ELSEVIER

Contents lists available at ScienceDirect

Biofilm

journal homepage: www.sciencedirect.com/journal/biofilm

Environmental magnesium ion affects global gene expression, motility, biofilm formation and virulence of *Vibrio parahaemolyticus*

Xue Li^{a,1}, Xiaobai Zhang^{b,1}, Miaomiao Zhang^a, Xi Luo^a, Tingting Zhang^a, Xianjin Liu^{c,**}, Renfei Lu^{a,***}, Yiquan Zhang^{a,*}

^a Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China

^b Department of Respiratory Medicine, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China

^c Department of Infection, Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong, 226006, Jiangsu, China

ARTICLE INFO

Keywords: Vibrio parahaemolyticus Mg²⁺ Motility Biofilm Virulence Gene expression

ABSTRACT

Vibrio parahaemolyticus is widely distributed in marine ecosystems. Magnesium ion (Mg^{2+}) is the second most abundant metal cation in seawater, and plays important roles in the growth and gene expression of *V. parahaemolyticus*, but lacks the detailed mechanisms. In this study, the RNA sequencing data demonstrated that a total of 1494 genes was significantly regulated by Mg^{2+} . The majority of the genes associated with lateral flagella, exopolysaccharide, type III secretion system 2, type VI secretion system (T6SS) 1, T6SS2, and thermostable direct hemolysin were downregulated. A total of 18 genes that may be involved in c-di-GMP metabolism and more than 80 genes encoding putative regulators were also significantly and differentially expressed in response to Mg^{2+} , indicating that the adaptation process to Mg^{2+} stress may be strictly regulated by complex regulatory networks. In addition, Mg^{2+} promoted the proliferative speed, swimming motility and cell adhesion of *V. parahaemolyticus*, but inhibited the swarming motility, biofilm formation, and c-di-GMP production. However, Mg^{2+} had no effect on the production of capsular polysaccharide and cytoxicity against HeLa cells. Therefore, Mg^{2+} had a comprehensive impact on the physiology and gene expression of *V. parahaemolyticus*.

1. Introduction

Vibrio parahaemolyticus, a seafood borne pathogen, commonly causes acute gastroenteritis in human [1]. Pathogenicity of V. parahaemolyticus is correlated with thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH), both of which possess hemolytic activity, but only TDH induces β -type hemolysis on Wagatsuma agar, termed as Kanagawa phenomenon (KP) [2]. However, TDH and TRH are not the only virulence factors of V. parahaemolyticus. Other factors such as type III secretion system (T3SS), type VI secretion system (T6SS), capsular polysaccharide (CPS) and extracellular proteases are also involved in the pathogenesis of *V*. parahaemolyticus [3,4]. Pathogenic V. parahaemolyticus isolates harbor two sets of genes for T3SS on chromosomes, termed as T3SS1 and T3SS2, respectively [5]. T3SS1 has cytotoxicity and lethal activity, while T3SS2 mainly possesses enterotoxicity [6]. V. parahaemolyticus also possesses two kinds of T6SS gene clusters, T6SS1 and T6SS2, respectively [7]. T6SS1 has anti-bacterial activity, whereas T6SS2 can help bacteria adhere to host cells [7,8].

V. parahaemolyticus is capable of accumulating on the surface and seafood to form biofilms, which are extracellular polymeric substance matrix-enclosed bacterial communities that endow bacteria with high resistance to adverse conditions [9]. Biofilm formation by *V. parahaemolyticus* depends upon some specific structures including flagella, type IV pili and exopolysaccharide (EPS) and is strictly regulated by regulatory networks consist of regulators, quorum sensing (QS) and cycle di-GMP (c-di-GMP) signaling [10]. Flagella promote bacteria to move toward and along the surface, and thus are required for the initial stages of biofilm formation [10]. *V. parahaemolyticus* has a single polar flagellum for swimming in liquid and multiple lateral flagella for swarming over surfaces [11]. Loss of polar flagellum prevents *V. parahaemolyticus* to form mature biofilms [12]. Type VI pili promote the interactions between bacterial cells and the surface, and thus are

¹ These authors contributed equally to this work.

Received 2 February 2024; Received in revised form 25 March 2024; Accepted 26 March 2024 Available online 28 March 2024

^{*} Corresponding author.

^{**} Corresponding author.

^{***} Corresponding author.

E-mail addresses: lxj009650@sina.com (X. Liu), rainman78@163.com (R. Lu), zhangyiquanq@163.com (Y. Zhang).

https://doi.org/10.1016/j.bioflm.2024.100194

^{2590-2075/© 2024} The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

required for biofilm formation [10]. Two kinds of type IV pili, termed as mannose-sensitive haemagglutinin (MSHA) and chitin-regulated pili (ChiRP), are produced by *V. parahaemolyticus* [13]. MSHA is beneficial for bacteria to adhere to the surface, while ChiRP can promote bacterial agglutination [14]. EPS is a major fraction of the biofilm matrix [15]. In *V. parahaemolyticus*, the *cpsA-K* and *scvA-O* gene clusters are involved in the biosynthesis of EPS [16]. Loss of *cps* or *scv* genes decreased the amount of biofilms formed by *V. parahaemolyticus* [16].

The second messenger c-di-GMP is widely used by bacteria to control bacterial behaviors including motility, biofilm formation, and virulence [17]. Elevated c-di-GMP level enhances biofilm formation, but decreases bacterial motility and virulence factor production [17]. c-di-GMP is made from GTP by the GGDEF domain of diguanylate cyclase (DGC) and degraded by the EAL or HD-GYP domain of phosphodiesterase (PDE) [17]. Previously, a total of 62 genes were predicted to be involved in the metabolism of c-di-GMP in *V. parahaemolyticus* [18]. Of these, *scrC* and *scrG* encode GGDEF-EAL-domain containing proteins, which function as PDEs to degrade c-di-GMP [19,20]. In addition, *scrO*, *gefA*, *scrJ* and *scrL* encode GGDEF-domain containing proteins, while *lafV*, *tpdA* and *vopY* encode EAL-domain containing proteins, and these genes are all involved in controlling motility and/or biofilm formation [21–25].

V. parahaemolyticus is a Gram-negative halophilic bacterium that widely distributed in marine ecosystems and can thrive in sodium chloride concentrations between 0.5 and 10%. The average content of Na⁺ in seawater is about 450 mM, making it the most abundant metal cation [26]. The second most abundant metal cation is magnesium ion (Mg^{2+}) , which can reach an average of approximately 53 mM [26]. Mg^{2+} has a wide range of impact on marine microorganisms. For example, Mg^{2+} supports the growth of V. alginolyticus at concentrations between 0.3 and 2.1%, and the swarming motility at temperatures between 20 and 28 °C [27]. In addition, Mg²⁺ promotes migration of V. fischeri by enhancing flagellation and decreasing c-di-GMP production [28-30]. Moreover, Mg²⁺ has a marked beneficial effect on the recovery of heat-injured V. parahaemolyticus that increases uptake of Mg²⁺ for stability and repair [31,32]. Mg²⁺ promotes the secretion of proteins including T3SS1 effectors in V. parahaemolyticus [33,34]. Mg²⁺ only can also promote the expression level of GbpA, an important colonization factor of V. parahaemolyticus [35]. Therefore, Mg²⁺ plays an important role in the growth and gene expression of V. parahaemolyticus. However, the detailed roles of Mg^{2+} in gene expression and bacterial behaviors are still unknown in V. parahaemolyticus. In this work, we aimed to analyze the effects of Mg^{2+} on the motility, biofilm formation, virulence, and gene expression of V. parahaemolyticus.

2. Materials and methods

2.1. Bacterial strain and growth conditions

V. parahaemolyticus RIMD2210633 was used throughout the work [13]. Unless stated otherwise, *V. parahaemolyticus* was grown in 2.5% (w/v) Bacto heart infusion (HI) broth (BD Biosciences, USA) at 37 °C with aeration. An overnight cell culture was diluted 50-fold into 5 ml HI broth and then cultured at 37 °C to $OD_{600} = 1.4$ (defined here as bacterial seed). The bacterial seed was diluted 1000-fold into 5 ml HI broth supplemented with various concentrations of MgCl₂ (0, 3.5, 35 and 55 mM) for the further growth.

2.2. Assessment of the impact of Mg^{2+} on growth

The bacterial seed was diluted 1000-fold into 10 ml HI broth containing 0, 3.5, 35 or 55 mM MgCl₂ in a bacteria-free plastic centrifuge tube, mixed thoroughly, and then divided into a 96 well cell culture plate. Each well contained 200 μ l of bacterial suspension. Twelve biological replicates were set for each concentration. Growth curves were created using a microbial growth curve analyzer MGC-200 (Ningbo Scientz Biotechnology Co. Ltd., China) by monitoring the OD₆₀₀ values of each culture at 20 min intervals. Target temperature and oscillation frequency were 37 $^\circ C$ and 800, respectively.

