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Abstract

The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for
fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are
landlocked water bodies that maintain a marine character through narrow submarine connections to the sea and could be
regarded as the marine equivalents of terrestrial islands. The sponge Suberites diversicolor (Porifera: Demospongiae:
Suberitidae) is typical of marine lake habitats in the Indo-Australian Archipelago. Four molecular markers (two mitochondrial
and two nuclear) were employed to study genetic structure of populations within and between marine lakes in Indonesia
and three coastal locations in Indonesia, Singapore and Australia. Within populations of S. diversicolor two strongly
divergent lineages (A & B) (COI: p = 0.4% and ITS: p = 7.3%) were found, that may constitute cryptic species. Lineage A only
occurred in Kakaban lake (East Kalimantan), while lineage B was present in all sampled populations. Within lineage B, we
found low levels of genetic diversity in lakes, though there was spatial genetic population structuring. The Australian
population is genetically differentiated from the Indonesian populations. Within Indonesia we did not record an East-West
barrier, which has frequently been reported for other marine invertebrates. Kakaban lake is the largest and most isolated
marine lake in Indonesia and contains the highest genetic diversity with genetic variants not observed elsewhere. Kakaban
lake may be an area where multiple putative refugia populations have come into secondary contact, resulting in high levels
of genetic diversity and a high number of endemic species.
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Introduction

It has long been hypothesized that marine species have large

geographic ranges with large population sizes, and are faced with

weaker barriers to dispersal than terrestrial organisms, thus

resulting in relatively slow rates of speciation (e.g. [1]). The

assumed presence of circum-tropical species has supported this

view. However, recent phylogeographic and population genetic

studies on marine taxa portray a situation of ecologically

heterogeneous environments on small spatial scales with several

morphologically cryptic species instead of cosmopolitan species

(e.g. [2,3,4,5,6,7,8]). These results suggest that there may be many

more barriers to dispersal at small spatial scales than we are able to

observe [1,9,10]. The existence of multiple independently derived

populations in landlocked marine lakes provides an opportunity

for fundamental research into the role of isolation in population

divergence and speciation in marine taxa [11]. Marine lakes are

anchialine systems, which are landlocked water bodies that

maintain a marine character through narrow submarine connec-

tions to the sea (Fig. 1; [12]). The marine lakes share many

characteristics with island systems [13]: they are well-defined

geographically [14,15,16], harbor unique biota with high ende-

mism and/or an abundance of species rare that are elsewhere

[16,17,18,19,20,21], and isolated populations [11,22,23]. The

marine lakes in the Indo-Pacific were formed less than 12,000

years ago [13,24], yet their biodiversity is unique. Consistent with

island biogeography theory [25,26,27] larger lakes harbor more

species than smaller ones and the most isolated lakes contain the

highest number of putative endemics, while the more connected

lakes are dominated by reef species [15,16,19]. The degree of

isolation thus appears to influence the species diversity within the

lakes. In the present study our overall aim was to obtain insight

into the role of isolation on the genetic diversity of marine lake

populations.

Phylogeographic studies of anchialine systems across the world

typically show high levels of genetic differentiation between marine
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lake populations, suggesting little to no gene flow at small spatial

scales ranging from 10 to 100 km (Table 1). Furthermore,

molecular markers revealed the presence of highly divergent, but

morphologically cryptic species in a number of taxa such as

cnidarians, crustaceans, fish and mollusks [11,22,23,

28,29,30,31,32]. There are, however, exceptions to this general

pattern, which have been interpreted as resulting from life history

strategies involving greater dispersal capabilities [33] or too limited

sampling [34].

