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ABSTRACT A major obstacle in infection biology is the limited ability to recapitu-
late human disease trajectories in traditional cell culture and animal models, which
impedes the translation of basic research into clinics. Here, we introduce a three-
dimensional (3D) intestinal tissue model to study human enteric infections at a level
of detail that is not achieved by conventional two-dimensional monocultures. Our
model comprises epithelial and endothelial layers, a primary intestinal collagen scaf-
fold, and immune cells. Upon Salmonella infection, the model mimics human gastro-
enteritis, in that it restricts the pathogen to the epithelial compartment, an advan-
tage over existing mouse models. Application of dual transcriptome sequencing to
the Salmonella-infected model revealed the communication of epithelial, endothelial,
monocytic, and natural killer cells among each other and with the pathogen. Our re-
sults suggest that Salmonella uses its type III secretion systems to manipulate STAT3-
dependent inflammatory responses locally in the epithelium without accompanying
alterations in the endothelial compartment. Our approach promises to reveal further
human-specific infection strategies employed by Salmonella and other pathogens.

IMPORTANCE Infection research routinely employs in vitro cell cultures or in vivo
mouse models as surrogates of human hosts. Differences between murine and hu-
man immunity and the low level of complexity of traditional cell cultures, however,
highlight the demand for alternative models that combine the in vivo-like properties
of the human system with straightforward experimental perturbation. Here, we in-
troduce a 3D tissue model comprising multiple cell types of the human intestinal
barrier, a primary site of pathogen attack. During infection with the foodborne
pathogen Salmonella enterica serovar Typhimurium, our model recapitulates human
disease aspects, including pathogen restriction to the epithelial compartment,
thereby deviating from the systemic infection in mice. Combination of our model
with state-of-the-art genetics revealed Salmonella-mediated local manipulations of
human immune responses, likely contributing to the establishment of the patho-
gen’s infection niche. We propose the adoption of similar 3D tissue models to infec-
tion biology, to advance our understanding of molecular infection strategies em-
ployed by bacterial pathogens in their human host.
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Enterobacteriaceae are major commensals of the human gut microflora, but certain
members of this bacterial family, particularly Escherichia, Salmonella, Shigella, and

Yersinia species, cause a range of different infections that sum up to millions of cases
annually (1). Of these latter pathogens, Salmonella enterica serovar Typhimurium
(henceforth S. Typhimurium) is a major research model for bacterial virulence strategies
and host defense mechanisms during enteric infections. Host cell infection by S.
Typhimurium depends on the concerted activity of effector proteins encoded on
dedicated genomic virulence loci, referred to as Salmonella pathogenicity islands (SPIs)
(2, 3). The two major SPIs (SPI1 and SPI2) additionally encode structural components of
type III secretion systems (T3SSs) that deliver the virulence effector cocktail into the
host cytosol. While the SPI1 T3SS and associated effectors mediate epithelial cell
invasion (4), intracellular survival is promoted by virulence genes associated with the
SPI2 cluster (5). Host cell manipulations mediated by SPI1 and SPI2 effectors include
rearrangements of the actin cytoskeleton, manipulation of phagosomal maturation,
and subversion of host immunity pathways (3).

The immune response to S. Typhimurium has been investigated extensively. The
innate immune system relies on a variety of pattern recognition receptors (PRRs), which
sense conserved pathogen-associated molecular patterns (PAMPs), such as bacterial
cell wall components or flagellin, to elicit proinflammatory transcriptional responses. In
the intestine, Toll-like receptor 5 (TLR5) recognizes Salmonella flagellin, which activates
cytokine and chemokine production for the recruitment and activation of professional
immune cells, such as NK cells, T cells, and monocytes (6). These cells, in turn, respond
by producing, e.g., gamma interferon (IFN-�) and interleukin-6 (IL-6), which activate the
Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway on a
variety of target cells to promote antimicrobial defense and changes to the cellular
survival and metabolic programs (7, 8). Other major cytokines produced by the acti-
vated epithelium and professional immune cells include IL-1, which promotes NF-�B-
dependent immune gene expression (9), and IL-8, which functions as a major chemoat-
tractant for bacterium-engulfing neutrophils (10). Recently, long noncoding RNAs
(lncRNAs) were also implicated in the host response to Salmonella infection (11, 12).
NeST lncRNA, for instance, protects from Salmonella-induced lethality in mice by
promoting IFN-� expression (13). S. Typhimurium, in turn, may partially evade this host
defense through its facultative intracellular lifestyle and adaptation to—and even
exploitation of—the inflammatory milieu (14, 15).

Responses to Salmonella infections of the human gut necessarily require a fine-
tuned interplay between the gut mucosa, the vascular endothelium, and the cells of the
gut-associated immune system (16). These complex interactions have remained difficult
to mimic in a human cell culture setting. The current understanding of host subversion
by S. Typhimurium and the countermeasures taken by the immune system was largely
deduced from studies with immortalized cell lines or mouse models, i.e., infection
models with inherent strengths and weaknesses. Cell line monocultures have proven to
be invaluable tools to reveal discrete molecular and cellular mechanisms, but they
inevitably neglect the complex division of labor and three-dimensional (3D) fine
structure within the inflamed tissue. In addition, critical cell components, such as
peripheral immune cells, which affect the infection process, are often missing. Likewise,
mice have been an important model to study Salmonella infections on a whole-system
level, but there are profound differences in antimicrobial immunity and Salmonella
pathogenesis between rodents and humans (17–19). For example, while S. Typhimu-
rium induces self-limiting gastroenteritis in immunocompetent humans, it causes
systemic infections and even sepsis in mice (6). Therefore, to better understand the
molecular mechanisms underlying intestinal Salmonella infection in a human setting,
more tailored models are needed.

