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Background. An estimated 425 million people globally have diabetes, accounting for 12% of the world’s health expenditures, and the
number continues to grow, placing a huge burden on the healthcare system, especially in those remote, underserved areas.Methods.
A total of 584,168 adult subjects who have participated in the national physical examination were enrolled in this study. The risk
factors for type II diabetes mellitus (T2DM) were identified by p values and odds ratio, using logistic regression (LR) based on
variables of physical measurement and a questionnaire. Combined with the risk factors selected by LR, we used a decision tree, a
random forest, AdaBoost with a decision tree (AdaBoost), and an extreme gradient boosting decision tree (XGBoost) to identify
individuals with T2DM, compared the performance of the four machine learning classifiers, and used the best-performing
classifier to output the degree of variables’ importance scores of T2DM. Results. The results indicated that XGBoost had the best
performance (accuracy = 0:906, precision = 0:910, recall = 0:902, F‐1 = 0:906, and AUC = 0:968). The degree of variables’
importance scores in XGBoost showed that BMI was the most significant feature, followed by age, waist circumference, systolic
pressure, ethnicity, smoking amount, fatty liver, hypertension, physical activity, drinking status, dietary ratio (meat to
vegetables), drink amount, smoking status, and diet habit (oil loving). Conclusions. We proposed a classifier based on LR-
XGBoost which used fourteen variables of patients which are easily obtained and noninvasive as predictor variables to identify
potential incidents of T2DM. The classifier can accurately screen the risk of diabetes in the early phrase, and the degree of
variables’ importance scores gives a clue to prevent diabetes occurrence.

1. Introduction

Diabetes, as a group of metabolic disorders, is characterized
by hyperglycemia, which can lead to many serious conditions
such as heart disease, kidney disease, vision loss, and lower
limb amputation [1]. According to the data from the World
Health Organization (WHO), the global epidemic of diabetes
currently affects more than 422 million people in 2014 and
increased notably in recent decades [2, 3]. In China, the inci-
dence rate of diabetes (100 million of adult patients) was the
highest in the world. About 52.7% of diabetes patients have

no awareness, and this proposition remains upward [4].
Research has proven that a healthy lifestyle and a reasonable
diet structure can effectively delay and prevent the occur-
rence of type II diabetes mellitus (T2DM) [5]. The American
Diabetes Association recommends annual diabetes screening
for people over 45 years of age and with major risk factors
[6]. China’s national plan for the prevention and control of
noncommunicable diseases (2012-2015) listed diabetes as
one of the key diseases in China and proposed diabetes pre-
diction suggestions based on a blood glucose test and routine
physical examination [7].
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However, the traditional diabetes screening method
needs an expensive blood test and extra manpower, which
is a big challenge for the backward remote areas [8]. A diabe-
tes screening model built by easily available indicators, with-
out expensive examinations, is crucial to the occurrence and
development of diseases [9, 10].

The analysis of diabetes data is a challenging issue
because most of the medical data are nonlinear, nonnormal,
correlation structured, and complex in nature [11]. The
machine learning (ML) algorithms have dominated in the
field of medical healthcare [11–15] and medical imaging for
diseases such as stroke, coronary artery disease, and cancer
[16–20]. A decision tree (DT) is one of the classical algo-
rithms of ML. This simple and sensitive tree algorithm pro-
vides a unique ability to build disease prediction for large
datasets [21–23]. Tree embedding algorithms aggregate the
results from multiple trees, which usually have better accu-
racy and generalization ability than a single tree. This
includes combining stumps with an enhancement program
[24]. The random forest (RF) of a boosting procedure to
combine stumps of trees belongs to a “bagging” algorithm
[25], which has already been widely used in biological medi-
cine researches [26, 27], especially in the diagnosis of diabetes
[11, 12]; AdaBoost with a decision tree (AdaBoost) [28] and
an extreme gradient boosting decision tree (XGBoost) [29]
belong to “boosting” algorithms, and they had better perfor-
mance than a decision tree in the prediction and classifica-
tion [30–32]. In this study, LR- and tree-based models were
used. Some studies have confirmed that this method can
accurately classify diabetes mellitus [33]. Previous studies
have used ML models to classify diabetes. To the best of
our knowledge, this is the first diabetes screening model
established by comparing four tree-based ML algorithms.