2.3. RNA extraction and RNA sequencing (RNA-seq)

The bacterial seed was diluted 1:1000 into 5 ml HI broth or HI broth supplemented with 55 mM MgCl₂, and then incubated at 37 °C with aeration to an OD₆₀₀ value of 1.5. Bacterial cells were harvested for the preparation of total RNA using TRIzol Reagent (Invitrogen, USA). RNA concentration was determined by a Nanodrop 2000. RNA integrity was evaluated by agarose gel electrophoresis. The rRNA removal and mRNA enrichment were performed using an Illumina/Ribo-ZeroTM rRNA Removal Kit (bacteria) (Illumina, USA). RNA-related manipulations including total RNA concentration were performed in Sangon Biotech (Shanghai, China).

cDNA sequencing was performed on an Illumina Hiseq platform [36]. Raw reads filtration and clean reads alignment were performed as previously described [37]. Gene expression in bacterial cells grown in HI broth supplemented with 55 mM MgCl₂ (test group) were compared with that in bacterial cells grown in HI broth (reference group). DESeq (v1.12.4) was applied to identify the significantly differentially expressed genes (DEGs) [38], which were filtered as those with pValue \leq 0.01 and absolute FoldChange \geq 2. DEGs were also analyzed by the Gene Ontology (GO) enrichment, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and the Cluster of Orthologous Groups of proteins (COG) database [39–41].

2.4. Quantitative real-time PCR (qPCR)

V. parahaemolyticus RIMD2210633 was grown in HI broth or HI broth supplemented with 55 mM MgCl₂ at 37 °C with aeration to an OD₆₀₀ value of 1.5. Bacterial cells were harvested for the extraction of total RNA. cDNA was generated from 0.8 µg of total RNA using a FastKing First Strand cDNA Synthesis Kit (Tiangen Biotech, China). The qPCR assay was performed using a LightCycler 480 (Roche, Switzerland) together with SYBR Green master mix (Tiangen Biotech, China). Relative mRNA level of each target gene was detected by using the classic $2^{-\Delta\Delta Ct}$ method with 16S rRNA gene as the internal control [42]. Primers used in this study are listed in Table S1.

2.5. Crystal violet (CV) staining assay

CV staining assay was performed similarly as previously described [43–47]. Briefly, the bacterial seed was diluted 50-fold into 2 ml HI broth or HI broth supplemented with 55 mM Mg^{2+} in a 24-well cell culture plate, and then incubated at 30 °C with shaking at 150 rpm for 12 h. Planktonic cells were collected for detection of OD₆₀₀ values. Attached biofilms were washed with deionized water, and then stained with 0.1% CV. Bound CV was dissolved with 2.5 ml of 20% acetic acid, followed by determination of OD₅₇₀ values. Relative biofilm was expressed as OD_{570}/OD_{600} .

2.6. Colony morphology assay

Colony morphology assay was performed similarly as previously described [44]. Briefly, 2 μ l of bacterial seed was taken to spot on an HI plate or HI plate supplemented with 55 mM Mg²⁺, and then statically incubated at 37 °C for 24 h.

2.7. Quantification of intracellular c-di-GMP level

Intracellular c-di-GMP level was similarly quantified as previously described [44,48]. Briefly, the bacterial seed was diluted 1000-fold into 5 ml HI broth supplemented with 0 and 55 mM MgCl₂, respectively, and then incubated at 37 °C with aeration to an OD₆₀₀ value of 1.5. Bacterial cells were harvested from 1 ml bacterial culture and then resuspended in

2 ml ice-cold phosphate buffered saline (PBS). The bacterial suspension was incubated at 100 °C for 5 min, sonicated for 15 min (power 100%, frequency 37 kHz) in the ice-water bath condition, and then centrifuged at 12000 rpm and 4 °C for 5 min. Total proteins and c-di-GMP levels in the supernatant were determined using a Pierce BCA Protein Assay kit (ThermoFisher Scientific, USA) and c-di-GMP Enzyme-linked Immunosorbent Assay (ELISA) Kit (Mskbio, China), respectively. The intracellular c-di-GMP concentration was expressed as pmol/g protein.

2.8. Motility assays

The swimming and swarming motility assays were similarly performed as previously described [49,50]. Briefly, 2 µl of the bacterial seed were inoculated into a semi-solid HI plate containing 0.5% (w/v) Difco Noble agar (BD Biosciences, USA) for swimming motility or spotted on a HI plate containing 2.0% (w/v) Difco noble agar for swarming motility. The HI plate was supplemented with 0 or 55 mM MgCl₂. The diameters of swimming and swarming areas were measured after incubation at 37 °C.

2.9. Detection of CPS phase variation

CPS phase variation was similarly detected as previously described [44]. Briefly, a small portion of bacterial seeds was streaked onto a HI plate or HI plate supplemented with 55 mM MgCl₂, followed by incubated at 37 $^{\circ}$ C for 24 h.

2.10. Cytotoxicity against HeLa cells

Cytotoxicity against HeLa cells was performed similarly as previously described [51]. Briefly, the bacterial seed was diluted 1000-fold into 5 ml HI broth supplemented with 0 and 55 mM MgCl₂, respectively, and then incubated at 37 °C with aeration to an OD₆₀₀ value of 1.5. Bacterial cells were harvested by centrifuge, washed three times with PBS, and then serially diluted with the pre-warmed Dulbecco's modified Eagle's medium (DMEM) lacking phenol red for colony forming unit (CFU) detection and infection. HeLa cells were infected with 10^6 CFU of *V. parahaemolyticus* for 3 h at a multiplicity of infection (MOI) of 2.5. The release of lactate dehydrogenase (LDH) was measured by using a CytoTox 96® Non-Radioactive Cytotoxicity Assay kit (Promega, USA).

2.11. Adhesion to HeLa cells

Adhesion assay was performed similarly as previously described [44]. Briefly, HeLa cell monolayers were maintained in DMEM supplemented with 10% fetal bovine serum (FBS, Invitrogen) at 37 °C with 5% CO₂. The bacterial seed was diluted 1000-fold into 5 ml HI broth supplemented with 0 and 55 mM MgCl₂, respectively, and incubated at 37 °C with aeration to an OD₆₀₀ value of 1.5. Bacterial cells were collected, washed, re-suspended in DMEM, and then used to infect the cell monolayers at a MOI of 10. Bacterial cells were also added to empty wells to determine the input CFU of *V. parahaemolyticus*. After incubation for 90 min, the cell monolayers were washed three times with PBS and lysed with 1% Triton X-100. The lysates and input bacteria were serially diluted 10-fold and counted on LB plates. Percent adherence was calculated as adhered CFU/input CFU.

2.12. KP test

KP test was performed similarly as previously described [52]. Briefly, 5 μ l of bacterial seed were inoculated onto Wagatsuma agar (CHRO-Magar, China) containing 5% rabbit red blood cells (RBCs) or 5% RBCs together with 55 mM MgCl₂. The diameters of the β -hemolysin zone were measured after incubation at 25 °C for 24 h.

2.13. Experimental replicates and statistical methods

Each experiment except for RNA-seq was performed at least two independent times with at least three biological replicates in each time. The numeral results were expressed as the mean \pm standard deviation (SD). Paired Student's *t*-tests or two-way ANOVA with Tukey's post hoc corrections for multiple comparisons was applied to calculate statistical significance, with a *P* value less than 0.05 considered significant.

3. Results and discussion

3.1. Mg^{2+} enhanced the proliferative speed of V. parahaemolyticus

V. parahaemolyticus can survive in 300 mM Mg²⁺, a condition which is toxic to many other microorganisms [33]. However, the effects of low levels of Mg^{2+} on the growth of V. parahaemolyticus have not been investigated previously. In this work, the growth curves of V. parahaemolyticus in HI broth supplemented with 0, 3.5, 35 and 55 mM $MgCl_2$ were measured, respectively, to assess whether Mg^{2+} has some effects on the bacterial growth. As shown in Fig. 1, the addition of Mg^{2+} significantly increased the proliferative speed of V. parahaemolyticus in HI broth (P < 0.05). The higher the molar concentration of Mg²⁺ was, the faster the proliferative speed was. In addition, Mg²⁺ was also able to shorten the growth adaptation period of V. parahaemolyticus. However, it must be noticed that the data for the growth analysis was based the measurement of OD₆₀₀ values, which may not accurately reflect the alive cell count. A previous study showed that Mg²⁺ was able to maintain the stability and repair of membrane and/or ribosome of V. parahaemolyticus [32]. Therefore, we might conclusion that Mg^{2+} could promote the proliferative speed of V. parahaemolyticus. Due to the average Mg²⁺ content in seawater being about 53 mM [26], bacteria were cultured under growth conditions of 0 and 55 mM Mg^{2+} , and harvested at mid-log phase (OD₆₀₀ equals to approximately 1.5 when grown in a test tube) for the following experiments.