Sophisticated human three-dimensional (3D) in vitro models have recently garnered
much attention of scientists in academia, product developers in industry, regulatory
authorities, and society in general (20, 21). Examples are primary organoid cultures,
rotating-wall vessel approaches, and Transwell-like coculture settings (21). Such models
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can deliver important information about drug toxicity and the mode of action, patho-
physiology, normal biological tissue function, or immune responses (22, 23), prior to in
vivo and clinical extrapolation. Often, however, the available models omit important
cellular components, use artificial cellular growth matrices, or are difficult to standard-
ize. To address the particular problem of artificial matrices to support cell growth, tissue
models based on recellularized collagen scaffolds, comprising multiple cocultured cell
types to more accurately mimic the epithelial barriers, were developed (20). So far,
however, such models have neglected the vascular immune cell component and have
not been widely adopted in infection research.

Here, we present an advanced human intestinal barrier model based upon a
recellularized porcine collagen scaffold that was infected with the bacterial model
pathogen S. Typhimurium. This coculture model, encompassing both the endothelial
and the epithelial intestinal barriers as well as a natural collagen matrix and profes-
sional immune cells, allowed us to study reciprocal host and pathogen cell adaptations
during acute S. Typhimurium infection. We show that in this model system, in contrast
to small-animal models, S. Typhimurium infection is restricted to the epithelial layer and
does not spread into the vascular compartment, thereby mimicking human disease.
Dual transcriptome sequencing (dual RNA-seq), which comprehensively profiles host
and pathogen gene expression during bacterial infections, has been successfully
applied to infected cell line-based, two-dimensional (2D) monocultures (reviewed in
reference 24) and mouse models of infection (25–27). For the first time, we here applied
dual RNA-seq to a 3D tissue model to chart mRNA and noncoding RNA expression
changes in the communicating, purified host cell types (intestinal epithelial cells [IECs],
endothelial cells, monocytes, NK cells) and in Salmonella. Our data sets determined
STAT3 signaling to be a central host pathway targeted by the pathogen. Using
CRISPR/Cas9-edited IECs and Salmonella virulence mutants, we show that the T3SS-
dependent manipulation of STAT3 locally changes the inflammatory milieu to the
benefit of the pathogen but leaves the basolateral milieu unaltered. Thus, 3D infection
models may reveal compartmentalized pathogen strategies not visible in conventional
human cell cultures. Our dual RNA-seq data may serve the community as an important
resource for prioritizing Salmonella virulence factors for further investigation and for
defining cell type-specific expression signatures of pathogenic attack at the intestinal
barrier.

RESULTS
An engineered human intestinal tissue model to study Salmonella infection.

Due to the existing limitations in the currently available 3D in vitro culture models,
infection studies with human-pathogenic bacteria typically neglect the tissue micro-
structure at the primary site of infection. With regard to the intestinal barrier, its major
constituents are the epithelial lining and the underlying collagen scaffold of the lamina
propria, harboring blood vessels for nutrient exchange and immune cell recruitment
(28). To model the intestinal barrier in a commonly used Transwell-like setting, we fixed
a decellularized porcine small intestinal submucosa (SIS) collagen scaffold into a cell
crown to obtain two separated compartments (Fig. 1A). The apical compartment was
populated with a human intestinal epithelial cell (IEC) line (Caco-2) and matured into a
tight epithelial lining. The basolateral surface of the matrix was populated with primary
human microvascular endothelial cells, and the underlying separated culture compart-
ment was supplemented with peripheral blood leukocytes as a proxy for the vascular
immune system (Fig. 1A).

To confirm the suitability of our model for infection studies, we conducted a pilot
experiment with a S. Typhimurium strain constitutively expressing the green fluores-
cent protein (GFP) (29) and tracked the bacteria within the tissue construct. Fluores-
cence microscopy analysis of cross sections visualized epithelial and endothelial cell
monolayers, separated by the collagen scaffold, as well as Salmonella-infected cells
within the epithelium, but not the endothelium (Fig. 1B to D). Flow cytometry of
infected models identified a Salmonella-positive subpopulation of epithelial but not

A Coculture Model Mimicking Human Intestinal Infection ®

January/February 2020 Volume 11 Issue 1 e03348-19 mbio.asm.org 3

https://mbio.asm.org


endothelial cells (Fig. 2A; see also Fig. S1A in the supplemental material), and assays
counting the numbers of colony forming units (CFUs) revealed the sterility of the
basolateral culture medium (Fig. S1B). In line with these results, no indication for
infection of basolateral leukocytes was obtained (Fig. S1C). These results confirm
Salmonella to be unable to cross the epithelium. The fluorescence signal intensity
emitted by invaded epithelial cells increased over time, indicative of Salmonella intra-
cellular replication (Fig. 2B) at a rate comparable to previous findings from a 2D Caco-2
infection model (30). Furthermore, an increase in the percentage of invaded cells over
time indicated spreading of the infection within the epithelium (Fig. 2C).

Despite the absence of bacterial transmission across the epithelial barrier, the
endothelial cell compartment responded to the infection by release of the major
phagocyte attractant IL-8 (Fig. 2D). Thus, our tissue model successfully recapitulates an
epithelially retained Salmonella infection and immune signaling across the intestinal
barrier and thereby resembles human disease, which usually involves gastroenteritis,
but no systemic infection, as is observed in mice.

Processing of Salmonella-infected intestinal tissue models for transcriptomics.
We sought to utilize our new model to gain an improved understanding of the
reprogramming of host immunity by S. Typhimurium during infection. To this end,
infections were carried out for 24 h with GFP-positive Salmonella applied to the apical
compartment followed by fluorescence-activated cell sorting (FACS)-based separation