2. Methods

2.1. Study Population. The national physical examination
(NPE) is a free physical examination provided by the Chinese
government for all Xinjiang people. The data came from the
physical examination data of Urumqi in 2018. A total of
643,439 subjects participated in the examination and signed
a written informed consent form. The exclusion criteria of
potential participants are the following: (1) pregnancy, (2)
people with type I diabetes mellitus (T1DM), and (3) age less
than 20 years. Finally, a total of 584,168 subjects from the eli-
gible participants were included in the final analysis. This
study was performed in accordance with the principles out-
lined in the Declaration of Helsinki and approved by the Xin-
jiang Uygur Autonomous Region CDC ethical committee
and the institutional review board.

2.2. Diagnosis of T2DM. Subjects with the following criteria
were classified as having T2DM: blood glucose 2 hours after
meal ≥ 11:1mmol/l, fasting blood glucose ≥ 7:0mmol/l, or
the main complaint of diabetes and taking hypoglycemic
drugs; the final incidence of diabetes was 12.4%.

2.3. Baseline Survey. NPE investigates a wide range of life-
style, dietary, psychosocial, occupational, and biochemical

and genetic factors related to the development of chronic dis-
eases. Therefore, the epidemiologists and medical profes-
sionals from the CDC in the Uygur Autonomous Region
referred to a previous study [34] to design a standard medical
examination form, which included 3 parts: a questionnaire,
physical examination, and laboratory testing. The examina-
tion of all the participants was done by the medical and
health teams in the administrative regions, which were made
up of full-time employees with medical qualifications and
fieldwork experience. In order to ensure the accuracy of the
results, all participants were asked to bring their unique
national identity (ID) cards and take them as the unique
identification. After the investigation, all the data were sum-
marized into the Health Management Hospital of Xinjiang
Medical University.

Trained interviewers administered questionnaires during
face-to-face interviews. The questionnaires included demo-
graphic information, occupational history, socioeconomic
status, family and personal disease histories, smoking history,
alcohol use, diet, physical activity, and contact history of
occupational disease-inductive factors. The physical exami-
nations were performed by trained physicians, nurses, and
technicians, in which items included standing height, body
weight, waist circumference, heart rate, blood pressure, and
abdominal ultrasound. Abdominal ultrasound can observe
the shape and size of the abdominal organs; also, it can deter-
mine whether these organs have tumors, cysts, or stones,
including the liver, kidney, gallbladder, and other organs.
For each participant, a 10ml nonfasting blood sample was
collected into three vacuum tubes. The samples were then
kept in a portable, insulated cool box with ice packs for up
to a few hours before being taken to the local study laboratory
for immediate processing. Blood test indicators include blood
glucose and blood biochemistry. In this study, we wanted to
establish a simple model that can predict the risk of T2DM
without blood sampling. We selected 18 variables from the
questionnaire and physical examination based on the previ-
ous studies [35–37] (Table 1).

2.4. Variable Definitions. The potential risk factors in this
study to assess T2DM included the following: age, gender,
ethnicity, body mass index (BMI), physical activity, smoking,
drinking, eating habits, waist circumference, blood pressure,
and some comorbidities.

Sociodemographic information included age (years),
gender including “male” and “female,” and ethnic groups
which were divided into six categories: “Han,” “Uygur,”
“Kazak,” “Hui,” “Mongolian,” and “other nationalities”; the
baseline comorbidities considered in this study were fatty
liver and hypertension (yes or no).

Lifestyle information included smoking, drinking, physi-
cal activity, and eating habits. Physical activity was defined as
regularly doing at least 20min per day of physical activity
during leisure time over the previous 6 months (yes or no)
[38]. Individuals who had been smoking at least one cigarette
per day for at least 6 months were defined as smokers, and
those who had been drinking alcohol at least once per week
for at least 6 months were considered drinkers [39]. We also
included daily smoking amount (cigarettes) and weekly
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Table 1: Characteristics of variables.