3.2. Mg^{2+} affected global gene expression of V. parahaemolyticus

The gene expression profile of *V. parahaemolyticus* grown in HI broth supplemented with 55 mM Mg^{2+} (test) was compared with that grown in HI broth (reference) by RNA-seq to investigate the expression of genes affected by Mg^{2+} . The raw data of RNA-seq were deposited in the online

0.5 0.0 0 2 3 4 5 6 7 8 9 10 1 Hours Fig. 1. Growth curves of V. parahaemolyticus. V. parahaemolyticus RIMD2210633 was cultured with HI broth supplemented with different molar concentrations of MgCl2 in a 96 well cell culture plate, and then grown at 37 °C with shaking at 800 rpm in a microbial growth curve analyzer MGC-200. The growth curves were created by monitoring the OD₆₀₀ values of each culture at 20 min intervals. Experiments were performed at least two times with twelve replicates per trial for each condition. *, P < 0.05.

term

Biofilm 7 (2024) 100194

database Sequence Read Archive (accession number: PRJNA1035152). There are 1494 genes in total that were significantly and differentially expressed in response to Mg^{2+} (Fig. 2a), accounting for more than 30.9% of total genes of V. parahaemolyticus RIMD 2210633 [13]. Of these, 868 genes were up-regulated and 626 genes were down-regulated (Fig. 2a). The KEGG enrichment results showed that 23 DEGs were involved in organismal systems, 454 DEGs in metabolism, 70 DEGs in genetic information processing, 160 DEGs in environmental information processing, and 89 DEGs in cellular processes (Fig. 2b). The GO term results showed that a total of 395 DEGs were enriched in biological process (206 DEGs), molecular function (84 DEGs) and cellular component (105 DEGs) (Fig. 2c). The results of COG enrichment showed that DEGs were divided into 20 functional categories, mainly including function unknown, general function prediction only, amino acid transport and metabolism, transcription, and signal transduction mechanisms (Fig. 2d). The detailed information about DEGs is listed in Table S2.

3.3. Validation of RNA-seq results by qPCR

qPCR was employed to validate the results of RNA-seq. A total of 26 genes were selected as the target genes (Table 1). As shown in Fig. 3, the expression trends of all the target genes confirmed by qPCR were

consistent with those clarified by RNA-seq, suggesting that the RNA-seq results were reliable.

3.4. DEGs involved in motility

There are approximately 50 polar and 40 lateral flagellar genes in V. parahaemolyticus chromosomes 1 and 2, respectively [11]. The transcriptomic data in this work showed that transcription of 19 polar flagellar genes was differentially regulated by the additional Mg^{2+} , including 13 upregulated and 6 downregulated genes (Table 1). In addition, 20 lateral flagellar genes were also significantly and differentially expressed in response to Mg²⁺, but only two of them (VPA1540 and VPA1546) were upregulated, while the others were downregulated (Table 1). The swimming and swarming motility were further investigated to detect whether Mg²⁺-dependent differential expression of flagellar genes affect the motor capacities of V. parahaemolyticus. As shown in Fig. 4, addition of Mg^{2+} significantly increased the swimming motility but decreased the swarming motility of V. parahaemolyticus compared with the conditions without additional Mg²⁺ at all time points tested except for the first hour's growth (P < 0.05). Although expressing trends of flagellar genes not fully matched with motility-related phenotypes, the data presented here indicated that Mg²⁺ promoted

Fig. 2. Mg²⁺ affected global gene expression of V. parahaemolyticus RIMD2210633. a) Volcano plot. Red, green and black points represent the up-regulated, down-regulated and no-differential expressed genes, respectively. b) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment for the pathways of DEGs involved. c) Enrichment of gene ontology (GO) term. d) Cluster of Orthologous Groups of proteins (COG). The number on the top of each bar in b, c and d indicates the number of enriched DEGs. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 1

Gene ID	Name	Fold	pValue	Products			change		
1: 0100		change			VPA0269	flgG	0.2620	7.41E-08	flagellar basal-body rod
c-di-GMP VP0376		2.1344	0.004801546	EAL domain-containing	VPA0270	flgH	0.3546	0.000178328	flagellar basal body L-ring
VP1289		2.1861	2.09E-05	GGDEF domain-containing protein	VPA0271		0.4428	0.000105137	flagellar basal body P-ring protein FlgI
VP1423		2.1534	4.81E-09	HD-GYP domain-containing	VPA0272 VPA0273	flgK	0.4806 0.3282	0.001117866 7.50E-11	rod-binding protein flagellar hook-associated
VP1768		2.4097	8.24E-08	EAL domain-containing	VPA0274	flgL	0.4612	7.22E-07	protein FlgK flagellar hook-associated
VP1881	tdpA	7.3293	3.15E-16	EAL domain-containing	VPA0275	J-8-	0.4693	2.46E-10	protein FlgL flagellin
VP2366		2.5829	8.18E-07	sensor domain-containing	VPA1532	fliJ fliI	0.2382	4.90E-05 2.96E-15	flagellar export protein FliJ
VP2446		2.0804	9.12E-10	bifunctional diguanylate	VDA1534	fiH	0 2049	3 395-10	FliI flagellar assembly protein FliH
VPA0202	gefA	2.3941	1.38E-10	GGDEF domain-containing	VPA1535	Juii	0.3093	9.50E-12	flagellar motor switch protein
VPA0360	scrM	3.1038	1.11E-07	GGDEF domain-containing	VPA1540		3.7989	0.001433368	flagellar motor switch protein
VPA0737		0.4175	9.87E-08	EAL domain-containing	VPA1546	flhA	2.8816	2.99E-14	flagellar biosynthesis protein
VPA0818		3.2724	1.78E-17	EAL domain-containing	VPA1550	fliD	0.5724	0.015457347	flagellar filament capping
VPA0927		2 1620	2 77F-07	diguanylate cyclase	VPA1551	fliS	0.4815	0.009563735	flagellar export chaperone Flis
VPA1104		2.1720	9.15E-12	EAL domain-containing protein	VPA1553	J	0.4708	7.03E-05	flagellar hook-length control protein FliK
VPA1324	vop Y	0.0111	4.67E-12	EAL domain-containing protein	VPA1555	lafS	0.4711	0.002745437	lateral flagellar system RNA polymerase sigma factor LafS
VPA1429		3.9877	1.31E-11	EAL domain-containing protein	CPS VP0216		2.1553	2.06E-12	capsule biosynthesis GfcC
VPA1457		2.1180	9.28E-05	GGDEF domain-containing	VP0217		2.6809	1.37E-15	family protein YjbF family lipoprotein
VPA1511	scrC	0.3978	2.55E-25	bifunctional diguanylate	VP0220		0.4688	5.12E-36	SLBB domain-containing protein
VPA1547	lafV	4.9611	5.20E-35	EAL domain-containing protein	EPS VP1462	scvL	0.4283	0.000255339	chain-length determining
Polar flage	llum			•					protein
VP0770	flgN	2.0972	1.02E-10	flagellar export chaperone	VP1464	scvJ	0.3847	8.15E-05	O-antigen ligase family protein
VP0771	flgM	2.7996	1.95E-14	FlgN flagellar biosynthesis anti-	VP1465	scvI	0.3512	1.55E-05	lipopolysaccharide biosynthesis protein
				sigma factor FlgM	VP1466	scvH	0.2622	5.74E-07	glycosyltransferase family 4
VP0773	flaH	2.2715	7.74E-14 2.01E-05	chemotaxis protein CheV flagellar basal body Laring	VPA1403	cnsA	0 1401	5.32E-16	protein undecaprenyl-phosphate
VD0783	Juli	0.4845	6.67E.06	protein FlgH flagellar basal body B ring	VPA1404	cnsB	0.0700	4 92E-25	glucose phosphotransferase
VD0784	fal	0.4045	2.255.09	protein FlgI	VPA1405	cnsC	0.0874	4 96F-12	protein
VF0704	J185	0.4243	2.552-00	peptidoglycan hydrolase FlgJ	100	upud muD	0.10(1	1.005.10	export family protein
VP0786	flgL	0.2722	1.74E-17	flagellar hook-associated protein FlgL	VPA1406	cpsD	0.1361	1.38E-19	tyrosine autokinase
VP0790		7.9988	4.04E-103	flagellin	VPA1407	cpsE	0.1120	1.09E-16	putative capsular
VP0791		6.2601	7.03E-13	flagellin					family protein
VP2230 VP2236	flhB	2.5554 0.4606	8.70E-11 5.39E-12	flagellar biosynthesis protein	VPA1408	cpsF	0.1806	2.05E-15	glycosyltransferase
				FlhB	VPA1409	cpsG	0.1575	7.79E-12	O-antigen ligase family protein
VP2237	fliR	0.4531	1.44E-19	flagellar biosynthetic protein FliR	VPA1410	cpsH	0.2847	1.13E-08	putative capsular polysaccharide synthesis
VP2254	fliS	3.7418	3.03E-24	flagellar export chaperone FliS					family protein
VP2256	fliD	3.0864	9.49E-27	flagellar filament capping protein FliD	VPA1411 VPA1412	cpsI cpsJ	0.3166 0.3063	1.74E-11 1.56E-09	glycosyltransferase oligosaccharide flippase family
VP2257	flaG	4.1666	6.62E-22	flagellar protein FlaG					protein
VP2258		6.8022	9.85E-43	flagellin	VPA1413	cpsK	0.3171	0.000623289	VanZ family protein
VP2259		7.1433	5.16E-67	flagellin	T3SS1	_			
VP2261		3.9356	1.11E-23	flagellin	VP1656	vopD	0.4882	2.66E-16	type III secretion system
VP2811		6.0992	1.45E-46	tetratricopeptide repeat protein	VP1657	vopB	0.4328	9.53E-26	translocon subunit VopD type III secretion system
Lateral flag	gella				TO 2022				translocon subunit VopB
VPA0266	flgD	0.2705	1.97E-07	flagellar hook assembly protein FlgD	T3SS2 VPA1321	vopC	0.4083	1.06E-13	T3SS2 effector GTPase-
VPA0267	flgE	0.2780	1.09E-13	flagellar hook protein FlgE	10.100-		0.4557	0.650.00	activating deamidase VopC
VPA0268		0.2538	3.28E-10	flagellar basal body rod protein	VPA1322		0.4576	2.65E-09	nypothetical protein
				FIGF	VPA132/	vopi	0.2/88	1.10E-07	1355 effector ADP-