B C

D

B C

D

A

B C

D

FIG 1 Construction of the intestinal tissue model and experimental layout. (A) (Left) Illustration of a cross-section through a cell crown
device within a culture dish, with the collagen membrane being fixed between outer and inner metal rings to create the apical and
basolateral compartments. (Right) Schematic representation of the engineered intestinal barrier and experimental setup. The
epithelium and endothelium are separated by a collagen layer (SIS, small intestinal submucosa), and leukocytes are supplied into the
basolateral compartment. Infection is triggered by addition of GFP-positive Salmonella into the apical compartment. (B) Fluorescence
microscopy analysis of a cross section through a Salmonella-infected intestinal barrier model (24 h postinfection; MOI, 10). The
epithelium and endothelium are visualized by pCK and CD31 staining (green), respectively. Nuclei are stained with DAPI (blue).
Salmonella are stained with an anti-LPS antibody and are shown in red. (C) Magnification showing the epithelial layer with
Salmonella-infected cells (arrows). (D) Magnification of the endothelial cell layer. Bars, 100 �m (B) or 20 �m (C, D).
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of Salmonella-invaded epithelial cells (GFP positive) and noninvaded bystander epithe-
lial cells (GFP negative), RNA extraction, rRNA depletion, and dual RNA-seq (Fig. 3A). To
follow the propagation of the immune response across the intestinal barrier, cells of the
endothelial lining (CD31�), monocytes (CD14�), and NK cells (CD56�) were FACS
purified from the same models and their transcriptomes were sequenced. The corre-
sponding cell types from uninfected models served as host controls and the bacterial
inoculum served as the Salmonella preinfection reference.

Principal-component analysis (PCA) of host cell RNA-seq data (row Z-scores) (Fig. 3B)
revealed that samples primarily clustered according to cell type rather than treatment
(infected versus noninfected). In line with this observation, specific expression
signatures were revealed for IECs, endothelial cells, monocytes, and NK cells
(Fig. 3C). Inspection of the detected host transcript classes (Fig. 3D) proved the
intended depletion of rRNAs across all cell types. The mRNA fraction occupied �88%
of all mapped reads, followed by small nucleolar RNAs (snoRNAs; 3.9%), small nuclear
RNAs (snRNAs; 3.3%), and lncRNAs (2.3%). In the following, we focus on regulated
mRNAs and lncRNAs on the host side. Generally, the host response to Salmonella
infection (both the number of regulated transcripts and their median fold change in
expression) was higher in cells of the basolateral compartment (endothelial cells,
monocytes, NK cells) than in cells of the infected epithelium (Fig. 3E and F). This
confirms the sensing of the apically retained infection by the vascular components of
the tissue construct, as seen in Fig. 2D. Interestingly, the overlap among the infection-
regulated host genes between the different cell types was small (Fig. 3F), probably
reflecting the nonredundant functions of IECs, endothelial cells, monocytes, and NK
cells during bacterial infection.

Cell type-specific signatures of the vascular immune response. To characterize
the nature of the respective responses by the four interacting host cell types, we closely
inspected mRNA and lncRNA expression changes after infection. First, we sought to
characterize the propagation of the response of our tissue model to infection across the
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rium (S. Tm) treatment at the indicated time points via ELISA.
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intestinal barrier. Despite the absence of Salmonella transmission into the vascular
compartment, endothelial cells upregulated (fold change [FC] � 2; false discovery rate
[FDR] � 0.05) 344 mRNAs and downregulated (FC � 0.5; FDR � 0.05) 392 mRNAs upon
apical infection (Fig. 4A). In monocytes, which, in conjunction with lymphocytes, such
as NK or T cells, function to orchestrate the peripheral inflammatory response, 427
mRNAs were upregulated and 448 mRNAs were downregulated compared to their
regulation in the mock-infected controls (Fig. 4B). In NK cells, which, besides their
cytotoxic properties, provide antimicrobial cytokine signals to trigger antibacterial
responses and antigen presentation, 372 mRNAs were upregulated and 37 were
downregulated upon infection (Fig. 4C).

During an acute response to infection, the endothelium functions to transmit the
local immune activation signals into the bloodstream to trigger a systemic response
(31). In line with this, among the 10 most highly induced mRNAs were those encoding
proinflammatory cytokines and immune cell-recruiting chemokines, such as IL-6,
CXCL6, and CXCL3L1 (Fig. 4A). Similarly, monocytes upregulated mRNAs encoding
major proinflammatory chemokines and systemically acting cytokines, such as CXCL5,
CXCL3, IL-1�, and IL-1� (Fig. 4B). Among the top induced mRNAs in NK cells were those
encoding neutrophil attractant IL-8 (CXCL8), endothelial cell attachment protein
TNFSF4, or the IL-1�/IL-1� decoy protein IL-1 receptor 2 (IL-1R2) (Fig. 4C), suggesting a
vital involvement of NK cells in tuning the vascular innate immune response. The
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induction of IL-8 was identified to be the common denominator of endothelial,
monocytic, and NK-cell responses (Fig. S2). Overall, only a few RNAs were induced in
more than one cell type (Fig. S2), illustrating the extensive division of labor during
innate immune responses to Salmonella.

Noteworthy was the finding that the response to infection by all three basolateral
cell types included the differential expression of dozens of lncRNAs which make up a
class of transcripts with emerging functions in vertebrate immunity (32, 33). Regulation
of selected lncRNAs in all cell types could be confirmed by quantitative real-time PCR
(qRT-PCR) analysis (Fig. 4A to C). These measurements also confirmed MSC-AS1 to be
a shared lncRNA marker of immune activation in endothelial cells and monocytes.
Together, these results demonstrate extensive rewiring of the coding and noncoding
transcriptomes of key human cell types involved in vascular immune activation during
intestinal Salmonella infection.

Host-pathogen transcriptomics of the infected epithelium. Dual RNA-seq simul-
taneously records the gene expression of a bacterium and its mammalian host, which
allowed us to study reciprocal host-pathogen adaptations during the epithelially
retained S. Typhimurium infection within FACS-separated IECs. Mapping of RNA-seq
reads from the bacterial input and epithelial mock-infected control libraries confirmed
almost exclusive alignment to the bacterial or human reference genome, respectively
(Fig. 5A). With regard to the infected samples, in the invaded (GFP-positive) but not in
the bystander (GFP-negative) epithelial cells, �1% of the total reads mapped to the
Salmonella genome (Fig. 5A), verifying successful separation of infected from nonin-
fected host cells at the cell sorting step. Comparison of these intracellular Salmonella
transcriptomes to previously recorded expression data for intracellular Salmonella
within human 2D monocultures (30) by PCA revealed a segregation according to
monocytic/macrophage and epithelial cell lineages (Fig. 5B). Salmonella genes prefer-
entially expressed during epithelial cell (but not monocyte) infections were enriched for
Gene Ontology (GO) terms relating to nitrogen compound metabolism (Fig. 5C). Thus,
our intestinal human tissue infection model recapitulates an epithelial cell-adapted
Salmonella gene expression program, arguing that the intraepithelial environment
drives Salmonella gene expression largely independently of the presence or absence of
additional host cell types in the culture.