Variables Diabetes (N = 72,027) Nondiabetes (N = 510,411) p value

Age (years) 66:43 ± 13:43 52:41 ± 16:06 <0.001
BMI (kg/m2) 25:92 ± 3:65 24:37 ± 3:42 <0.001
Waist circumference (cm) 90:20 ± 10:75 84:95 ± 10:71 <0.001
Systolic pressure (mmHg) 130:20 ± 16:52 121:30 ± 14:27 <0.001
Diastolic pressure (mmHg) 77:80 ± 10:56 75:14 ± 9:65 <0.001
Ethnicity, n (%) <0.001

Han 50,691 (70.38) 331,413 (64.93)

Uygur 10,864 (15.08) 95,913 (18.79)

Kazak 1147 (1.59) 18,893 (3.70)

Hui 8126 (11.28) 52,838 (10.35)

Mongolian 76 (0.11) 1214 (0.24)

Other nationalities 1123 (1.56) 10,140 (1.99)

Gender, n (%) <0.001
Male 34,641 (48.09) 239,875 (47.00)

Female 37,386 (51.91) 270,536 (53.00)

Physical activity, n (%) <0.001
Yes 26,239 (36.43) 154,585 (30.29)

No 45,788 (63.57) 355,826 (69.71)

Drinking status, n (%) <0.001
Yes 15,944 (22.14) 102,852 (20.15)

No 56,083 (77.86) 407,559 (79.85)

Drinking amount (g) <0.001
≥170 6687 (9.30) 39,479 (7.73)

<170 65,240 (90.70) 470,932 (92.27)

Smoking amount (cigarettes) 10 (8-20)∗ 10 (7-20)∗ <0.001
Smoking status, n (%) <0.001

Yes 10,683 (14.83) 63,920 (12.52)

No 61,344 (85.17) 446,491 (87.48)

Dietary ratio, n (%) <0.001
Meat based 2849 (3.96) 13,554 (2.66)

Meat balanced 66,603 (92.47) 482,864 (94.60)

Vegetarian based 2575 (3.58) 13,993 (2.74)

Sugar loving, n (%) <0.001
Yes 940 (1.31) 4560 (0.89)

No 71,087 (98.69) 505,851 (99.11)

Oil loving, n (%) <0.001
Yes 2722 (3.78) 13,068 (2.56)

No 69,305 (96.22) 497,343 (97.44)

Salt loving, n (%) <0.001
Yes 4261 (5.92) 20,896 (4.09)

No 67,766 (94.08) 489,515 (95.91)

Fatty liver, n (%) <0.001
Yes 22,331 (31.00) 52,800 (10.34)

No 49,696 (69.00) 457,611 (89.66)

Hypertension, n (%) <0.001
Yes 29,937 (41.56) 112,348 (22.01)

No 42,090 (58.44) 398,063 (77.99)
∗Median (IQR). Abbreviation: BMI: body mass index.
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drinking amount (“≥170 g” or “<170 g”). Diet habits included
6 options: “meat based,” “meat balanced,” “vegetarian
based,” “oil loving,” “sugar loving,” and “salt loving”; partic-
ipants can choose one or more of them.

2.5. Statistical Analysis. The baseline characteristics of the
study population were presented as mean ± SD (standard
deviation) for continuous normal distribution variables,
median (IQR) for continuous nonnormally distributed vari-
ables, and number (percentage) for the categorical variables.
Differences in variables between diabetes and nondiabetes
patients are analyzed by the independent t-test for continu-
ous normal distribution variables, the Mann-Whitney test
for nonnormally distributed variables, and the chi-square test
for categorical variables. All of the tests were two-tailed and
considered significant factors whose p values were less than
0.05.

2.6. Machine Learning System. The major objective of the
tree-based ML algorithms is to classify the T2DM. The over-
view of the proposed tree-based ML algorithms has been
shown in Figure 1.

2.6.1. Data Cleaning. NPE data are large and with jumbled
variables, with many missing and abnormal values. So data
preprocessing is a very important step, and the quality of pre-

processing will directly affect the performance of the later
prediction model [40]. Firstly, we deleted nearly 200 variables
that were not meaningful to this study. Secondly, we filled in
outliers and nulls, classification variables were filled with the
most frequent value, and continuous variables were filled
with a mean value.

2.6.2. Feature Selection. There were some commonly used
feature selection techniques in ML/statistics, namely: RF
[12, 41], LR [42, 43], mutual information [12, 44], principal
component analysis [12, 44, 45], analysis of variance [12,
46], and Fisher’s discriminant ratio [12, 44, 47]. In this study,
we have used the LR model to identify the risk factor for dia-
betic disease based on a p value (p < 0:05) and OR.