Table 1 (continued)

Name

Fold

pValue

Products

Gene ID

hypothetical protein
T3SS effector ADP-
ribosyltransferase toxin VopT
hypothetical protein

VPA1328

0.1617

1.14E-06

Table 1 (continued)

Table 1 (continued)					Table 1 (continued)					
Gene ID	Name	Fold change	pValue	Products	Gene ID	Name	Fold change	pValue	Products	
VPA1329		0.0697	5.76E-23	conjugal transfer protein TraA	VP1402	tssB	0.3808	1.16E-11	type VI secretion system	
VPA1331		0.0957	8.31E-18	VPA1331 family putative T3SS effector					contractile sheath small subunit	
VPA1332	vtrA	2.7526	2.62E-08	type III secretion system transcriptional regulator VtrA	VP1403	tssC	0.4499	2.39E-16	type VI secretion system contractile sheath large	
VPA1334 VPA1335		0.2045 0.2520	2.02E-17 7.85E-10	hypothetical protein flagellar biosynthetic protein	VP1411		0.3367	1.35E-05	subunit FHA domain-containing	
VPA1336	vopZ	0.1798	1.88E-23	FliQ type III secretion system	VP1412	tssJ	0.1422	2.86E-05	protein type VI secretion system	
VPA1337		0.2637	6.23E-08	effector VopZ VPA1337 family putative T3SS effector	VP1413	tssK	0.1849	4.15E-17	type VI secretion system	
VPA1338		0.1669	3.53E-31	type III secretion system	VP1414	icmH	0.1483	6.56E-10	type IVB secretion system	
VPA1339		0.0731	4.01E-55	secretin N-terminal domain-	T6SS2		0.0444	1 100 10	1	
VPA1340		0.0124	2.17E-46	VPA1340 family putative T3SS	VPA1024 VPA1025		0.2664 0.4598	1.17E-15 2.41E-05	PAAR domain-containing	
VPA1341		0.0084	2.17E-30	hypothetical protein	VPA1027	hcp 2	0.2351	6.16E-27	type VI secretion system tube	
VPA1342		0.0080	6.75E-44	EscR/YscR/HrcR family type III secretion system export	VPA1028	tssH	0.4740	8.53E-14	protein Hcp type VI secretion system	
VPA1343		0.0185	6.19E-45	apparatus protein hypothetical protein	VPA1029	tssG	0.3195	1.33E-11	ATPase TssH type VI secretion system	
VPA1345	vonA	0.1035	8.34E-70	hypothetical protein	VDA1020	tecF	0.4058	5 11F 19	baseplate subunit TssG	
VDA1240	vopri	0.0077	E 17E 10	family effector VopA	VDA1021	tecE	0.2066	1.255.07	baseplate subunit TssF	
VPAI546	VUD	0.2245	5.17E-10	domain-containing protein	VPAI031	ISSE	0.2800	1.23E-07	baseplate subunit TssE	
VPA1349		0.0950	2.18E-46	FliM/FliN family flagellar motor C-terminal domain-	VPA1032		0.4209	3.68E-05	type VI secretion system accessory protein TagJ	
VPA1350		0.0840	7.34E-59	containing protein VPA1350 family putative T3SS effector	VPA1033	tssC	0.2607	7.88E-15	type VI secretion system contractile sheath large subunit	
VPA1351		0.0712	2.99E-66	VPA1351 family putative T3SS effector	VPA1034	tssC	0.2337	2.01E-16	type VI secretion system	
VPA1352		0.0996	2.80E-24	VPA1352 family putative T3SS effector	VPA1035	tssB	0.3139	5.53E-14	subunit type VI secretion system	
VPA1353 VPA1354		0.0726	5.73E-62 6.53E-37	OmpA family protein EscII/YscII/HrcII family type					contractile sheath small subunit	
VIIII001		0.0121	0.001 07	III secretion system export apparatus switch protein	VPA1036	tssA	0.1932	1.30E-32	type VI secretion system	
VPA1355		0.0542	3.01E-66	FHIPEP family type III secretion protein	VPA1037		0.1727	1.12E-22	protein phosphatase 2C domain-containing protein	
VPA1356		0.0324	2.10E-43	hypothetical protein	VPA1038	tagF	0.1150	1.74E-30	type VI secretion system-	
VPA1357		0.0948	4.81E-45	hypothetical protein	VDA1020	tecM	0.0575	2 90E 49	associated protein TagF	
VPA1358		0.08/7	7.30E-15 1.68E-19	hypothetical protein	VPA1039	ISSIVI	0.0575	2.89E-48	membrane subunit TssM	
VPA1360		0.0596	1.15E-33	hypothetical protein	VPA1040	tssL.	0.0334	1.20E-67	type VI secretion system	
VPA1361	vopD2	0.0612	1.19E-69	type III secretion system					protein TssL, long form	
VPA1362	vopB2	0.0203	2.50E-126	type III secretion system	VPA1041	tssK.	0.0369	5.27E-65	baseplate subunit TssK	
VPA1363		0.0265	4.73E-27	translocator protein VopB2 molecular chaperone	VPA1042	tssJ	0.0621	1.66E-36	type VI secretion system lipoprotein TssJ	
VPA1364		0.0365	1.06E-30	hypothetical protein	VPA1043	tagH	0.1915	8.00E-26	type VI secretion system-	
VPA1365		0.0355	9.56E-59	hypothetical protein					associated FHA domain protein	
VPA1366		0.0313	2.45E-37	hypothetical protein					TagH	
VPA1367		0.0182	2.28E-77	type III secretion protein	VPA1044		0.1124	6.54E-29	serine/threonine-protein	
VPA1368		0.0106	3.78E-61	hypothetical protein					kinase	
VPA1369		0.3862	1.95E-10	hypothetical protein	Putative r	egulators				
VPA1370	vopL	0.0687	4.51E-75	type III secretion system	VP0072	asnC	4.0687	2.25E-25	transcriptional regulator AsnC	
TDH				effector VopL	VP0247	rraA	3.0138	1.78E-20	ribonuclease E activity regulator BraA	
VPA1314	tdh2	0.0959	4.66E-129	thermostable direct hemolysin TDH	VP0252	cytR	3.9133	1.01E-11	DNA-binding transcriptional regulator CytR	
T6SS1 VP1393	hcp 1	0.4367	3.02E-11	Hcp family type VI secretion	VP0289		2.6271	5.52E-08	Crp/Fnr family transcriptional regulator	
VP1398		0.4718	3.42E-09	system effector DUF2169 domain-containing	VP0324 VP0355	argR	2.9194 2.1992	5.82E-21 0.000236745	transcriptional regulator ArgR GntR family transcriptional	
VP1399		0.4426	3.55E-08	protein hypothetical protein	VP0358	scrO	3.3804	9.33E-08	regulator DeoR family transcriptional	
VP1400		0.4289	8.36E-05	protein kinase family protein	100.000		0.0554	0.0000000000000000000000000000000000000	regulator	
VP1401	tssA	0.2/30	5.02E-19	type vi secretion system protein TssA	VP0403 VP0475		2.0556	0.000937852 2.27E-09	containing protein	
								0, 0,	,	

(continued on next page)