Comparison of reads from intraepithelial Salmonella to those from the bacterial
input sample revealed the upregulation of 527 Salmonella mRNAs and the downregu-
lation of 145 Salmonella mRNAs (Fig. 5D). Host cell invasion by Salmonella requires the
activation of genes encoded by the SPI1 locus (4), whereas intracellular survival
depends on the expression of genes encoded by SPI2 (5). The switch from SPI1 to SPI2
gene expression involves the PhoP/Q two-component system (34), activation of which
is therefore necessary for intracellular survival (35). Accordingly, intracellular Salmonella
upregulated the expression of genes belonging to the PhoP regulon and SPI2-encoded
genes and downregulated the expression of SPI1 genes compared to the gene expres-
sion of the bacterial input (Fig. 5E). Host cell manipulation by Salmonella occurs
through effector proteins secreted through the T3SS encoded on SPI1 and SPI2. In line
with the activation of SPI2, expression of SPI2 T3SS-associated effectors, whether
encoded on SPI2 itself or within the core genome (except for SseG), was upregulated
in Salmonella inside flow-sorted IECs (Fig. 5F). On the other hand, SPI1-associated
effectors were largely downregulated (Fig. 5F).

Dual RNA-seq also captures the expression of bacterial noncoding transcripts,
particularly the class of small noncoding RNAs (sRNAs). Previously, we have uncovered
sRNA expression patterns during the intracellular phase of the Salmonella infection
cycle (30). Confirming that the bacterial expression patterns detected in FACS-enriched
GFP-positive IECs indeed reflect intracellular Salmonella transcriptome signatures, two
PhoP-activated sRNAs, PinT and AmgR (30, 36), were highly induced compared to their
expression in the bacterial inoculum (Fig. 5D). Additionally, our data reveal the regu-
lation of dozens of further sRNAs in intracellular Salmonella (Fig. 5D; Table S1). For
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instance, the homologous sRNAs RyhB and IsrE, which are activated under conditions
of iron scarcity (37, 38), were strongly induced by intracellular Salmonella, in accordance
with our previous findings (30). Conversely, among the downregulated sRNAs were
members of the SPI1 regulon, such as InvR (39) and DapZ (40). By Northern blotting, we
could validate the induction or repression of some of the most strongly regulated
sRNAs, as predicted from the dual RNA-seq data (Fig. 5G). Together, these results are in
line with the Salmonella virulence gene expression patterns previously observed in 2D
monoculture models and reflect the adaptation of Salmonella to the hostile intracellular
milieu within infected IECs.

Since our dual RNA-seq data reflect common patterns of Salmonella virulence gene
activation preceding the intracellular manipulation of host cell target pathways, we
next looked for signs of pathogen-induced alterations in infected IECs. Confirming the
initiation of an epithelial immune response by the intestinal barrier model, Salmonella
infection induced the expression of both coding (SOCS3, CXCL2, CXCL3) and noncoding
(NEAT1 [41]) immune-associated RNAs in IECs (Fig. 6A). Comparison of Salmonella-
invaded (GFP-positive) to bystander (GFP-negative) epithelial cells revealed genes
commonly induced in both cell populations to associate with the tumor necrosis factor
and NOD-like receptor innate immune-signaling pathways (Fig. S3B). Bystander cells
primarily activated NF-�B- and interferon regulatory factor (IRF)-dependent genes
(Fig. S3 and S4), among which IL-17-, chemokine-, and cytokine-signaling pathways
were overrepresented. Different from bystander cells, Salmonella-invaded IECs showed
a specific activation of JAK/STAT3-dependent genes (Fig. S3), including SOCS3, FGA, and
FGB, in invaded IECs (Fig. 6B). While suppressor of cytokine signaling 3 (SOCS3) is a
major posttranscriptional regulator of immune signaling, fibrinogen alpha and beta
(FGA and FGB) are involved in wound healing and direct antimicrobial defense (42) and
have recently been revealed to be Salmonella-induced STAT3-dependent genes (43).
Consequently, Western blot analysis confirmed the previously reported activation of
STAT3 phosphorylation by Salmonella (30, 43, 44) (Fig. 6C). In line with the known role
of secreted Salmonella effectors in STAT3 phosphorylation (43), no phosphorylation
signal was detected when infections were carried out with a Salmonella mutant devoid
of the SPI1 and SPI2 pathogenicity islands (strain ΔSPI1/2; Fig. 6C). Together, this
confirms that STAT3 signaling is a central host target reprogrammed by intracellular S.
Typhimurium, as has previously been reported in 2D epithelial monocultures (30, 43,
44). However, the relevance of STAT3 activation by Salmonella in the context of a
complex, multicell-type infection is unclear, partially due to the lack of suitable model
systems. Therefore, in the next part of the study, we utilized the 3D tissue model to
determine to what degree this major Salmonella manipulation strategy impacts host
immunity within and beyond the intestinal epithelial compartment.

T3SS-dependent STAT3 activation creates a locally restricted inflammatory
environment. To study the impact of STAT3 activation by Salmonella on the human
intestinal environment, we constructed a STAT3-knockout Caco-2 IEC line using CRISPR/
Cas9-based genome editing. Western blot analysis confirmed the loss of STAT3 expres-
sion in the epithelial lining of barrier models established with these mutant IECs
(Fig. 6D, top). Counting of the number of Salmonella CFU recovered from infected IECs
suggested a reduction in bacterial loads when STAT3 was absent, which, however, did
not prove significant at the level of a P value of �0.05 (Fig. 6D, bottom). qRT-PCR
analysis confirmed the expected loss of SOCS3, FGA, and FGB induction in STAT3-
deficient Salmonella-invaded (GFP-positive) IECs (Fig. 6E). The Salmonella-induced
downregulation of GSTA1, as a control, remained unaltered by STAT3 knockout (Fig. 6E).

