unit for the N-terminal C 
domain of the NRPS NchG to initiate the peptidyl chain elongation. The 
peptide backbone is synthesized in a textbook colinear fashion via 
another five rounds of condensation by NchG and NchH to incorporate 
respective amino acid building blocks [31]. The ornithine N-mono-
oxygenase NchE catalyzes the formation of the nonproteogenic amino 
acid hOrn [28,32]. The thioesterase (TE) domain in NchH releases the 
final product via an intramolecular nucleophilic substitution reaction 
[33]. NchJ showed 38.4% identity to Rv1347c, the N-acyl transferase 
responsible for transferring long-chain acyl moieties onto the myco-
bactin scaffold [34,35], suggesting its N-acylation function in the 
biosynthesis of nobachelins. In addition, the observation of nobachelin 
congeners with different acyl modifications implied substrate pro-
miscuity of NchJ in the acylation step. 

Intriguingly, the chlorination of the 2,3-DHB unit remains elusive 
because the nch cluster lacks halogenase genes. Comparative analysis of 
the nch cluster from different microorganisms revealed further insights, 
as we performed genome mining using the stand-alone A domain protein 
(NchC) as the bait, identifying highly homologous gene clusters in the 
genomes of various strains from the family Nocardiopsidaceae (Fig. S11). 
One gene encoding a putative tryptophan halogenase was found within 
the three nch-like clusters from the genomes of Spinactinospora 

Table 1 (continued ) 

no. 1  2  3  

7′ 1.13 (2H, 
m) 

38.5 1.13 (2H, 
m) 

38.5 1.26 (1H, 
m) 

36.0 

1.05 (1H, 
m) 

8′ 1.48 (1H, 
m) 

27.5 1.48 (1H, 
m) 

27.4 1.28 (1H, 
m) 

33.7 

9′ 0.84 (3H, d, 
6.6) 

22.6 0.84 (3H, d, 
6.6) 

22.6 1.29 (1H, 
m) 

28.9 

1.09 (1H, 
m) 

10′ 0.84 (3H, d, 
6.6) 

22.6 0.84 (3H, d, 
6.6) 

22.6 0.82 (3H, t, 
7.3) 

19.1 

11′     0.81 (3H, d, 
6.4) 

11.2 

chOrn6       
1  164.7  164.7  164.7 
2 4.29 (1H, 

ma) 
49.5 4.29 (1H, 

ma) 
49.5 4.30 (1H, 

ma) 
49.5 

3 1.87 (1H, 
m) 

27.6 1.87 (1H, 
m) 

27.5 1.88 (1H, 
m) 

27.5 

1.65 (1H, 
m) 

1.65 (1H, 
m) 

1.64 (1H, 
m) 

4 1.89 (1H, 
m) 

20.4 1.90 (1H, 
m) 

20.3 1.90 (1H, 
m) 

20.3 

1.84 (1H, 
m) 

1.85 (1H, 
m) 

1.85 (1H, 
m) 

5 3.45 (1H, 
m) 

51.3 3.46 (1H, 
m) 

51.2 3.45 (1H, 
m) 

51.2 

NH 8.06 (1H, d, 
8.5)  

8.04 (1H, d, 
8.6)  

8.03 (1H, d, 
7.5)   

a signal overlapped. 

Fig. 3. Proposed biosynthesis pathway for the catecholate-peptide siderophore nobachelin in Nocardiopsis baichengensis DSM 44845. The 2,3-DHB was synthesized by 
NchABD, adenylated by NchD, and then transferred to NchF. The hexapeptide chain, synthesized by NchG and NchH, follows an orthodox colinear extension model. 
The acylation of Orn was catalyzed by the acyltransferase NchJ. 
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alkalitolerans [36], Streptomonospora litoralis [37] and Streptomonospora 
salina [38], respectively (Fig. S11, Table S5). Although absent in the nch 
cluster, a homologous gene encoding a putative tryptophan halogenase 
was located within another gene cluster of the strain N. baichengensis 
DSM 44845, suggesting the possible cross-talk effect for the formation of 
chlorinated nobachelins. Indeed, the utilization of distantly located 
enzymes is not an unusual phenomenon in siderophore biosynthesis 
[39–41]. Furthermore, HHpred analysis [42] of this halogenase revealed 
that it is homologous to a FAD-dependent halogenase, CndH, which 
introduces a chlorine atom to the tyrosyl moiety of the chondrochloren 
precursor [43,44]. Although we were able to detect both chlorinated 
and nonchlorinated nobachelins, it is difficult to determine the exact 
timing of chlorination during the nobachelin biosynthesis since trypto-
phan halogenases have been reported to chlorinate either the precursors 
[45,46] or the released compounds [47]. It is noteworthy that the 
stand-alone A domain in amychelin biosynthesis has been reported to 
accept both the chlorinated and nonchlorinated salicylate [14], which 
sheds light on the possibility of direct decoration of 2,3-DHB as the 
initial precursor. 

3.5. Bioactivity assays 

We investigated the anti-pathogenicity activity of isolated noba-
chelins using the C. elegans-P. aeruginosa liquid killing assay as reported 
[23]. The results showed a C. elegans rescuing effect of nobachelin A (1) 
and C (3) with EC50 values of 18.0 μg/mL and 8.5 μg/mL, respectively. 
Nobachelin B (2) also exhibited a positive effect, but its EC50 value was 
not determined (Fig. 4, Fig. S12). Moreover, 1–3 did neither exhibit 
cytotoxicity nor a direct antimicrobial activity against a panel of tested 
cell lines and bacterial and fungal strains (Table S6). These results 
provide additional support for the significant role of siderophores as 
potential anti-infectives that target host-pathogen interaction, as pro-
posed previously [14]. 

4. Conclusions 

Here, we employed a genome-guided and mass spectrometry- 
assisted strategy to identify a new group of siderophores, nobachelins, 
from N. baichengensis DSM 44845. Subsequent purification and structure 
elucidation revealed that nobachelins B–C feature a rare 4-chloro-2,3- 
dihydroxybenzoate moiety. Interestingly, while halogenase genes can 
be located within several nch-like clusters, a homologous gene was only 
found distant from the nch cluster in the genome of N. baichengensis DSM 
44845. The functional interactions among BGCs located at distant lo-
cations are often observed, and such crosstalk might be essential for 
producing authentic products. However, bioinformatic analysis may not 
always accurately capture this interplay, highlighting the need for a 
holistic approach to natural product research. 

Although no direct antimicrobial activity was observed from in vitro 
assays, nobachelins A-C (1–3) significantly improved the survival rate of 
C. elegans infected by P. aeruginosa PA14, suggesting some anti-virulence 
potential of nobachelins. This finding aligns with the previous report 
[14], corroborating the potential of siderophores in anti-infective dis-
covery. It was also demonstrated that the iron-chelating ability of 
siderophores is not the sole determinant contributing to the C. elegan-
s-protecting activity in the pathogenesis assay, as the Fe-chelated 
chloroamychelin is inactive while Fe-chelated fluoroamychelin I still 
exhibited activity [14]. Additionally, the Fe-free fluoroamychelin I 
showed better activity than that of chlorinated derivatives. Although the 
intricate mode of action behind these compounds remains obscure, our 
study paved the way for the optimization of nobachelins for the devel-
opment of new treatments for P. aeruginosa infections. 
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respectively. Four biological replicates were performed. Error bars represent SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (Student’s t-test). 
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