regulator

VPA0303

VPA0358

VPA0359

2.0666

3.4696

2.8044

8.37E-07

4.96E-06

0.000286264

Tał

able 1 (continued)						Table 1 (continued)					
Gene ID	Name	Fold change	pValue	Products	Gene ID	Name	Fold change	pValue	Products		
VP0553 VP0595	trpR iscR	0.4319 0.3124	5.77E-13 2.03E-21	<i>trp</i> operon repressor Fe—S cluster assembly	VPA0376		2.0061	0.002389784	LysR family transcriptional regulator		
VP0635		2.1355	4.42E-06	transcriptional regulator IscR	VPA0381		2.0732	0.000752165	AraC family transcriptional regulator		
VP0713		2 1210	2 24E-06	regulator	VPA0387		2.0932	0.000938405	LysR family transcriptional		
VD0022	forV	2.1219	2.242-00	domain-containing protein	VPA0497		4.5187	2.12E-06	winged helix-turn-helix		
VP0033	JUA	2.3/13	3.23E-06	transcriptional regulator FcrX	VPA0507		0.2998	0.00450362	helix-turn-helix transcriptional		
VP0838	seqA	2.1114	2.12E-09	regulator SeqA	VPA0519		2.0168	0.000373655	LysR family transcriptional		
VP1101	cysB	10.4660	3.31E-86	HTH-type transcriptional regulator CysB	VPA0602		2.4069	0.000602175	regulator LysR family transcriptional		
VP1104	lrp	2.4327	3.98E-07	leucine-responsive transcriptional regulator Lrp	VPA0641		2.6863	7.96E-15	regulator LysR family transcriptional		
VP1202		4.5168	2.98E-06	response regulator					regulator		
VP1212		0.2359	3.69E-63	response regulator transcription factor	VPA0662	cueR	2.2624	2.05E-06	Cu(I)-responsive transcriptional regulator		
VP1244		2.8668	1.14E-14	response regulator	VPA0675	torS	2.0955	2.65E-07	TMAO reductase system sensor		
VP1328		3.4624	4.36E-18	GntR family transcriptional regulator					histidine kinase/response regulator TorS		
VP1376 VP1379		5.2689 2.1925	1.18E-20 2.94E-05	response regulator LysE family translocator	VPA0717		0.3710	3.79E-09	LysR family transcriptional regulator		
VP1482 VP1502		2.0011 3.9330	1.76E-08 1.30E-29	response regulator sigma-54 dependent	VPA0734		2.6364	3.55E-07	LysR family transcriptional regulator		
VP1649		2.2445	0 000928068	transcriptional regulator GntR family transcriptional	VPA0804		2.0492	1.45E-05	XRE family transcriptional regulator		
VD1763		2 4739	0.835.11	regulator MarP family transcriptional	VPA0910		0.2782	1.68E-05	helix-turn-helix transcriptional		
VD1770	mark D	2.47.50	2.545.00	regulator	VPA0938		2.4216	0.000174609	AraC family transcriptional		
VP1//8	риик	2.2900	5.54E-09	regulator PuuR	VPA0961		5.7693	6.36E-08	LysR family transcriptional		
VP1962		2.6280	6.00E-13	crp/Fnr family transcriptional	VDA0064	ubnA	2 6727	1 52E 05	regulator		
VP1993		0.3317	2.28E-23	helix-turn-helix domain-	VPA0988	rnk	0.3422	1.28E-12	nucleoside diphosphate kinase		
VD2000		3 4881	3 15F-08	response regulator	VPA1052		3 0187	1 70F-09	TetB/AcrB family		
VP2266		5.8838	1.14E-12	helix-turn-helix domain-	V1/11032		5.0107	1.701-05	transcriptional regulator		
VP2402	ehaR	2 2454	4 375-09	containing protein	VPA1164		2.4047	0.003055969	helix-turn-helix transcriptional		
VP2402	ebgit	2.2434	7.25E-12	response regulator	VPA1195		2 6117	1 30F-15	response regulator		
VP2516	opaR	2.9274	0.000122252	transcriptional regulator OpaR	VPA1276		2.3720	3.77E-10	response regulator		
VP2546	csrA	2.2577	4.83E-08	carbon storage regulator CsrA	VPA1332	vtrA	2.7526	2.62E-08	type III secretion system		
VP2603		0.4863	3.34E-06	LysR family transcriptional	VPA1516		2,8429	0.000623385	transcriptional regulator VtrA		
VP2752	oxyR	2.7041	5.88E-19	DNA-binding transcriptional	VDA1580		2.0929	3 11E 06	transcription factor		
VP2777		2 1875	9 87F-08	transcriptional regulator	VIIII00		2.0020	5.111-00	regulator		
VP2808	nsrR	2.8367	1.47E-14	nitric oxide-sensing	VPA1592		3.3071	2.55E-21	AraC family transcriptional		
VP2836		3.3989	2.77E-24	TetR/AcrR family	VPA1607		2.2799	0.002286431	LysR family transcriptional		
VP2866		2.5429	6.47E-12	transcriptional egulator response regulator	VPA1623	malT	0.3062	2.72E-16	regulator HTH-type transcriptional		
VP2893	cadC	2.9844	5.56E-11	transcription factor lysine decarboxylation/	VPA1636		6.3637	9.70E-36	regulator MalT helix-turn-helix transcriptional		
				transport transcriptional activator CadC	VPA1665		2.7364	5.82E-11	regulator response regulator		
VP2941	fabR	2.1154	5.70E-08	HTH-type transcriptional repressor FabR	VPA1732		3.8065	2.81E-19	transcription factor response regulator		
VP2945	lexA	3.2597	4.58E-18	transcriptional repressor LexA					transcription factor		
VPA0034		2.2253	9.54E-06	GntR family transcriptional regulator							
VPA0091		6.0795	4.14E-10	Lrp/AsnC family transcriptional regulator	swimming	motil	ity whi	le inhibited	swarming motility of		
VPA0240	phnR	2.2712	5.72E-09	phosphonate utilization	v. paranae Previou	noiyticu. Is studie	s. es have s	hown that M	g ²⁺ affected flagellar gene		
VPA0290		2.1339	8.85E-06	LysR family transcriptional	expression	and mo	tility of V	<i>ibrio</i> species. Fo	or example, Mg ²⁺ supported		

ıe expression and motility of Vibrio species. For example, Mg²⁺ supported the swarming motility of V. alginolyticus at temperatures below 28 $^\circ \mathrm{C}$ [27]. In addition, Mg^{2+} induced the biosynthesis of flagella and motility of V. fischeri via the signaling pathway composed of two diguanylate cyclases, MifA and MifB, and also the sugar phosphotransferase system [29,53]. Mg^{2+} also promoted the motility of several other *Vibrio* species including V. splendidus, V. parahaemolyticus, and V. anguillarum [28]. The data presented here showed that Mg^{2+} not only affected the swimming

regulator

regulator

regulator YciT

DNA-binding transcriptional

helix-turn-helix transcriptional

LuxR C-terminal-related

transcriptional regulator

Fig. 3. Validation of RNA-seq by qPCR. The relative mRNA levels of each target gene were compared between 0 and 55 mM Mg²⁺. The expression level of 16S rRNA gene was used as the internal control.

Fig. 4. Regulation of swimming and swarming motility of *V. parahaemolyticus* by Mg^{2+} . Swimming (a) or swarming (b) motility of *V. parahaemolyticus* in different concentrations of Mg^{2+} were detected by measuring the diameters of swimming or swarming areas in semi-solid swimming or on swarming agar plates. The data at each time point are expressed as the mean \pm SD of three independent experiments with at least three replicates each. *, *P* < 0.05. ns, *P* > 0.05.

and swarming motility but also the gene expression of both two flagellar systems. Flagellar gene expression in *V. parahaemolyticus* is strictly regulated by various factors, including regulators such as ToxR [54], LafK [55], H-NS [56] and CalR [57], chemicals such as chloramphenicol [44] and L-arabinose [44], and different biological behavior processes such as biofilm formation [36] and EPS phase variation [44]. The resented data further enriched the regulatory networks of flagellar genes in *V. parahaemolyticus*.

3.5. Biofilm-related DEGs

Mg²⁺ plays a critical role in biofilm architecture of Pseudomonas mendocina and enhances biofilm formation by P. fluorescens and Listeria monocytogenes [58–60]. By contrast, Mg^{2+} decreases biofilm formation by Bacillus species by regulating matrix gene expression and EPS production [61,62]. In addition, Mg²⁺ significantly reduces the total biofilm biomass of Acidithiobacillus ferrooxidans in a dose-dependent manner [63]. Moreover, Mg²⁺ limitation increases aggregation, EPS production and biofilm formation by P. aeruginosa [64]. These observations motivated us to detect whether Mg²⁺ has regulatory effect on biofilm formation by V. parahaemolyticus. As demonstrated by the CV staining assay (Fig. 5a), the relative biofilm produced by V. parahaemolyticus grown under the condition with additional Mg²⁺ was significantly less than that grown under the condition without additional Mg^{2+} . The colony morphology assays further showed that V. parahaemolyticus formed wrinkled colonies on the HI plate but smooth colonies on the HI plate supplemented with 55 mM MgCl₂ (Fig. 5b). These results suggested that Mg^{2+} inhibits biofilm formation by *V. parahaemolyticus*.

EPS is a major component of the biofilm matrix [15]. The *cps* and *scv* gene loci are demonstrated to contribute to EPS production in *V. parahaemolyticus* [16]. In this work, the data showed that all the *cps* genes (*cpsA-K*) and four *scv* genes were significantly downregulated by Mg^{2+} (Table 1). Although both the *cps* and *scv* gene loci are involved in the synthesis of EPS and biofilm formation, but only the *cps* gene cluster affects the switching between wrinkled and smooth colony phenotype of *V. parahaemolyticus* [16,36], indicating that the *cps* gene cluster may contribute more to EPS synthesis.

The c-di-GMP signal can posttranscriptionally regulate cellular pathways such as biofilm formation, motility, and virulence gene expression. An increase in the concentration of c-di-GMP molecules in bacterial cells enhances biofilm formation, but inhibits motility and virulence factors production [17]. In this study, the data showed that the intracellular c-di-GMP level of V. parahaemolyticus grown in 55 mM Mg²⁺ was much lower than that of bacteria grown in HI broth only, suggesting that additional Mg²⁺ inhibited the production of c-di-GMP in V. parahaemolyticus (Fig. 6). Furthermore, a total of 18 genes that are probably involved in c-di-GMP metabolism were significantly and differentially expressed in response to Mg^{2+} stimulation (Table 1). Of these, 15 were upregulated including tdpA, gefA and lafV, and 3 were downregulated including vopY and scrC. Roles of ScrC [19], GefA [24], LafV [22], TpdA [23] and VopY [25] have been documented in literature, showing that they are involved in motility and/or biofilm formation. However, roles of the other 13 putative c-di-GMP-related genes in cellular pathways such as c-di-GMP metabolism, motility and biofilm

Fig. 5. Mg^{2+} **inhibited biofilm formation by** *V. parahaemolyticus*. Biofilm formation by *V. parahaemolyticus* were assessed by crystal violet staining (a) and colony morphology (b). Pictures are representative of three independent experiments with three replicates each. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Mg^{2+} decreased the intracellular c-di-GMP level of *V. parahaemolyticus*. *V. parahaemolyticus* was grown in HI broth containing 0 or 55 mM Mg^{2+} at 37 °C with shaking at 200 rpm in, and then harvested at an OD₆₀₀ value of 1.5. c-di-GMP was extracted by ultrasonication, and then was measured using a c-di-GMP Enzyme-linked Immunosorbent Assay (ELISA) Kit. Intracellular c-di-GMP level was expressed as pmol/g. The data are expressed as the mean \pm SD of three independent experiments with three replicates each.

formation are still completely unknown. Clarifying the roles of these genes will help us to understand the regulatory mechanisms of Mg^{2+} on c-di-GMP synthesis and biofilm formation of *V. parahaemolyticus*.