We then measured the inflammatory status on both sides of the barrier in wild-type
and STAT3-deficient tissue models by cytokine enzyme-linked immunosorbent assays
(ELISAs) for IL-6 and IL-8 (Fig. 7A). IL-6 may amplify STAT3 activation and promote IEC
survival (45, 46), whereas IL-8 functions as the major neutrophil attractant (10). To
assess the role of Salmonella virulence genes in the production of these key proinflam-
matory cytokines, infections were carried out with either the parental Salmonella strain
or the ΔSPI1/2 mutant. On the apical side (epithelial compartment), the levels of both
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cytokines were highly elevated at 24 h after Salmonella challenge compared to those
after mock treatment (Fig. 7B). Interestingly, IL-6 but not IL-8 levels were markedly
reduced in tissue models built with STAT3-knockout IECs compared to the levels in
models built with wild-type IECs (Fig. 7B). In contrast, compared to the levels seen upon
wild-type Salmonella infection, we detected markedly reduced levels of both IL-6 and
IL-8 upon infection with the ΔSPI1/2 strain (Fig. 7B). These results suggest that Salmo-
nella elevates extracellular IL-6 and IL-8 levels in the epithelial compartment in a
T3SS-dependent manner. However, only induction of IL-6 depends upon the
Salmonella-triggered STAT3 phosphorylation, while IL-8 levels appear to be manipu-
lated through a different mechanism.

Epithelial STAT3 activation seems to promote Salmonella infection (43) (Fig. 6D,
bottom), which suggests that enforced production of the STAT3 inducer IL-6 serves
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Salmonella to propel the establishment of its infection niche. In line with this assump-
tion, stimulation of wild-type but not STAT3-deficient IECs with recombinant human
IL-6 led to elevated Salmonella CFU counts (Fig. 7C). This suggests that the Salmonella
T3SS-mediated, STAT3-dependent elevation of IL-6 levels is part of a self-amplifying,
positive-feedback mechanism promoting epithelial infection (Fig. 7D). To determine
whether the T3SS-dependent manipulation of cytokine production represents a local
Salmonella virulence strategy or extends to the vascular immune compartment, IL-6
and IL-8 levels were also measured on the basolateral (vascular) side of intestinal barrier
models. Both IL-6 and IL-8 levels were highly elevated in the vascular compartment of
apically infected models. Noteworthy was the finding that their induction was largely
independent of the presence of both the STAT3 alleles in epithelial cells and Salmo-
nella’s SPI1 and SPI2 virulence gene clusters (Fig. 7B). This reveals a highly localized
manipulation of the proinflammatory human host response by Salmonella that, differ-
ent from the situation in infected mice, remains restricted to the intestinal compart-
ment.

DISCUSSION

Studies of Salmonella interaction with human host cells have been largely limited to
cell line monocultures or cocultures, such as Caco-2 cells, as an accepted surrogate for
the intestinal epithelium (20, 47). These standard culture models, however, cannot fully
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mimic the complex interaction between Salmonella and the different host cell types
present on either side of the mucosal/endothelial barrier in the intestine. Advanced, 3D
culture methods to model the intestinal lining, e.g., based upon organoid or rotating-
wall vessel approaches, have been employed for bacterial infection studies (21); how-
ever, they often lack a professional immune cell component or neglect the vascular
compartment of the intestinal barrier. Other test systems recapitulate the responses of
professional circulating human immune cells while, however, neglecting the epithelial
and endothelial cell entities (48).

Organoid cultures, which harbor a physiological mixture of specialized epithelial cell
types, have also been employed to study the S. Typhimurium interaction with intestinal
human cell layers (49, 50). While organoid models represent a promising approach for
mimicking bacterium-host interactions at physiologically differentiated gastrointestinal
epithelia (51), they cannot be easily modified to contain accessory tissue structures,
such as vasculature. Alternatively, modular human organ-on-a-chip models were de-
veloped to facilitate, e.g., human disease modeling and drug discovery (52). Despite
inclusion of a vascular component and immune cells, these models, however, remain
difficult to scale, suffer from a low biomaterial yield for downstream analyses, and use
a synthetic instead of a physiological barrier matrix. Alternatively, Transwell-based
infection systems populated with apical epithelial and basolateral endothelial cells
were proposed to model the intestinal epithelium-blood barrier (53). Such models,
however, typically involve artificial collagen-coated membranes, neglecting the com-
plexity and fine structure of the primary intestinal collagen scaffold.

Different from the above-described models, we have introduced here a bioengi-
neered intestinal barrier model in a Transwell-like format composed of a decellularized
porcine gut matrix populated with key cellular components, including human IECs,
microvascular endothelial cells, and peripheral blood leukocytes. This 3D coculture
model allowed us to mimic the interplay of S. Typhimurium with major human host cell
components during the acute phase of an intestinal infection. To the best of our
knowledge, our study is the first to establish human cocultures of epithelium, endo-
thelium, and peripheral blood leukocytes based on a decellularized gut scaffold to
reveal bacterial virulence strategies. As we report here, this tissue engineering ap-
proach reproduces the epithelium-restricted S. Typhimurium infection observed in
human patients. While it is possible that the underrepresentation of neutrophils, which
may serve Salmonella as Trojan horses to transmigrate through the epithelial layer (54),
contributes to this observation, microfold (M) cells, through which Salmonella may
traverse the epithelium, very likely exist in our model, as shown in previous studies and
also by us, using electron microscopy (55, 56). It would be an exciting task to study the
cellular and molecular basis for epithelial pathogen containment in our model in the
future.