Here we have conducted the first phylogeographic study of

Indonesian marine lake populations. The sponge species Suberites

diversicolor [Porifera: Demospongiae: Suberitidae] is an ideal taxon

to pursue this study as it allows comparison of multiple lakes at

various scales and with varying degrees of connection to the sea

(Fig. 1b). There are few other species that are prevalent in marine

lakes [16]. Suberites diversicolor occurs in most moderately to highly

isolated marine lakes in Indonesia [16], as well as in limited

numbers of small populations in sheltered bays in Singapore,

Indonesia and Australia [35]. This species shows great plasticity in

adapting to harsh environments (low salinity and exposure to air)

yet is absent in coral reefs [16,19,36,37]. Sponges are one of the

most dominant taxa in marine lakes in terms of biomass and

species diversity [16,17]. Recent comprehensive studies of sponge

assemblages of marine lakes, coastal mangroves and coral reefs in

Berau (East Kalimantan, Indonesia; Fig. 2) indicated that these

lakes harbor a significantly different assemblage consisting of a

subset of the fauna of the adjacent sea [21,36]. Particularly the lake

Kakaban harbors almost 33% of species not present in the

surrounding [21]. The specific aims of this study were: 1) to

estimate levels of diversity and divergence of seven marine lake

populations and three coastal populations using two mitochondrial

and two nuclear markers, 2) to study the phylogeography of S.

diversicolor populations in marine lakes across Indonesia, 3) to

investigate possible relationships between genetic diversity and the

level of isolation of the lakes.

Materials and Methods

Permits
Indonesia: to L. Becking East Kalimantan IN 2008&2009:

0094/frp/sm/v/2009 and 1810/FRP/SM/VIII/2008; West Pa-

pua in 2011: 098/SIP/FRP/SM/V/2011.

Singapore: Singapore National Biodiversity Center collection

permit to S.C. Lim,

Australia: Museum and Art Gallery of the Northern Territory

permit to B. Alvarez.

Sampling
Twenty four marine lakes and adjacent coastal habitats in

Indonesia were thoroughly surveyed by snorkeling for the presence

of the sponge Suberites diversicolor. Populations of Suberites diversicolor

were located in seven marine lakes (29% of all surveyed lakes) in

the region of Berau, East Kalimantan province (Kakaban lake,

Haji Buang lake, Tanah Bamban lake) and the regions of

Northern Raja Ampat (Cassiopeia lake, Urani lake, Sauwandarek

lake) and Southern Raja Ampat (Misool Jellyfish lake) in West

Papua province, and in mangroves along the coast of the island of

Maratua in the region of Berau, East Kalimantan province (Fig. 2).

Additional coastal populations were sampled from Johor Straight

in Singapore (collected by S.C. Lim) and the man-made open

Lake Alexander in Darwin, Australia (collected by B. Alvarez),

resulting in a total of seven marine lake populations and three

coastal populations sampled for this study (Fig. 2). The lakes

Kakaban, Tanah Bamban, Haji Buang and Misool house

immense perennial populations of the jellyfish Mastigias papua such

as those that have been extensively documented in five marine

lakes in Palau. For a full description of the sampled marine lakes,

Figure 1. A Suberites diversicolor purple color morph. B Landlocked
marine lakes in Raja Ampat Indonesia.
doi:10.1371/journal.pone.0075996.g001

Table 1. Overview of published genetic variation in populations within anchialine systems.

Anchialine
system Location Taxon Marker(s) Structure

Scale of
differentiation Reference

Lake Palau Mastigias papua mtDNA COI & nDNA ITS each lake private haplotypes 1–50 km [11,59]

Lake Palau Brachidontes sp. mtDNA COI divergent species; each lake private
haplotypes

1–50 km [22]

Lake Palau Sphaeramia orbicularis mtDNA control region lakes reduced diversity private
haplotypes

1–50 km [23]

Pool Hawaii island Holocaridina rubra mtDNA COI each pool private haplotypes 30–50 km [28]

Pool Hawaii Archipelago Halocaridina rubra mtDNA COI each pool private haplotypes 10–50 km [29]

Pool Maui &Hawaii Halocaridina rubra mtDNA COI each pool private haplotypes 1–100 km [94]

Pool Hawaii Archipelago Metabenaeus lohena mtDNA COI panmixia 25–300 km [33]

Cave Philippines Neritilia cavernicola mtDNA COI panmixia 200 km [34]

Cave Australia Stygiocaris lancifera mtDNA COI 16S divergent species 10–100 km [30]

Cave Spain Metacrangonyx longipes mtDNA COI 16S histone divergent species 20–100 km [32]