2.6.3. Data Imbalance Processing. The number of nondia-
betes subjects was greater than the number of subjects with
diabetes (an unbalanced-class problem). Generally, classes
with few subjects are more difficult to predict than those with
numerous subjects [48–51]. We used the SMOTE algorithm
to solve the negative impact of class imbalance, which
belonged to the method of oversampling; the principle of
the method is to increase the number of a few classes of sam-
ples in classification to achieve sample balance, and it is
widely used because of its ability to preserve important infor-
mation in samples.

Health examination data

Data cleaning

Feature selection Types: LR

Data imbalance processing

Training set

Tree–based ML Classification

Model validationParameter tuning:
validation curve

Validation set

Oversampling: SMOTE algorithms

CV5 (i) Accuracy
(ii) Precision

(v) AUC

(iv) F–1

(iii) Recall

(i) DT
(ii) RF

(iv) XGB

(iii) AB

Figure 1: Machine learning flowchart of this study. Abbreviations: LR: logistic regression; DT: decision tree; RF: random forest; AB:
AdaBoost; XGB: XGBoost; ML: machine learning.
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2.6.4. Classifier Comparison. In this study, we used four tree-
based ML algorithms: DT, RF, AdaBoost, and XGBoost, all of
which were supervised ML methods. DT is a tree structure-
based model which describes the classification process based
on input features [52]; the advantage of DT is that it is simple
and easy to implement, but it often exhibits high variance
and overfitting problems, which limits its utility as an inde-
pendent prediction model. However, it is possible to improve
the overall prediction by aggregating the results from multi-
ple trees, which is called the embedding method. RF is one
of the common tree embedding methods [53], which uses
the bagging method to combine multiple trees. Another
ensemble approaches, AdaBoost and XGBoost algorithms
[24], use the boosting procedure to combine stumps of trees.
These ensemble methods can be loosely conceptualized as

forming a robust overall prediction by aggregating the pre-
dictions of many simpler predictive models. This is similar
to the process of drawing on the advice of many experts to
arrive at a clinical diagnosis for a patient, each of whom views
the patient in a slightly different way.

2.6.5. Model Evaluation. Balanced datasets were randomly
divided into two parts: the training set accounted for 70%
of the data and the test set accounted for 30% of the data
[21, 54]. In order to improve the accuracy of the classification
tree, we have drawn a “verification curve” based on 5-fold
cross-validation of four classification trees, and the optimal
hyperparameter has been obtained (Figure 2). The algo-
rithms were compared based on a confusion matrix and
some indicators including accuracy, precision, recall, F‐1,
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XGB validation curve
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Figure 2: Parameter selection process of the prediction model constructed by four classification tree models: (a) decision tree, (b) random
forest, (c) AdaBoost, and (d) XGBoost. Note: the score of F‐1 has been tested when the max depth parameter of the model is between 10
and 50.
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and receiver operating characteristic (ROC) curve. Several
important measures, such as accuracy, precision, recall, and
F‐1, could be calculated by using the confusion matrix.

Accuracy =
TP + TN

TP + TN + FP + FN
,

Precision =
TP

TP + FN
,

Recall =
TP

TP + FP
,

F‐1 = 2 × Precision × Recall
Precision + Recall

:

ð1Þ

2.7. Feature Importance Ranking. Tree-based models can
provide measures of variable importance. Unlike the OR
values of regression models, ML algorithms cannot estimate
an easy explanation number because the relationships that
ML algorithms fit are more complex than those of regression
models. Therefore, it is not usual to generalize this relation-
ship directly into any one parameter, nor is there a causal
relationship or even a statistical explanation [55]. Instead,
the measure can often be thought of as rank ordering of
which variables are most “important” to the fitted model
[56]. Although the variable importance ranking cannot
replace the target hypothesis test for a given parameter, it
can be used as a means of generating hypotheses to help iden-
tify factors that warrant further study, allowing some insight
into the factors that most influence the predictions [57].

The software used in this study was Python software ver-
sion 3.7.2. The “Pandas” library, “NumPy” library, and “Mat-
plotlib” library were used for null and outlier determination
and interpolation, the “Imlearn” library was used to solve
data imbalance, and the “Sklearn” library was used to estab-
lish machine learning models and verify the validation.