We have used our tissue modeling approach to investigate whether and how
Salmonella virulence strategies discovered in conventional 2D cultures contribute to
host manipulation and affect the immune response at the human intestinal barrier.
Previously, Salmonella has been shown to employ a number of secreted virulence
effectors to activate the host STAT3 pathway during its intracellular stage (30, 43, 57,
58). Our previously performed dual RNA-seq analysis with epithelial monocultures
allowed us to monitor the expression kinetics of S. Typhimurium SPI1 and SPI2
virulence gene clusters during distinct stages of epithelial cell infection and revealed a
major role of the Salmonella sRNA PinT in timing the transition of virulence programs
(30). S. Typhimurium has previously been reported to impact the activity of the host
JAK/STAT pathway to establish its intracellular infection niche (43). Interestingly, we
found that the control of Salmonella virulence gene expression by PinT contributes to
host JAK/STAT manipulation, likely through altered expression of the important path-
way regulator SOCS3 (30). These findings illustrate that dual RNA-seq is capable of
identifying bacterial virulence strategies during infection, as well as the counterre-
sponses of the infected host cells.

Our present dual RNA-seq data further corroborate that STAT3 constitutes a central
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host target of Salmonella at the infected intestinal barrier (Fig. 7D), and we reveal how
this virulence strategy differentially affects the local and vascular responses. We show
that epithelial activation of STAT3 signaling culminates in increased apical IL-6 secre-
tion, which in turn further amplifies STAT3 signaling to promote the survival and
proliferation of intestinal epithelial cells (45, 59). Salmonella, in turn, benefits from
STAT3 activation (57), as increased host cell survival maintains its intracellular replica-
tion niche. Besides IL-6, we also noticed the manipulation of IL-8 levels in the apical
compartment by Salmonella in a T3SS-dependent but STAT3-independent manner. This
might be a consequence of the previously reported manipulation of proinflammatory
mitogen-activated protein kinase (MAPK) signaling by Salmonella (16, 60). Interestingly,
the manipulation of cytokine levels remains restricted to the epithelial compartment, as
basolateral (vascular) cytokine levels were independent of Salmonella’s T3SSs. Induction
of the endothelial immune response might in this case involve soluble factors produced
by the epithelium or Salmonella immune agonists, such as lipopolysaccharide (LPS),
traversing across the intestinal barrier.

While our results suggest that Salmonella uses its T3SSs to remodel the inflamma-
tory microenvironment at the site of infection, the contribution of the T3SSs to
epithelial cell invasion during acute infection remains controversial. Whereas invasion
of 2D epithelial cell cultures requires the SPI1 T3SS, in a previous study using epithelial
3D cell cultures induced by a rotating-wall vessel system, an invasion defect was not
observed either for a SPI1 T3SS mutant or for a SPI1/2 T3SS double mutant (61). The
latter finding contrasts with the observation made here that the SPI1 T3SS is still
required for epithelial cell invasion in the 3D intestinal tissue model. These discrepan-
cies might be explained by either Salmonella strain-specific differences or disparities in
the epithelial cell polarization methods and the extracellular matrix composition be-
tween the two studies. Interestingly, the global gene expression profile of intracellular
Salmonella did not markedly differ from the transcriptomic patterns of this pathogen
during growth inside epithelial cells in 2D monocultures (30). This implies that Salmo-
nella adaptation of global gene expression in the intracellular environment is indepen-
dent of the presence or absence of additional host cell types in the infected culture.

We would like to emphasize that the downstream effects of the infection on
endothelial and professional immune cells uncovered in our coculture model here were
missed in previous infection studies with 2D monocultures. Thus, the spatial restriction
of Salmonella’s T3SS-dependent epithelial manipulation could be identified only in the
present coculture model. Most importantly, this localized manipulation strategy is in
line with the epithelium-restricted infection observed in human in vivo scenarios but
cannot be recapitulated using small-animal models. We are confident that our human
intestinal barrier model will be a valuable tool to study the virulence mechanisms of
further pathogens for which 2D monocultures are too simplistic to uncover in vivo-
relevant virulence strategies and for which whole-animal models can only imperfectly
reconstitute human disease phenotypes.

The limitations of our model also need to be discussed. Caco-2 cells, which are
regarded as a valid IEC model in 3D cocultures (47), do not recapitulate the full
complexity of the mucosal epithelium. As an alternative cell source, primary intestinal
cells, e.g., cells from biopsy-derived material, can be grown as organoid cultures, while
epithelial cell monolayers can be maintained for subsequent implementation into the
barrier model (62). Further improvements may be achieved by the use of bioreactor
models, applying agitation for a more physiological differentiation and, thus, infection
of the epithelium (53, 63). Furthermore, resident mucosal immune cell populations may
be integrated (47) to study the role of local antigen-presenting cells in infection and
their manipulation by bacterial pathogens. In mice, resident and recruited phagocytes
may perturb the epithelial barrier or be hijacked by Salmonella, thereby contributing to
the systemic dissemination of the pathogen (54). In further iterations of our intestinal
model, the contributions of phagocytes to the restriction of Salmonella infection to the
epithelial compartment in humans could be studied, e.g., by adding or depleting
neutrophils or dendritic cells at both sides of the epithelial barrier. Besides improving
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host cell composition, the apical compartment could be precolonized with bacterial
species of the commensal gut microbiota to study competition with and protection
against pathogenic invaders. Even if they are further improved in these ways, artificial
intestinal barrier models may provide only limited insight into human systemic infec-
tion processes.

Humanized mice have been used to study, e.g., systemic infections caused by the
human-obligate pathogen Salmonella Typhi (64, 65). However, the limited cross-species
activity of key immune mediators, such as IL-6 or granulocyte-macrophage colony-
stimulating factor (66), and the persisting differences in immune responses by nonim-
mune cells constitute the major disadvantages of these models. Alternatively, human
intestinal tissue models, e.g., models mimicking the blood pulse of the vascular
compartment and the peristaltic contractions of the intestine for a more physiological
tissue differentiation (62, 67), may be linked to other organ models (e.g., liver or kidney)
through bioartificial vasculature to study human infection processes on a more sys-
temic level. Furthermore, recent advances in organ-on-a-chip technology (68–70) may
enable the affordable, modular assembly of such communicating human organ systems
to mimic systemic infection outcomes. While these potential improvements may bring
bioartificial human infection models closer to actual physiological conditions, they also
add additional complexity and are difficult to control by nonexpert users. We thus
regard our present model to be a reasonable compromise between complexity and
broad applicability.