Cave Mexico Creaseria morleyi mtDNA COI 16S divergent populations 10–100 km [31]

doi:10.1371/journal.pone.0075996.t001

Phylogeography of Suberites diversicolor
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Figure 2. A Sample locations of the sponge Suberites diversicolor: top three maps represent distribution and frequencies of haplotypes for partial
Cytochrome Oxidase I (COI) and bottom three maps of genotypes of internal transcribed spacer region (ITS) in Indonesia Singapore and Australia with
insets of Berau (East Kalimantan left) and Raja Ampat (West Papua right) in Indonesia; location codes are explained in Table 2; circles represent marine
lakes and squares are coastal populations; haplo/genotypes are indicated by number code (COI: C1-4 and ITS: T1-9) and color codes as provided in B.
Note that scale differs per map. B Bayesian/maximum likelihood phylogram of 105 COI sequences (right) and 104 ITS sequences (left); each haplo/
genotype indicated by specific color followed by location code and total number of samples in squared brackets. Only posterior probabilities of .90

Phylogeography of Suberites diversicolor
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see Becking et al. [16]. The number of marine lakes worldwide is

estimated at approximately 200 with clusters of ten or more lakes

occurring in areas with a karstic limestone landscape such as

Croatia, Bermuda, Vietnam, Palau, and Indonesia [20]. The lakes

are formed in natural inland depressions and are subjected to a

tidal regime, which is typically delayed in phase (ranging from 20

minutes to 4 hours) and dampened in amplitude (tide ranging

from 20 cm to 1.5 m) compared to the adjacent sea [16,17]. The

level of obstruction of water exchange, i.e. the degree of isolation,

differs per lake as does the salinity and environmental regimes

within the lakes [14,16]. The relative degree of isolation of each

marine lake is provided in Table 2.

Collections were made randomly along the entire coastline of

each of the lakes and specimens were collected at least 25 m

distance from each other to avoid collecting clone siblings. Our

aim was to collect 20 individuals per location, but in most locations

the resident population size was too small to attain this target (see

Table 2). Hence, sample sizes are small for some locations. The

color and substrate of each specimen was recorded, and a

photograph was taken either in situ or within 2 hours after

collection. After collection, portions of the choanosome were cut

into approximately 125 mm3 cubes, avoiding the surface to

minimize potential contamination with protists or other sponge

associates, and preserved in 96% ethanol, which was refreshed

after 24 hours. The remainder of the samples were preserved in

70% ethanol and deposited in the Porifera collection of the

Naturalis Biodiversity Center, The Netherlands (RMNH POR.) as

voucher specimens. The investigated specimens are listed in the

Appendix A.

DNA Extraction, Amplification and Sequencing
Total DNA was extracted from 105 specimens using DNeasy

tissue kit (Qiagen), following the instructions of the manufacturer.

Partitions of four markers were amplified: two mitochondrial

genes, cytochrome oxidase subunit 1 (COI) and subunit 2 (COII),

and two nuclear markers, the nuclear ribosomal operons consisting

of partial 18S rDNA, full-length internal transcribed spacer 1 and

2, 5.8S, and partial 28S rDNA fragments (ITS) and the D3–D5

region of the nuclear ribosomal 28S gene (28S). The nuclear

markers are independent from the mitochondrial markers and

therefore provide extra support in case of congruent results.

The standard DNA-barcoding fragment of COI was amplified

by using a specific forward primer designed for Suberites SUB-COI-

F: GGAATGATCGGGACAGCTTTTAGCATG and a degen-

erated reverse primer from Folmer et al. [38] designed by Meyer

et al. [39]: dgHCO2198: TAA ACT TCA GGG TGA CCA AAR

AAY CA. COII was amplified with the primers from Rua et al.