CPS contributes a negative role to biofilm formation in *Vibrio* species [10]. The RNA-seq data showed that the expression levels of 3 CPS-associated genes were significantly and differentially regulated by Mg^{2+} (Table 1). Two were upregulated (VP0216 and VP0217) and 1 was downregulated (VP0220). In addition, *V. parahaemolyticus* formed OP colonies on HI plates or HI plates containing 55 mM Mg^{2+} (Fig. 7), suggesting that Mg^{2+} had no regulatory effect on the production of CPS. *V. parahaemolyticus* undergoes phase variation between wrinkled and smooth colony phenotypes, and the wrinkled strain has stronger biofilm capacity than the smooth strain [36]. Chloramphenicol also has a negative effect on biofilm formation by *V. parahaemolyticus* [44]. However, neither the wrinkled and smooth colony variation nor chloramphenicol affects the CPS production of *V. parahaemolyticus* [36,44].

Fig. 7. Mg^{2+} did not affect CPS production of *V. parahaemolyticus*. *V. parahaemolyticus* was streaked onto a HI plate containing 0 or 55 mM Mg²⁺, and then incubated at 37 °C for 24 h. Pictures were representative of two independent experiments with three replicates each.

Fig. 8. Mg^{2+} enhanced the cell adherence activity of V. parahaemolyticus. The results were expressed as the mean \pm SD from six replicates. a) Cytotoxicity against HeLa cells. The cytotoxicity of V. parahaemolyticus against HeLa cells was evaluated in terms the release of LDH. b) Adherence to HeLa cells. The percent adherence was calculated as bacterial cells adhered/input bacterial cells.

These observations suggest that CPS may not be the main influencer of biofilm formation by *V. parahaemolyticus*.

3.6. DEGs involved in the key virulence factors

V. parahaemolyticus RIMD2210633 produces multiple virulence factors, including T3SS1 (VP1656-1702), T3SS2 (VPA1320-1370), TDH (VPA1314 and VPA1378), T6SS1 (VP1386-1420) and T6SS2 (VPA1024-1046) [13]. Expression of 2 T3SS1-associated genes were significantly downregulated by Mg^{2+} (Table 1). The T3SS1 gene cluster harbors 47 coding genes, and controlling two of them may not effectively affect the secretion system's function. T3SS1 is responsible for the cytotoxicity of *V. parahaemolyticus* against HeLa cells [6]. To further confirm whether Mg^{2+} affects the expression of T3SS1, the cytotoxicity of *V. parahaemolyticus* against HeLa cells was measured herein. As shown in Fig. 8a, the cytotoxicity ability of *V. parahaemolyticus* grown in the Mg^{2+} condition was similar to that grown in the normal condition, indicating that Mg^{2+} had no effect on the expression of T3SS1 genes.

In V. parahaemolyticus RIMD2210633, the T3SS2 gene locus and the two copies of tdh genes are assembled on an 80 kb pathogenicity island (Vp-PAI) within chromosome II [13]. Expression of Vp-PAI genes is strongly induced by bile and the two transcriptional regulators, VtrA and VtrB [65]. VtrA and VtrC constitute a co-component signal transduction system that senses and binds bile acids and then induces vtrB transcription and other Vp-PAI gene expression [66,67]. The data presented here showed that the expression of 42 T3SS2 genes including vtrA and *tdh2* was differentially regulated by Mg^{2+} (Table 1). However, *vtrA* was upregulated while the other genes were downregulated by Mg²⁺. This phenomenon is contradictory and difficult to explain, and the underlying molecular mechanism needs to be further investigated. The tdh2 gene is predominantly responsible for TDH activity in V. parahaemolyticus RIMD2210633 [2]. Therefore, the inhibition of tdh2 expression by Mg²⁺ motivated us to detect whether the ion affects the hemolytic activity of V. parahaemolyticus. Unfortunately, the Wagatsuma agar supplemented with 55 mM Mg^{2+} always spontaneously undergone hemolysis (data not shown), which was likely due to increased osmotic pressure in the agar caused by Mg^{2+} . Anyway, we were able to speculate that Mg^{2+} was very likely to inhibit the enterotoxicity and hemolytic activity of *V. parahaemolyticus*.

A total of 11 T6SS1 and 20 T6SS2 genes were downregulated by Mg^{2+} (Table 1), accounting for 31.4% (11/35) of the total T6SS1 genes and 87.0% (20/23) of the total T6SS2 genes, respectively. T6SS1 possesses anti-bacterial activity, while T6SS2 possesses cell adhesive activity [7,8]. We compared the differences in cell adherence of *V. parahaemolyticus* cultured under the conditions supplemented with 0 and 55 Mg²⁺ against HeLa cells. As shown in Fig. 8b, the adhesion rate of *V. parahaemolyticus* under the condition of 55 mM Mg²⁺ was approximately 10%, whereas the condition without Mg²⁺ was only about 4%. Therefore, Mg²⁺ induced the cell adherence of *V. parahaemolyticus*, which was independent of its regulation of T6SS2 expression. *V. parahaemolyticus* also express other adhesion factors, such as type IV pili and MAM-7 [4]. Further research is needed to determine whether these adhesion factors are related to Mg²⁺-mediated adherence against to HeLa cells.

3.7. DEGs encode putative regulators

A total of 83 genes encoding putative regulators were differentially regulated by Mg²⁺, including 73 upregulated genes and 10 down-regulated genes (Table 1). Of these, 3 DEGs (VPA0381, VPA0938, and VPA1592) encode AraC family transcriptional regulators; 4 DEGs (VP0355, VP1328, VP1649 and VPA0034) encode GntR family transcriptional regulators; 14 DEGs including VPA0961 encode LysR family transcriptional regulators; 1 DEG (VP1763) encodes MarR family transcriptional regulator; 2 DEGs (VP2836 and VPA1052) encode TetR/AcrR family transcriptional regulators. Proteins belong to these family are global regulators that control multiple cellular pathways.

The expression level of cysB (VP1101) was upregulated 10.4660-fold by Mg^{2+} . In V. fischeri, CysB was shown to be required for the growth on sulfur sources and cysteine [68]. VPA0961, which was shown to be significantly affected by Na⁺ concentration, L-arabinose and different stages of biofilm formation [44,44,69], was upregulated 5.7693-fold by Mg²⁺. The expression levels of opaR (VP2516), oxyR (VP2752), cadC (VP2893) and csrA (VP2546) were all upregulated more than 2-fold by Mg²⁺, suggesting that these regulators are likely be involved in adaptation to Mg^{2+} stress. OpaR is a master global regulator of QS that controls downstream gene transcription in response to changes in cell density [70]. Pathways regulated by OpaR include motility, biofilm formation and virulence gene expression [43,46,50,71]. OxyR, a redox-sensitive transcriptional regulator, is involved in oxidation resistance of V. parahaemolyticus, and also participates in the regulation of motility, biofilm formation and bacterial growth [72,73]. CadC regulates the transcription of more than 500 genes in the sub-lethal acidic conditions including the cadBA operon, which is involved in the acid tolerance response of V. parahaemolyticus [74]. CsrA promotes swarming but not swimming motility, and can regulates the carbon and nitrogen metabolism of V. alginolyticus [75]. Moreover, CsrA regulates 22% of the total genes of V. cholerae, including those involved in metabolism, iron uptake, and flagellar system [76]. In addition, iscR (VP0595) was downregulated 0.3124-fold by Mg²⁺. In V. vulnificus, IscR was shown to be a global regulator that contributes to the expression of various virulence and survival genes, and was directly upregulated by AphA [77–79]. However, the functions of most other putative regulators are still completely unknown, and more research should be performed in the future to elucidate their roles in regulating gene expression in V. parahaemolyticus.