Follow-up studies may combine our tissue modeling approach with other emerging
technologies to advance the understanding of infectious diseases at the molecular
level. For example, here we have used flow sorting and dual RNA-seq to study the
reciprocal adaptation of host and pathogen gene expression at the intestinal barrier.
Further resolution may be obtained by combining our model with single-cell RNA-seq
(71) to chart the communication of individual cells at both sides of the infected
intestinal barrier, without limitation to defined cell populations. Our model may also
constitute an attractive platform for subsequent human gene loss-of-function studies,
using the CRISPR/Cas9 technology, to address potential therapeutic interventions at the
intestinal barrier. Altogether, we are confident that the present approach will advance
research on human infectious diseases and antimicrobial strategies beyond Salmonella
infections.

MATERIALS AND METHODS
Tissue model setup. Colorectal Caco-2 cells were cultured in cell culture flasks using minimum

essential medium (MEM) supplemented with 20% fetal calf serum (FCS), 1% sodium pyruvate, and 1%
nonessential amino acids, until seeding onto the collagen scaffold. Microvascular endothelial cells from
foreskin were obtained via a previously published protocol (72) and expanded in VascuLife vascular
endothelial growth factor (VEGF)-Mv medium (Lifeline Cell Technology) until seeding onto the collagen
scaffold (72). Primary human blood leukocytes were isolated from fresh buffy coats by Lymphoprep (Axis
Shield) gradient centrifugation according to the manufacturer’s instructions. Upon two washes with
phosphate-buffered saline (PBS), the leukocytes were resuspended in 1:1 VascuLife (Lifeline Cell
Technology)–X-Vivo-15 (Lonza) medium. Tissue models were based on modified biological vascularized
scaffolds (BioVaSc) (62) fixed in custom-made cell crowns with a surface area of 1.1 cm2, separating the
apical compartment from the basolateral compartment. Caco-2 cells were seeded on the mucosal side
of the biological scaffold with a preserved crypt and villus structure at a density of 0.3 � 106 cells per cell
crown and cultured for 21 days under static culture conditions. Cell culture medium (as described above)
was exchanged three times a week. On day 17, the barrier integrity of the models was determined by
analysis of fluorescein isothiocyanate (FITC)-dextran permeation (4 kDa; Sigma-Aldrich). Models with a
relative permeability of �1.5% were discarded. On day 18, 0.4 � 106 endothelial cells were seeded on the
basolateral side of the scaffold in a medium volume of 20 �l. After an incubation period of 1 to 2 h to
allow the endothelial cells to adhere, Caco-2 cell medium (see above) was added to the apical
compartment and VascuLife VEGF-Mv medium (Lifeline Cell Technology) was added to the basolateral
compartment. Leukocytes (106) were supplemented into the basolateral compartment (6-well format,
2-ml total volume of 1:1 VascuLife–X-Vivo-15 medium) on the day of the infection experiment.

Salmonella infection assays. Cells of GFP-expressing S. Typhimurium strain SL1344 (29) or an
SPI1/SPI2-deficient mutant thereof (73) were grown to an optical density at 600 nm of 2.0 in LB medium
at 37°C with shaking at 180 rpm. Upon one wash in Caco-2 cell medium, bacteria were supplemented
into the apical compartment of the barrier model at a multiplicity of infection (MOI) of 10 (i.e., 10
bacteria/Caco-2 cell). Extracellular bacterial replication was prevented by addition of gentamicin (final
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concentration, 20 �g/ml) into the apical compartment at 1 h postinfection. At the time points after
infection indicated above (see text and figures in Results), epithelial and endothelial cells were collected
directly from the scaffold by trypsin-Accutase cell detachment solution treatment upon 2 washes with
PBS. Leukocytes were collected directly from the basolateral compartment and further purified by cell
sorting (see below). For CFU assays, Caco-2 cells were lysed with PBS containing 0.01% Triton X-100. The
lysates were serially diluted in PBS and plated onto LB agar, followed by overnight incubation at 37°C.
Control samples were mock treated (mock treatment was same treatment used for the infected samples
but with the addition of sterile medium instead of the bacterial suspension).

CRISPR/Cas9-based genome editing. A synthetic DNA segment (Metabion; see Table S2 in the
supplemental material) was cloned into the BbsI site of the pX458 CRISPR vector (from the F. Zhang lab
[74] through Addgene) for expression of a guide RNA targeting the STAT3 coding sequence. Caco-2 cells
were transfected with 1 �g of plasmid DNA using the Lipofectamine 2000 reagent (Thermo Fisher)
according to the manufacturer’s instructions. At 24 h after transfection, single transfected (GFP-positive)
cells were spotted into 96-well plates that had been prefilled with complete medium containing 100
�g/ml of the Normocin antibiotic mixture (Invivogen), using a FACSAria III cell sorter (BD) with a 100-�m
nozzle size. During clonal expansion in the wells of the 96-well plate, fresh medium was added every
5 days. Knockout success was evaluated by PCR amplification of the STAT3 coding sequence from
genomic DNA and confirmed by Sanger sequencing (Seqlab GmbH, Göttingen, Germany).

Quantitative real-time PCR. qRT-PCR analyses were carried out using a Power SYBR green RNA-to-Ct
1-step kit (Thermo Fisher) according to the manufacturer’s instructions and a QuantStudio3 real-time PCR
machine (Applied Biosystems). RNA was extracted using the TRIzol reagent (Thermo Fisher) method. To
remove genomic DNA, the extracted nucleic acids were incubated with DNase I (Thermo Fisher) and an
RNase inhibitor (Promega) for 30 min at 37°C and subsequently extracted with phenol-chloroform-
isoamyl alcohol (Sigma-Aldrich), followed by precipitation with 30:1 ethanol–5 M sodium acetate. The
qRT-PCR primers are listed in Table S2. Fold changes based on threshold cycle (CT) values were calculated
using the 2�ΔΔCT method (75), and human U6 snRNA was used as an internal reference.