3. Results

3.1. Patients and Variables. A total of 72,027 patients (12.4%)
from the pool of 582,438 subjects had T2DM. Each subject
was composed of 18 variables (Table 1), including age,
BMI, gender, waist circumference, ethnicity, drinking, phys-
ical activity, smoking, eating habits, blood pressure, fatty
liver, and hypertension. It is observed that all attributes are
highly statistically (p < 0:001) associated with diabetes.

3.2. Feature Extraction Using Logistic Regression. Table 2
shows the effect of the selected factors on T2DM by logistic
regression. It was shown that age, BMI, waist circumference,
systolic pressure, ethnicity, physical activity, drinking status,
weekly drinking amount (g), daily smoking amount (ciga-
rettes), smoking status, dietary ratio (meat to vegetable), diet
habit (oil loving), fatty liver, and hypertension are statistically
significant factors for T2DM at a 5% level of significance and
the rest of the factors are insignificant. These 14 variables
were used for tree-based ML algorithms to classify T2DM.
Among these statistically significant variables, variables with
OR > 1 were the risk factors for T2DM, including age, BMI,
waist circumference, systolic pressure, ethnicity (Hui),

weekly drinking amount ≥ 170 g, daily smoking amount (cig-
arettes), smoking status, diet habit (oil loving), fatty liver, and
hypertension; variables with OR < 1 were the protective fac-
tors, including ethnicity (Kazak and Mongolian), physical
activity, drinking status, and diet habit (meat balanced).

3.3. Tuning of Parameters. Finally, we got 1,020,822 samples
by the SMOTE algorithm (Table 3): 714,575 subjects as the
training set and 306,247 subjects as the validation set. The
average F‐1 score for different models and their parameter
are listed in the validation set (Figure 2). When the “maxi-
mum depth” of DT takes 44 and that of RF, XGBoost, and
AdaBoost takes 40, we got a relatively economical and accu-
rate classification tree model.

3.4. Validation of the Training Set. Our study has built four
tree-based ML algorithms. Table 4 shows the performance
of all classifiers. The confusion matrix has been displayed
by heatmap; the larger the number, the darker the color of
the region, that is, the closer the color of TN and TP regions
to orange. On the contrary, the lighter the color of FN and FP
regions, the higher the accuracy of the classification model.
We got that the result of XGBoost was better than that of
the others (accuracy = 0:906, precision = 0:910, recall =
0:902, F‐1 = 0:906, and AUC = 0:968). Figure 3 presents the
ROC of all classifiers.

3.5. Variable Importance Ranking by XGBoost. In this study,
XGBoost was used to rank the LR-selected variables because
of its best classification performance. XGBoost provided the
importance score of each variable, attributing the predictive
risk in 3 ways. Specifically, we chose the default method,
which represented the relative number of times a variable is
used to distribute the data across all trees. There were only
very small differences among the importance scores through
the three methods, which did not influence the rank of the
variable’s impact. The important measurement scores of 14
variables have been shown in Figure 4. BMI is the most sig-
nificant feature, followed by age, waist circumference, systolic
pressure, ethnicity, smoking amount, fatty liver, hyperten-
sion, physical activity, drinking status, dietary ratio (meat
to vegetable), drink amount, smoking status, and diet habit
(oil loving).

4. Discussion

In this paper, cases were recruited and consisted of easily
acquired variables to establish a screening model for
T2DM. LR models were used for selecting the risk factors.
Then, we compared the performance of four tree-based ML
algorithms (DT, RF, AdaBoost, and XGBoost), and XGBoost
got the best performance, which had accuracy = 0:906,
precision = 0:910, recall = 0:902, F‐1 = 0:906, and AUC =
0:968. Finally, through the best classifier to establish the most
important ranking of factors affecting the incidence of diabe-
tes, the results indicate that this strategy successfully achieves
accurate and rapid diabetes screening.

The order of feature importance (Figure 3) showed that
age, BMI, and waist circumference were the top three
influencing factors of diabetes, which was consistent with
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Table 2: Screening the risk factors for T2DM by multiple logistic regression (CI = confidence interval).