3.8. Conclusions and outlook

In conclusion, this work demonstrated that ${Mg}^{2+}$ had a

comprehensive impact on the physiology and gene expression of V. parahaemolyticus. RNA-seq demonstrated that the expression of 1494 genes was significantly regulated by Mg²⁺, accounting for about 30.9% of total genes of V. parahaemolyticus RIMD 2210633. Of these, 868 were upregulated, and 626 were downregulated. The majority of the genes associated with lateral flagella, EPS, T3SS2, T6SS1, T6SS2, and TDH were downregulated by Mg^{2+} . A total of 18 genes that may be involved in c-di-GMP metabolism were significantly differentially expressed in response to Mg^{2+} . More than 80 genes encoding putative regulators were also significantly and differentially regulated by Mg²⁺, indicating that the adaptation process to Mg^{2+} stress may be strictly regulated by complex regulatory networks. In addition, Mg^{2+} promoted the growth, swimming motility and adhesion to HeLa cells of V. parahaemolyticus, but inhibited the swarming motility, biofilm formation, and c-di-GMP production. However, Mg²⁺ had no effect on CPS production and cytoxicity against HeLa cells. The data in this work were beneficial for us to understand the regulatory roles of Mg²⁺ in the growth, behaviors, and gene expression of V. parahaemolyticus. It should be noted that this work only investigated the effects of Mg²⁺ close to the average in seawater on the behaviors and gene expression of V. parahaemolyticus. However, Mg^{2+} concentration in seawater is fluctuating and constantly changing, with some areas below or above the average concentration in seawater. Therefore, it is worth to investigate whether lower and higher Mg²⁺ concentrations have different effects on V. parahaemolyticus. In addition, the RNA-seq data were unable to reflect the dynamic response of *V. parahaemolyticus* to Mg²⁺ stimulation, as only logarithmic bacterial samples were collected, and more research should be further performed to uncover the molecular mechanisms in response to Mg^{2+} stress. Moreover, Mg²⁺ is widely distributed in human bodies, but 99% is contained in bone and soft tissue [80]. Mg²⁺ balance is maintained by the intestine and kidneys [80], and the Mg^{2+} content in the intestine is greatly influenced by dietary composition. Therefore, the role of Mg²⁺ in the intestinal infection and pathogenesis of V. parahaemolyticus deserves further research.

CRediT authorship contribution statement

Xue Li: Writing – original draft, Investigation, Funding acquisition, Formal analysis. Xiaobai Zhang: Writing – original draft, Investigation, Formal analysis. Miaomiao Zhang: Investigation. Xi Luo: Investigation. Tingting Zhang: Investigation. Xianjin Liu: Writing – review & editing, Validation, Supervision, Resources, Formal analysis. Renfei Lu: Writing – review & editing, Validation, Supervision, Resources, Project administration, Methodology, Funding acquisition. Yiquan Zhang: Writing – review & editing, Writing – original draft, Validation, Supervision, Methodology, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The original data presented in the study are included in the article/ supplementary materials, further inquiries can be directed to the corresponding authors. The raw data of RNA-seq are deposited in the NCBI repository (accession number PRJNA1035152).

Acknowledgements

This work was supported by the Special Project on Clinical Medicine of Nantong University (2022JZ010) and the Research Project of Nantong Health Commission (QN2022044).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioflm.2024.100194.

References

- Li YJ, Yang YF, Zhou YJ, Zhang RH, Liu CW, Liu H, et al. Estimating the burden of foodborne gastroenteritis due to nontyphoidal Salmonella enterica, Shigella and Vibrio parahaemolyticus in China. PLoS One 2022;17:e0277203.
- [2] Cai Q, Zhang Y. Structure, function and regulation of the thermostable direct hemolysin (TDH) in pandemic Vibrio parahaemolyticus. Microb Pathog 2018;123: 242–5.
- [3] Osei-Adjei G, Huang X, Zhang Y. The extracellular proteases produced by Vibrio parahaemolyticus. World J Microbiol Biotechnol 2018;34:68.
- [4] Li L, Meng H, Gu D, Li Y, Jia M. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis. Microbiol Res 2019;222:43–51.
- [5] Kodama T, Hiyoshi H, Okada R, Matsuda S, Gotoh K, Iida T. Regulation of Vibrio parahaemolyticus T3SS2 gene expression and function of T3SS2 effectors that modulate actin cytoskeleton. Cell Microbiol 2015;17:183–90.
- [6] Hiyoshi H, Kodama T, Iida T, Honda T. Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. Infect Immun 2010;78:1772–80.
- [7] Salomon D, Gonzalez H, Updegraff BL, Orth K. Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS One 2013;8:e61086.
- [8] Yu Y, Yang H, Li J, Zhang P, Wu B, Zhu B, et al. Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers. Arch Microbiol 2012;194:827–35.
- [9] Ashrafudoulla M, Mizan MFR, Park SH, Ha SD. Current and future perspectives for controlling Vibrio biofilms in the seafood industry: a comprehensive review. Crit Rev Food Sci Nutr 2021;61:1827–51.
- [10] Yildiz FH, Visick KL. Vibrio biofilms: so much the same yet so different. Trends Microbiol 2009;17:109–18.
- McCarter LL. Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 2004;7:18–29.
- [12] Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 2005;55:1160–82.
- [13] Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, et al. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet 2003;361:743–9.
- [14] Shime-Hattori A, Iida T, Arita M, Park KS, Kodama T, Honda T. Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation. FEMS Microbiol Lett 2006;264:89–97.
- [15] Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010;8: 623–33.
- [16] Liu M, Nie H, Luo X, Yang S, Chen H, Cai P. A polysaccharide biosynthesis locus in Vibrio parahaemolyticus important for biofilm formation has homologs widely distributed in aquatic bacteria mainly from gammaproteobacteria. mSystems 2022; 7:e0122621.
- [17] Mills E, Pultz IS, Kulasekara HD, Miller SI. The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 2011;13:1122–9.
- [18] Romling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013;77:1–52.
- [19] Boles BR, McCarter LL. Vibrio parahaemolyticus scrABC, a novel operon affecting swarming and capsular polysaccharide regulation. J Bacteriol 2002;184:5946–54.
- [20] Kim YK, McCarter LL. ScrG, a GGDEF-EAL protein, participates in regulating swarming and sticking in Vibrio parahaemolyticus. J Bacteriol 2007;189: 4094–107.
- [21] Kimbrough JH, Cribbs JT, McCarter LL. Homologous c-di-GMP-Binding scr transcription factors orchestrate biofilm development in Vibrio parahaemolyticus. J Bacteriol 2020;202.
- [22] Kimbrough JH, McCarter LL. Identification of three new GGDEF and EAL domaincontaining proteins participating in the scr surface colonization regulatory network in Vibrio parahaemolyticus. J Bacteriol 2021;203.
- [23] Martinez-Mendez R, Camacho-Hernandez DA, Sulvaran-Guel E, Zamorano-Sanchez D. A trigger phosphodiesterase modulates the global c-di-GMP pool, motility, and biofilm formation in Vibrio parahaemolyticus. J Bacteriol 2021;203: e0004621.
- [24] Zhong X, Lu Z, Wang F, Yao N, Shi M, Yang M. Characterization of GefA, a GGEEF domain-containing protein that modulates Vibrio parahaemolyticus motility, biofilm formation, and virulence. Appl Environ Microbiol 2022;88:e0223921.
- [25] Wu X, Zhou L, Ye C, Zha Z, Li C, Feng C, et al. Destruction of self-derived PAMP via T3SS2 effector VopY to subvert PAMP-triggered immunity mediates Vibrio parahaemolyticus pathogenicity. Cell Rep 2023;42:113261.
- [26] Islam Z, Hayashi N, Yamamoto Y, Doi H, Romero MF, Hirose S, Kato A. Identification and proximal tubular localization of the Mg(2)(+) transporter, Slc41a1, in a seawater fish. Am J Physiol Regul Integr Comp Physiol 2013;305: R385–96.
- [27] Ulitzur S. Effect of temperature, salts, pH, and other factors on the development of peritrichous flagella in Vibrio alginolyticus. Arch Microbiol 1975;104:285–8.
- [28] O'Shea TM, Deloney-Marino CR, Shibata S, Aizawa S, Wolfe AJ, Visick KL. Magnesium promotes flagellation of Vibrio fischeri. J Bacteriol 2005;187:2058–65.