[40]: CO2F: TTTTTCACGATCAGATTATGTTTA and

CO2R: ATACTCGCACTGAGTTTGAATAGG. ITS amplified

with primers from Wörheide (1998) RA2: GTCCC-

TGCCCTTTGTACACA and ITS2.2: CCTGGTTAGTTTCT-

TTTCCTCCGC. 28S was amplified in a subset of samples with

primers from McCormack and Kelly (2002) RD3A:

GACCCGTCTTGAAACACGA and RD5B2: ACACACTCCT-

TAGCGGA. Amplifications were carried out in 25 ml reaction

volumes containing 5 ml PhireH Reaction Buffer,3 ml dNTPs

(1 mM), 0.625 ml of each primer (10 mM), 0.25 ml PhireH Hotstart-

Taq polymerase DNA (Thermo Scientific, Finnzymes), and 1 ml of

DNA (10–20 ng/ml). The temperature regime for amplification:

94uC for 30 s; followed by 35 cycles of 94uC for 5 s; 50uC for 5 s;

72uC for 12 s; followed by 72uC for 1 min. PCR products were

purified and sequenced by Macrogen Inc (Korea and The

Netherlands).

Data Analysis
The poriferan origin of the obtained sequences was verified

through BLAST searches against Genbank (http://blast.ncbi.nlm.

nih.gov/Blast.cgi). Sequences were handled in SEQUENCHER

4.10.1 (Gene Codes Corporation) and aligned with CLUSTALW

and MUSCLE as implemented in DAMBE [41] and SEAview v

4.3.0 [42]. Alignment was conducted under default settings and

optimized by eye. Alignments were collapsed to contain only

unique sequence types in DAMBE. Haplo-/genotypes and

nucleotide diversity as well as Tajima’s D neutrality test were

calculated per population with Arlequin v. 3.11 [43].

Phylogeographic analyses were carried out for COI and ITS.

We used ITS outgroup sequences obtained from Genbank from

the family Halichondriidae (Figure 1), as the available sequences

for ITS of other Suberitidae were more distant than those from

Halichondriidae. Several studies have shown that the families

Suberitidae and Halichondriidae are sister groups [44,45,46]. To

be consistent we also used species of the family Halichondriidae for

the outgroup of the COI phylogram. The relatively best-fit DNA

substitution model was selected by the Akaike Information

Criterion deployed in jMODELTEST v. 0.1.1 [47] and this

model (COI: HKY and ITS: GTR+G+I) was used for subsequent

Bayesian and maximum likelihood phylogeny inferences. Phylo-

genetic reconstructions were performed under Bayesian inference

criteria implemented in MrBayes v. 3.1.2. [48]. Each analysis

consisted of two independent runs of four Metropolis-coupled

Markov-chains, sampled at every 1,000th generation at the default

temperature (0.2). Analyses were terminated after the chains

converged significantly as indicated by an average standard

deviation of split frequencies ,0.001. Convergence was also

checked in Tracer v. 1.5.0 [49]. For comparison, maximum

likelihood bootstrap analyses were conducted using MEGA v. 5.01

[50] using a heuristic search with 1,000 bootstrap replicates. The

Bayesian and maximum likelihood phylograms were combined

and visualized using TreeGraph 2 [51]. Within group p-distance

(uncorrected), as well as net nucleotide divergence between groups

were calculated in MEGA. A Kruskall-Wallis test was performed

to test whether color or substrate preference significantly differed

between lineages. To test for spatial structuring of samples we

performed an analysis of molecular variance (AMOVA) and

calculated pairwise Wst values between separate populations using

Arlequin 3.5.1.2 [43]. Significance of pairwise Wst values (based on

p-distances) was determined by 10,000 permutations and exact

tests of population differentiation in Arlequin.

Results

Sequence variation (COI, COII, ITS, 28S)
All sequences were submitted to GenBank with accession

numbers KF568951-KF568965 (Table S1). We obtained final

alignments (excluding primers) for the sponge S. diversicolor of

519 bp for COI with four haplotypes (C1-4, 105 individuals,

KF568960 - KF568963), 331 bp for COII with one haplotype

(105 individuals, KF568964), 689 bp of ITS with nine genetic

and maximum likelihood values of .70 are indicated. Color blocks represent the same individuals for both molecular markers (i.e. lineage A (pink)
and B (green) represented by the same individuals with both COI and ITS markers). Species of the family Halichondriidae were used for the outgroup
followed by Genbank accession numbers. Scale bars indicate substitutions/site.
doi:10.1371/journal.pone.0075996.g002

Phylogeography of Suberites diversicolor
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variants (T1-9, 104 individuals, KF568951- KF568959) (Table 2,

Table S1). For a subset of 20 specimens we obtained 574 bp for

28S resulting in one genetic variant (KF568965).