Intercept and variable Odds ratio 95% CI Z value p value

Age (years) 1.047 (1.046-1.048) 113.625 <0.001
BMI (kg/m2) 1.016 (1.012-1.020) 7.894 <0.001
Waist circumference (cm) 1.016 (1.015-1.018) 23.905 <0.001
Systolic pressure (mmHg) 1.002 (1.001-1.003) 5.304 <0.001
Diastolic pressure (mmHg) 1.001 (0.999-1.002) 1.650 0.099

Ethnicity, n (%)

Han 1 Ref — —

Uygur 1.011 (0.981-1.043) 0.734 0.463

Kazak 0.460 (0.426-0.497) -19.669 <0.001
Hui 1.075 (1.040-1.111) 4.269 <0.001
Mongolian 0.464 (0.342-0.616) -5.127 <0.001
Other nationalities 0.989 (0.912-1.072) -0.263 0.793

Gender, n (%)

Male 1 Ref — —

Female 1.017 (0.994-1.041) 1.444 0.149

Physical activity, n (%)

No 1 — —

Yes 0.715 (0.699-0.731) -29.179 <0.001
Drinking status, n (%)

No 1 Ref — —

Yes 0.891 (0.864-0.918) -7.424 <0.001
Drinking amount (g)

<170 1 Ref — —

≥170 1.239 (1.185-1.296) 9.432 <0.001
Smoking amount (cigarettes) 1.005 (1.002-1.007) 3.921 <0.001
Smoking status, n (%)

No 1 Ref — —

Yes 1.137 (1.086-1.191) 5.452 <0.001
Dietary ratio, n (%)

Meat based 1 Ref — —

Meat balanced 0.917 (0.869-0.969) -3.105 0.002

Vegetarian based 1.019 (0.941-1.103) 0.455 0.649

Sugar loving, n (%)

No 1 Ref — —

Yes 0.994 (0.896-1.101) -0.119 0.906

Oil loving, n (%)

No 1 Ref — —

Yes 1.157 (1.072-1.249) 3.730 <0.001
Salt loving, n (%)

No 1 Ref — —

Yes 0.989 (0.932-1.049) -0.362 0.718

Fatty liver, n (%)

No 1 Ref — —

Yes 2.224 (2.168-2.280) 62.430 <0.001
Hypertension, n (%)

No 1 Ref — —

Yes 2.373 (2.312-2.435) 65.334 <0.001
Abbreviation: BMI: body mass index.
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Pei et al.’s T2MD screening model based on a j48 decision
tree [35]. The variables whose OR > 1 are risk factors for
the disease, including age, BMI, waist circumference, systolic
pressure, hypertension, ethnicity (Hui), daily smoking
amount (cigarettes), fatty liver, weekly drinking amount ≥
170 g, smoking status, and diet habit (oil loving). Xu et al.
[36] used the data of the national cross-sectional survey in
2010 for study and found that the risk factors for diabetes
were age, smoking, overweight, obesity, dyslipidemia, ele-
vated triacylglycerol, and high systolic blood pressure. Other
countries had developed diabetes screening tools, and the
American Diabetes Association (ADA) provides a simple
“T2DM risk test” that used age, gender, family history of dia-

betes, hypertension, physical activity, and weight status to
assess diabetes risk in the general population [37]. The above
conclusions were consistent with the conclusions of this
study. Variables withOR < 1 are protective factors, including
ethnicity (Kazak and Mongolian), physical activity, weekly
alcohol consumption < 170 g, and diet habit (diet balanced).
The protective factors include three adjustable indicators,
which suggested that people could control the occurrence
of the disease through a good lifestyle. Several large-scale tri-
als have demonstrated the benefits of targeted lifestyle inter-
ventions to prevent diabetes [58–60].

There are several strengths of our study. First, all the
variables come from noninvasive and easily available

Table 3: Dataset description.

Dataset Sample distribution Ratio Description

Original data 510,411/72,027 7 : 1 Original data with full instances

SMOTE data 510,411/510,411 1 : 1 Dataset is balanced utilizing SMOTE oversampling

Table 4: The results of classification algorithms.

Testing criteria DT RF AB XGB
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Accuracy 0.832 0.873 0.878 0.906

Precision 0.823 0.862 0.871 0.910

Recall 0.845 0.889 0.888 0.902

F‐1 0.834 0.875 0.879 0.906

AUC 0.832 0.947 0.948 0.968

Abbreviations: AUC: the area under the receiver operating characteristic (ROC) curve; DT: decision tree; RF: random forest.
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measurement indexes and questionnaire indexes. The model
can be applied to the prediabetes and noninvasive prediction
of diabetes without the need for expensive laboratory testing,
which is useful, particularly in areas of high epidemiological
risk and low socioeconomic status [2, 61].