Immunostaining and flow cytometry. Cells collected from the barrier model were analyzed using
a FACSCalibur or a FACSAria III device (BD). To purify monocytes and NK cells from the collected
leukocytes, the cells were stained with anti-CD14-FITC (catalog number 11-0149-42; Thermo Fisher) and
anti-CD56-allophycocyanin (catalog number 17-0567-41; Thermo Fisher) antibodies in PBS, 0.1% FCS and
sorted using a FACSAria III device (100-�m nozzle, single-cell purity setting). FCS3.0 files were analyzed
using Flowing software (http://flowingsoftware.btk.fi/).

Dual RNA-seq and computational analyses. For RNA-seq analysis, cellular RNA was extracted using
a mirVana RNA isolation kit (Thermo Fisher) according to the total RNA isolation protocol supplied with
the kit. rRNA was depleted using a Ribo-Zero gold (epidemiology) kit (Illumina). Libraries were generated
and sequenced on a NextSeq 500 platform at Vertis Biotech (Freising, Germany) as previously described
(30). Demultiplexed reads were mapped to the GRCh38 human reference annotation using the CLC
Genomics Workbench (Qiagen) with standard settings (mismatch cost 	 2, insertion cost 	 3, deletion
cost 	 3, length fraction 	 0.8, similarity fraction 	 0.8). The data tables obtained were filtered for genes
with a number of reads per kilobase per million (RPKM) value of �0.5 in both sequenced replicates under
at least one experimental condition. Genes exhibiting fold changes in expression of �2 or �0.5
(calculated based on RPKMs) in both replicates were considered differentially expressed. Hierarchical
clustering was performed using the Cluster program (Michael Eisen lab) with the correlation (uncentered)
similarity metric and the centroid linkage clustering method. Heat maps were generated using the Java
TreeView program (76). PCA analysis was done in R software using the script prcomp (stats) and the rgl
package. Network plots were generated with Cytoscape software (version 3.7.1). KEGG pathway analysis
and induced network analysis were performed using the ConsensusPathDB molecular functional inter-
action database (77).

Bacterial bioinformatics analyses (Fig. 5B and C) were performed as follows. Samples including genes
with an RPKM of �1 in at least one sample and a coefficient of variation of �0.5 were subjected to a
3-dimensional principal-component analysis (with the R software scatterplot3d package, version 0.3-41),
using log2(RPKM) values as the input. Unsupervised complete linkage clustering (with the R software
heatmap.2 function from the gplots package, version 3.0.1.1) was performed on rows and columns using
the Euclidian distance as a similarity metric and log2(RPKM) values as the input. Salmonella GO term
enrichment analysis (Fig. 5C) was performed using the ShinyGO tool (version 0.60; http://bioinformatics
.sdstate.edu/go/) for the GO term biological process with an FDR cutoff of 0.05.

Western blot analysis. For Western blot analysis, samples were collected in radioimmunoprecipi-
tation assay buffer supplemented with Laemmli buffer and boiled for 5 min. Proteins were separated on
10% polyacrylamide-SDS gels and transferred onto nitrocellulose membranes (catalog number
10600015; Amersham) by semidry blotting. Proteins were detected using anti-STAT3 (catalog number
9139; Cell Signaling), anti-phospho-STAT3 (catalog number 9134; Cell Signaling), and anti-actin (catalog
number sc-1616; Santa Cruz) primary antibodies, horseradish peroxidase-linked secondary antibodies,
and an enhanced chemiluminescence (ECL) reagent (catalog number RPN2232; Amersham). Images were
obtained using an Intas Advanced ECL imager system.

Histology. Tissue samples were fixed with 4% paraformaldehyde for 1 h at 4°C. Samples were
embedded in paraffin and sectioned to a thickness of 5 �m with a microtome (model SM2010 R; Leica).
Tissue slices were first deparaffinized using the Roticlear clearing agent (Carl Roth) and rehydrated in a
graded series of ethanol according to standard protocols. Characterization of the tissue samples was
done by immunofluorescence staining. For antigen retrieval, tissue slices were heat pretreated at 100°C
for 20 min in pH 6 citrate buffer (Carl Roth). After blocking unspecific binding by PBS with 0.3% Triton
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X-100 (Sigma-Aldrich), 5% bovine serum albumin (BSA; PanReac AppliChem), and 5% donkey serum
(Biozol) for 30 min, the slices were incubated with primary antibodies at 4°C overnight. The following
primary antibodies were used at a 1:100 dilution: pan-cytokeratin (pCK; specific for epithelial cells; Dako),
CD31 (endothelial cell specific; Abcam), and LPS (for the detection of Salmonella; Abcam). After washing,
anti-mouse/anti-rabbit immunoglobulin-Alexa Fluor 555 and -Alexa Fluor 647 secondary antibodies were
added at a dilution of 1:400 in antibody dilution solution, and the mixture was incubated for 1 h at room
temperature. Samples were mounted using Mowiol mounting medium with DAPI (4=,6-diamidino-2-
phenylindole; Sigma-Aldrich) for nuclear staining. Imaging was achieved using an inverted fluorescence
microscope (Keyence BZ-9000).

ELISA. Enzyme-linked immunosorbent assays (ELISAs) were performed using human IL-6 (catalog
number 88-7066-86) and IL-8 (catalog number 88-8086-86) Ready-Set-Go ELISA kits (Thermo Fisher)
according to the manufacturer’s instructions. The cell culture supernatants were centrifuged for 1 min at
maximal speed to pellet the cell debris, and samples were used at a 1:10 (IL-6) or 1:150 (IL-8) dilution. The
samples were analyzed using a Tecan Sunrise plate reader, and absolute quantification was achieved
using the cytokine standards supplied with the ELISA kit.

Data availability. RNA-seq data have been uploaded to the NCBI GEO repository (GEO accession
number GSE136717).
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