Divergent lineages in S. diversicolor
COI and ITS sequences were obtained from the same

specimens and fall apart into two major lineages, termed A and

B (Fig. 2B). These lineages represented reciprocally monophyletic

groups for both markers and were strongly supported by both

Bayesian and maximum likelihood inference methods (Fig. 2B).

Lineage A was represented by haplotype C1 for COI and

genotypes T1-5 for ITS. Lineage B is represented by COI

haplotypes C2-4 and ITS genotypes T6-9 (Fig. 1B). Within lineage

A there was no sequence variation in COI (n = 14), while the

average p-distance within lineage B was 0.25% (n = 91). The net

nucleotide divergence between lineage A & B for COI was 0.38%.

Haplotype C1 (lineage A) differed by two basepairs from C2 (the

dominant haplotype from lineage B) of which one resulted in a

non-synonymous substitution between two unpolar amino acids,

from isoleucine to valine. For ITS the average p-distance within

lineage A was 0.44% (n = 13), while the average p-distance within

lineage B was 0.29% (n = 91). The net nucleotide divergence

between lineages A & B for ITS was 7.26%. Several indels of 1–

3 bp length were observed and were consistent within lineages and

differed between lineages. There were insertions in lineage A with

respect to lineage B from 102–103 bp (either CT or TT), 380–

381 bp (CA), 470–473 bp (GGA or GAA). There were gaps in

lineage A with respect to lineage B from 139, 178–180, 549–

555 bp. No double peaks were observed, and it we therefore

assumed that no intragenomic polymorphisms occur within this

species. The level of intragenomic polymorphisms differs per

species [52]. We consider the risk of analyzing paralogous rDNA

sequence types to be minimal as we see genealogical concordance

across two unlinked loci. We did not detect a significant difference

between lineage A & B in color (p = 0.249) or substrate preference

(p = 0.100) using the independent samples Kruskal-Wallis Test.

Diversity and spatial population structuring (COI & ITS)
Lineage A was only present in Kakaban lake while lineage B

was present in all populations. The geographical distribution of

COI haplotypes is shown in Fig. 2A. Of the four detected

haplotypes in COI, haplotype C1 was restricted to Kakaban lake

(East Kalimantan). Haplotype C3 only occurred in one individual

in Urani lake (West Papua). The Darwin population was

represented by haplotype C4, which was shared with no other

population. Haplotype C2 was the most abundant haplotype,

occurring in all populations except Darwin and was the dominant

haplotype in the populations of Berau mangroves, Singapore,

Sauwandarek lake, Cassopeia lake, Urani Lake, and Misool

Jellyfish lake. Of the nine detected genotypes of ITS, five were

restricted to Kakaban lake (genotypes T1-5), which are all

representatives of lineage A. Genotype T7 (lineage B) was the

most abundant and was shared by all sampled populations except

Haji Buang Lake and Tanah Bamban lake (Kalimantan) and

Darwin (Australia). Darwin was represented by the private

genotypes T8-9. Haji Buang lake and Tanah Bamban lake

harbored a single genotype (T6) that was shared by Kakaban lake

(Kalimantan) and Misool Jellyfish lake (Papua).

Within lineage A in Kakaban lake there was only a single

haplotype of COI while the ITS gene diversity was 0.8242+/-

0.0567, and ITS nucleotide diversity was 0.005656+/- 0.003392.

Within lineage B all populations contained a single COI haplotype

except Urani lake, which had two haplotypes with a haplotype

diversity of 0.3333+/2 0.2152 and nucleotide diversity of

0.000624+/2 0.000822. For ITS, the majority of the populations

contained only a single genotype, except for Kakaban lake,

Darwin and Misool Jellyfish lake. The population in Kakaban lake

had the highest gene and nucleotide diversity in lineage B,

followed by Darwin and Misool Jellyfish lake (Table 3). Tajima’s D

tests of neutrality were carried out per population. The majority of

the populations had a zero value due to the presence of only one

genetic variant. Values of Tajima’s D for ITS were negative, but

not significant (p.0.1) in Misool lake and Darwin (Table 3).