Second, this study was based on a large Chinese popula-
tion, with a wide range of population choices and high
extrapolation and representativeness. Moreover, our dataset
included many major ethnic groups in China, which better
evaluated the characteristics of the Chinese population.

Third, in most previous diabetes screening models,
smoking and drinking were only divided into two categories
(have and have not), so they failed to reflect the impact of fre-
quency and quantity on the disease. Through Figure 3, we
knew that compared with the smoking status, the daily smok-
ing amount was more important to the disease. Furthermore,
our studies have shown that alcohol was a protective factor for
T2DM, but alcohol consumption > 170 g a week increased the
risk of diabetes. Previous studies have also confirmed that
light-to-moderate alcohol consumption could reduce the risk
of T2DM [62, 63]; however, there was a strong dose-
response relationship between smoking number, alcohol con-
sumption, and diabetes and cardiovascular disease [64–66],
suggesting that while quitting smoking completely and con-
trolling alcohol consumption were our goals, even smoking
fewer cigarettes and drinking less alcohol can reduce the risk
of the disease.

Fourth, we compared the performance of four tree-based
classification models, and XGBoost achieved the best perfor-
mance. XGBoost used in this study has received extensive
attention in recent years due to its excellent learning effect

and efficient training speed. XGBoost has more advantages
than LR in predicting the occurrence of results rather than
measuring the relationship between specific risk factors and
events, but its disadvantage is the poor interpretation of risk
factors [55]. LR provides a clear interpretation of its coeffi-
cients as the odds ratios of the risk factors. We know that
the former could get higher prediction accuracy and the latter
could get better explanation among variables. In this study,
we have first used LR to screen variables and then used
XGBoost to classify diseases, which not only improves the
accuracy of classification but also gets the risk factors and
protective factors for diseases, enlightening us which charac-
teristics may lead to T2DM and which characteristics can
prevent T2DM.

Surprisingly, previous studies have found that the course
of diabetes is closely related to diet. For example, the Diabetes
Prevention Program (DPP) reported that a reasonable diet
and exercise can reduce the incidence of type 2 diabetes by
58% [67]. But in this study, we only got the weak effects of
meat and vegetable matching and oil preference on T2DM
(Figure 3) and did not find that halophilia or sugar addiction
is associated with diabetes. However, the effects of these
factors on diabetes have been confirmed in previous studies
[68, 69]. Eating habits are the main influencing factors of
waist circumference and BMI, so we think that diabetes
and eating habits are closely related; the possible reasons
for the irrelevance might be that the diet survey of Xinjiang
national health examination was a cross-sectional study and
there was no professional person to evaluate the diet of the
physical examination population. The main reason for the
error was that the self-reported eating habits of the physical
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examination population were subjective and professional
evaluation indicators are lacking; for this, in the future
research, more accurate results can be obtained through
the follow-up of people’s living habits.

There are several limitations in this study: firstly, since
this was a cross-sectional study, we could not assess the
causal relationship between T2DM and other comorbidities.
Secondly, the data used in this study was the physical exam-
ination data of China, which might limit the extrapolation of
the results. It is generally believed that there are some differ-
ences in the pathophysiology of diabetes between Asians and
Caucasians and there are similar differences between Asian
countries. Thirdly, previous studies have confirmed that edu-
cation and family history are also important determinants of
diabetes. However, our physical examination data failed to
obtain the education and family history of participants.
Fourthly, this study only optimizes the “maximum depth”
parameter of the classification trees. The machine learning
model can improve the performance of the model by tuning
multiple parameters, which needs to be further implemented
in the future. Finally, some indicators do not have objective
and unified evaluation criteria, such as eating habits, which
may reduce the accuracy of the prediction model.

5. Conclusion

We have proposed a classifier combining tree-based ML
algorithms and LR to build a diabetes screening model using
582,438 subjects in China. The ranking of disease risk factors
and protective factors provided us with inspiration to prevent
diabetes. We also got the dose relationship between smoking
and drinking and the disease. In a word, our model can help
China’s health system to improve the level of early diagnosis
of diabetes, suggesting the significance of lifestyle change in
the prevention and delay of the disease.
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