- [29] O'Shea TM, Klein AH, Geszvain K, Wolfe AJ, Visick KL. Diguanylate cyclases control magnesium-dependent motility of Vibrio fischeri. J Bacteriol 2006;188: 8196–205.
- [30] Shrestha P, Razvi A, Fung BL, Eichinger SJ, Visick KL. Mutational analysis of Vibrio fischeri c-di-GMP-Modulating genes reveals complex regulation of motility. J Bacteriol 2022;204:e0010922.
- [31] Heinis JJ, Beuchat LR, Jones WK. Growth of heat-injured Vibrio parahaemolyticus in media supplemented with various cations. Appl Environ Microbiol 1977;33: 1079–84.
- [32] Heinis JJ, Beuchat LR, Boswell FC. Antimetabolite sensitivity and magnesium uptake by thermally stressed Vibrio parahaemolyticus. Appl Environ Microbiol 1978;35:1035–40.
- [33] Bhattacharya M, Roy SS, Biswas D, Kumar R. Effect of Mg(2+) ion in protein secretion by magnesium-resistant strains of Pseudomonas aeruginosa and Vibrio parahaemolyticus isolated from the coastal water of Haldia port. FEMS Microbiol Lett 2000;185:151–6.
- [34] Sarty D, Baker NT, Thomson EL, Rafuse C, Ebanks RO, Graham LL, Thomas NA. Characterization of the type III secretion associated low calcium response genes of Vibrio parahaemolyticus RIMD2210633. Can J Microbiol 2012;58:1306–15.
- [35] Tiruvayipati S, Bhassu S. Host, pathogen and environment: a bacterial gbpA gene expression study in response to magnesium environment and presence of prawn carapace and commercial chitin. Gut Pathog 2016;8:23.
- [36] Wu Q, Li X, Zhang T, Zhang M, Xue X, Yang W, et al. Transcriptomic analysis of Vibrio parahaemolyticus underlying the wrinkly and smooth phenotypes. Microbiol Spectr 2022;10:e0218822.
- [37] Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 2016;34:525–7.
- [38] Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010;11:R106.
- [39] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27–30.
- [40] Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–6.
- [41] Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004;32: D258–61.
- [42] Gao H, Zhang Y, Yang L, Liu X, Guo Z, Tan Y, et al. Regulatory effects of cAMP receptor protein (CRP) on porin genes and its own gene in Yersinia pestis. BMC Microbiol 2011;11:40.
- [43] Zhang Y, Qiu Y, Gao H, Sun J, Li X, Zhang M, et al. OpaR controls the metabolism of c-di-GMP in Vibrio parahaemolyticus. Front Microbiol 2021;12:676436.
- [44] Zhang M, Cai L, Luo X, Li X, Zhang T, Wu F, et al. Effect of sublethal dose of chloramphenicol on biofilm formation and virulence in Vibrio parahaemolyticus. Front Microbiol 2023;14:1275441.
- [45] Zhang M, Luo X, Li X, Zhang T, Wu F, Li M, et al. L-arabinose affects the growth, biofilm formation, motility, c-di-GMP metabolism, and global gene expression of Vibrio parahaemolyticus. J Bacteriol 2023;205:e0010023.
- [46] Zhang M, Xue X, Li X, Wu Q, Zhang T, Yang W, et al. QsvR and OpaR coordinately repress biofilm formation by Vibrio parahaemolyticus. Front Microbiol 2023;14: 1079653.
- [47] Zhang Y, Zhang T, Qiu Y, Zhang M, Lu X, Yang W, et al. Transcriptomic profiles of Vibrio parahaemolyticus during biofilm formation. Curr Microbiol 2023;80:371.
- [48] Gao H, Ma L, Qin Q, Qiu Y, Zhang J, Li J, et al. Fur represses Vibrio cholerae biofilm formation via direct regulation of vieSAB, cdgD, vpsU, and vpsA-K transcription. Front Microbiol 2020:11:587159.
- [49] Lu R, Tang H, Qiu Y, Yang W, Yang H, Zhou D, et al. Quorum sensing regulates the transcription of lateral flagellar genes in Vibrio parahaemolyticus. Future Microbiol 2019;14:1043–53.
- [50] Lu R, Sun J, Qiu Y, Zhang M, Xue X, Li X, et al. The quorum sensing regulator OpaR is a repressor of polar flagellum genes in Vibrio parahaemolyticus. J Microbiol 2021;59:651–7.
- [51] Zhang Y, Hu L, Osei-Adjei G, Zhang Y, Yang W, Yin Z, et al. Autoregulation of ToxR and its regulatory actions on major virulence gene loci in Vibrio parahaemolyticus. Front Cell Infect Microbiol 2018;8:291.
- [52] Zhang Y, Zhang Y, Gao H, Zhang L, Yin Z, Huang X, et al. Vibrio parahaemolyticus CalR down regulates the thermostable direct hemolysin (TDH) gene transcription and thereby inhibits hemolytic activity. Gene 2017;613:39–44.
- [53] Visick KL, O'Shea TM, Klein AH, Geszvain K, Wolfe AJ. The sugar phosphotransferase system of Vibrio fischeri inhibits both motility and bioluminescence. J Bacteriol 2007;189:2571–4.
- [54] Chen L, Qiu Y, Tang H, Hu LF, Yang WH, Zhu XJ, et al. ToxR is required for biofilm formation and motility of Vibrio parahaemolyticus. Biomed Environ Sci 2018;31: 848–50.
- [55] Gode-Potratz CJ, Kustusch RJ, Breheny PJ, Weiss DS, McCarter LL. Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol Microbiol 2011;79:240–63.
- [56] Wang Y, Zhang Y, Yin Z, Wang J, Zhu Y, Peng H, et al. H-NS represses transcription of the flagellin gene lafA of lateral flagella in Vibrio parahaemolyticus. Can J Microbiol 2018;64:69–74.
- [57] Gode-Potratz CJ, Chodur DM, McCarter LL. Calcium and iron regulate swarming and type III secretion in Vibrio parahaemolyticus. J Bacteriol 2010;192:6025–38.
- [58] Song B, Leff LG. Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Microbiol Res 2006;161:355–61.

X. Li et al.

- [59] Mangwani N, Shukla SK, Rao TS, Das S. Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids Surf B Biointerfaces 2014;114:301–9.
- [60] Chalke S, Vidovic S, Fletcher GC, Palmer J, Flint S. Differential effects of magnesium, calcium, and sodium on Listeria monocytogenes biofilm formation. Biofouling 2022;38:786–95.
- [61] Oknin H, Steinberg D, Shemesh M. Magnesium ions mitigate biofilm formation of Bacillus species via downregulation of matrix genes expression. Front Microbiol 2015;6:907.
- [62] He X, Wang J, Abdoli L, Li H. Mg(2+)/Ca(2+) promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater. Colloids Surf B Biointerfaces 2016;146:289–95.
- [63] Tang D, Gao Q, Zhao Y, Li Y, Chen P, Zhou J, et al. Mg2+ reduces biofilm quantity in Acidithiobacillus ferrooxidans through inhibiting Type IV pili formation. FEMS Microbiol Lett 2018;365.
- [64] Mulcahy H, Lewenza S. Magnesium limitation is an environmental trigger of the Pseudomonas aeruginosa biofilm lifestyle. PLoS One 2011;6:e23307.
- [65] Gotoh K, Kodama T, Hiyoshi H, Izutsu K, Park KS, Dryselius R, et al. Bile acidinduced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. PLoS One 2010;5:e13365.
- [66] Kodama T, Gotoh K, Hiyoshi H, Morita M, Izutsu K, Akeda Y, et al. Two regulators of Vibrio parahaemolyticus play important roles in enterotoxicity by controlling the expression of genes in the Vp-PAI region. PLoS One 2010;5:e8678.
- [67] Kinch LN, Cong Q, Jaishankar J, Orth K. Co-component signal transduction systems: fast-evolving virulence regulation cassettes discovered in enteric bacteria. Proc Natl Acad Sci U S A 2022;119:e2203176119.
- [68] Wasilko NP, Larios-Valencia J, Steingard CH, Nunez BM, Verma SC, Miyashiro T. Sulfur availability for Vibrio fischeri growth during symbiosis establishment depends on biogeography within the squid light organ. Mol Microbiol 2019;111: 621–36.

- [69] Yang L, Zhan L, Han H, Gao H, Guo Z, Qin C, et al. The low-salt stimulon in Vibrio parahaemolyticus. Int J Food Microbiol 2010;137:49–54.
- [70] Ball AS, Chaparian RR, van Kessel JC. Quorum sensing gene regulation by LuxR/ HapR master regulators in vibrios. J Bacteriol 2017;199.
- [71] Zhang Y, Hu L, Qiu Y, Osei-Adjei G, Tang H, Zhang Y, et al. QsvR integrates into quorum sensing circuit to control Vibrio parahaemolyticus virulence. Environ Microbiol 2019;21:1054–67.
- [72] Chung CH, Fen SY, Yu SC, Wong HC. Influence of oxyR on growth, biofilm formation, and mobility of Vibrio parahaemolyticus. Appl Environ Microbiol 2016; 82:788–96.
- [73] Wong HC, Liao R, Hsu P, Tang CT. Molecular response of Vibrio parahaemolyticus to the sanitizer peracetic acid. Int J Food Microbiol 2018;286:139–47.
- [74] Gu D, Wang K, Lu T, Li L, Jiao X. Vibrio parahaemolyticus CadC regulates acid tolerance response to enhance bacterial motility and cytotoxicity. J Fish Dis 2021; 44:1155–68.
- [75] Liu B, Gao Q, Zhang X, Chen H, Zhang Y, Sun Y, et al. CsrA regulates swarming motility and carbohydrate and amino acid metabolism in Vibrio alginolyticus. Microorganisms 2021;9.
- [76] Butz HA, Mey AR, Ciosek AL, Crofts AA, Davies BW, Payne SM. Regulatory effects of CsrA in Vibrio cholerae. mBio 2021;12.
- [77] Lim JG, Choi SH. IscR is a global regulator essential for pathogenesis of Vibrio vulnificus and induced by host cells. Infect Immun 2014;82:569–78.
- [78] Lim JG, Park JH, Choi SH. Low cell density regulator AphA upregulates the expression of Vibrio vulnificus iscR gene encoding the Fe-S cluster regulator IscR. J Microbiol 2014;52:413–21.
- [79] Choi G, Jang KK, Lim JG, Lee ZW, Im H, Choi SH. The transcriptional regulator IscR integrates host-derived nitrosative stress and iron starvation in activation of the vvhBA operon in Vibrio vulnificus. J Biol Chem 2020;295:5350–61.
- [80] Houillier P, Lievre L, Hureaux M, Prot-Bertoye C. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia. Ann N Y Acad Sci 2023; 1521:14–31.