Spatial analysis of genetic structure of lineage B COI and ITS

sequences showed that the Darwin population was strongly (Wst

between 0.53–1) and significantly differentiated from all marine

lakes populations (Table 4 & Table S2). Besides Darwin there was

no significant differentiation in COI between the different

populations (Table S2). The ITS marker was more diverse and

showed more structure among the populations than COI (Fig. 1,

Table 3). The Berau lakes (East Kalimantan), Kakaban and Haji

Buang lakes were all significantly differentiated. The Raja Ampat

lakes (West Papua) were not genetically differentiated from each

Table 3. Genetic diversity indices based on ITS sequences per population of Suberites diversicolor of lineage A and B (location
codes indicated in Table 2); gene diversity (h) nucleotide diversity (p) Tajima’s D neutrality test.

Code Lineage n ITS h ITS p ITS Tajima’s D

KKB A 13 0.8242+/20.0567 0.005656+/20.003392 1.3927

KKB B 8 0.5357+/20.1232 0.001578+/20.001318 1.4488

HBL B 20 0 0 0

TBB B 4 0 0 0

RAJ B 21 0 0 0

CAS B 10 0 0 0

URA B 8 0 0 0

MIS B 7 0.2857+/20.1964 0.000842+/20.000879 21.23716

BER B 3 0 0 0

SIN B 4 0 0 0

DAR B 6 0.3333+/20.2152 0.000980+/20.000997 21.13197

The majority of populations had only one haplotype resulting in 0 values for all indices calculated. All Tajima D values are not significant.
doi:10.1371/journal.pone.0075996.t003
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other except Misool, which was differentiated from all Raja Ampat

lakes, yet not from the populations of the lakes Kakaban, Haji

Buang and Tanah Bamban (East Kalimantan). The AMOVA

analyses revealed that significant portions of the total variance

within lineage B can be attributed to differences among the

following three groups 1. Berau coast, Singapore coast, Northern

Raja Ampat lakes (Sauwandarek, Cassopeia, Urani), 2. Berau

lakes (Kakaban, Tanah Bamban, Haji Buang), Southern Raja

Ampat (Misool), 3. Darwin. The among group variation was

84.6% (p,0.001) and the within population variation was 10%

(p,0.001).

Discussion

Divergent lineages in S. diversicolor
Two major lineages were uncovered in the populations of the

sponge S. diversicolor. The congruent patterns of COI and ITS

genetic markers and the degree of divergence between the two

lineages (COI: 0.4% and ITS: 7.3%) are indicative of reproductive

isolation, and thus we suggest that the two lineages (A and B)

constitute different species. We searched for morphological and

ecological characters to distinguish the two lineages, but did not

find any. Genetic divergence can preclude morphological or

ecological distinction. The skeletal structure and spicule lengths do

not differ between lineages and fall within the natural variation of

this species (see also [35]). The color and substrate preference are

variable, but not consistent within a particular lineage. A related

Suberites from Satonda lake (Sumbawa, Indonesia) displays different

colors at different depths as a result of a symbiosis with the

unicellular green algae Chlorella and symbiotic bacteria [53].

Phylogeographic studies in the Indo-Australian-Archipelago have

uncovered numerous lineages in marine taxa that may represent

undescribed cryptic species (e.g. [3,6,54]). Within sponges,

molecular studies have revealed a high prevalence of morpholog-

ically cryptic sponge species (see review in [8,55]).

The divergence between lineage A and B points to a long

isolation in spite of the fact that they are sympatric in Kakaban

lake (East Kalimantan). Within sponges there are several reports of

sympatric cryptic species: Tedania spp. in mangroves [56], Scopalina

lophyropoda [57], Cliona spp. [8], and Hexadella spp. [7]. Differential

reproductive traits and output can promote the co-existence of

sibling species (e.g. [57,58]). This observation of divergent lineages

in one lake is, however, not common in the phylogeographic

studies conducted thus far on populations in the marine lakes in

Palau [11,22,23,59]. The Palauan studies on three distinct taxa

(jellyfish, fish and bivalves) mostly show a pattern of one lineage

occupying one lake [11,22,23,59]. One reason why Kakaban lake

may contain two lineages is the sheer size of the lake – at almost

4 km2 it is tenfold larger than any of the other marine lakes in

Indonesia and the majority of Palau (Table 2; [15,16]). Alterna-

tively, lineage B could be a recent introduction to the lake. Sponge

fragments are known to be transported by waterfowl [60] and

workers from the neighboring island Maratua who stay on

Kakaban for short periods to attend small crops may also act as

possible vectors of Suberites diversicolor from the Maratua lakes or the

mangroves near their village.

Phylogeography
Lineage A is only present in Kakaban lake, while lineage B is

present in all populations. Within lineage B the spatial genetic

structure shows three groups: 1. the three Berau lakes and

southern Raja Ampat lake, 2. Berau coast, Singapore coast and

the three northern Raja Ampat lakes, 3. Darwin, Australia. At

present there is no comprehensive phylogeographic study of

sponges spanning the Indonesian archipelago, yet pronounced

genetic differences in populations of other marine invertebrates

and vertebrates are present between the Java Sea, the Indonesian

Through Flow, and the seas of East Sulawesi [3,5,9,61,62]. The

marine phylogeographic patterns of these studies strongly support

the existence of a barrier in the area between the Sunda and Sahul

shelves, where populations from Kalimantan are genetically

isolated from those in Papua. Our data do not show such a clear

East to West phylogeographic break. The Darwin population of

the present study, though small in sample size, is genetically

differentiated from the other populations. This is consistent with

phylogeographic studies of sponges and other invertebrates that

show a barrier within the Torres Strait (e.g. [63,64]). Dispersal

potential and habitat specialization may determine how lineages

are distributed and how fauna of different geographic regions are

connected (e.g. [9]). Many sponge population genetic and

phylogeographic studies have revealed structured populations

with in some cases evidence of (occasional) long distance dispersal

events [65,66,67,68,69,70]. This pattern is congruent with

philopatric, shortlived larvae that recruit at short distances from

the parental locations [71,72], whilst at the same time the

possibility of sponges to disperse as viable fragments in the currents

or rafting on various floating material [73,74,75]. The reproduc-

tive cycle and larvae of S. diversicolor are unknown, but this species

Table 4. Pairwise Wst values between all populations of lineage B based on ITS sequences of Suberites diversicolor (location codes
indicated in Table 2).

KKB HBL TBB RAJ CAS URA MIS BER SIN

HBL 0.60591*

TBB 0.30435 0

RAJ 0.60591* 1* 1*

CAS 0.4702* 1* 1* 0

URA 0.42857 1* 1* 0 0

MIS 0.13514 0.16749 20.09804 0.91393* 0.86315* 0.84466*

BER 0.25 1* 1* 0 0 0 0.76136*

SIN 0.30435 1* 1* 0 0 0 0.78544* 0

DAR 0.53451* 0.9512* 0.86348* 0.83584* 0.74359* 0.71049* 0.77327* 0.55882 0.60396

Values in bold and with asterisk indicate significant values (p,0.05).
doi:10.1371/journal.pone.0075996.t004
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does produce asexual buds [Becking pers. obs.] which may survive

a considerable amount of time in the plankton or by rafting before

colonizing distant locations as proposed by Wörheide et al. [67] for

Leucetta chagosensis.

For lineage B we found no private haplotypes in any of the

Indonesian marine lakes, and many lakes were identical in

composition. The only other phylogeographic studies on marine

lakes have been in the islands of Palau on the jellyfish Mastigias

papua [11;59], the fish Sphaeramia orbicularis [22], and the mussel

Brachidontes sp. [23] (see Table 1). These studies show extreme

genetic isolation, low genetic diversity, and in the cases of Mastigias

papua and Brachidontes sp. rapid morphological evolution in the

marine lakes [11,22,23,59]. The lack of strong population

structure between many of the Indonesian lakes of the present

study may be caused by recurrent (recent and historic) gene flow

among lakes. Alternatively, it is still possible that all these lakes are

completely isolated, i.e. do not exchange any migrants, but that

the lack of structure may be a result of the markers we used. These

markers may not evolve fast enough for mutations to have

accumulated to show the recent divergence. Of the four molecular

markers used in the present study, ITS evolves the fastest and

provided the highest resolution of spatial genetic structure. The

difference in genetic diversity between COI and ITS is large. In

contrast to most animals the mitochondrial DNA of sponges

evolves slowly and generally slower than nuclear DNA [76,77].

The interspecific variation of COI in sponges can be as low as 0–

0.5% (p-distances) (e.g. [55,78,79]). However, in some sponge taxa

COI can provide low but sufficient genetic variation within species

over relatively short geographic distances [63,69,80].

We found no sequence variation in 28S and COII markers

between any of the populations or between the two lineages of S.

diversicolor. The D3–D5 region of the 28S fragment has been used

to distinguish genera and species of a wide range of demosponge

taxa including halichondrids [81,82], but was also reported too

conserved to discriminate between closely related species in other

sponge taxa [7]. COII was proposed as a polymorphic mitochon-

drial marker for sponge phylogeography by Rua et al. [40]. Rua et

al. [40] indicated that the variation of this marker could be low in

halichondrid species Hymeniacidon heliophila but attributed their

results to the collection of clone-mates. In the present study COII

showed no variation between any of the samples spanning a wide

geographic range. We conclude that COII is not a suitable marker

for intraspecific variation or distinction between closely related

species of the genus Suberites in particular, and probably more

generally for the families Suberitidae and Halichondriidae.

Isolation & genetic diversity
Kakaban lake is the largest and most isolated lake in Indonesia

(see Table 2), and it houses a high proportion of endemic sponge

species [16,21]. In concordance, our study shows that the

population of Suberites diversicolor displayed the highest genetic

diversity with unique genetic variants that were not shared with

two marine lakes at just 6 km distance (Fig. 1). These results

indicate that Kakaban lake is very isolated both in physical and

biological terms. Isolation acts to decrease the rate of immigration

and thus to decrease the genetic diversity and the number of

species expected at equilibrium in an island system [25,26,27,83].

Yet isolation can also enhance species formation, with the

diminished gene flow allowing populations to diverge and

ultimately form new species if they remain isolated [17,27,83].

In Palau the degree of genetic distance between marine lake and

adjacent sea populations was strongly correlated with the degree of

connection from the lake to the sea and not the actual geographic

distance between the populations [11,23]. In the present study, the

molecular markers used were not variable enough to detect a

relationship between moderate levels of isolation and the genetic

diversity of the lakes. For example, the populations in northern

Raja Ampat lakes (West Papua) are not genetically differentiated,

despite the limited physical connections to each other and to the

adjacent sea.

Biogeographic scenario
Kakaban lake was probably filled with sea water less than

12,000 years ago [13,24]. Considering the deep divergence

between lineages A & B in this lake, this divergence likely

occurred well before the formation of Kakaban. Wörheide et al.

[52] estimated an evolutionary rate of 1% per million years for

ITS in a suberitid sponge Prosuberites ‘laughlini’ based on the

formation of Isthmus of Panama. Implementing the 1%

mutational rate would mean that the two lineages diverged

approximately 7 million years ago. Though this is a rough

estimation with great error bars and rates of evolution may be

higher for recently diverged lineages [84], the age is consistent

with recent phylogeographic studies that suggest that many

endemics from the Indo-Australian-Archipelago have origins in

the early Pliocene-Miocene (3–20 million years ago; e.g.

[85,86,87]).

Kakaban lake houses a genetic and species diversity of sponges,

that appears to be absent from the surrounding sea (see also

[21,36]). Each lake is ephemeral, but the marine lakes ecosystem

probably has occurred in various locations during the past glacial-

cycles [24]. The Sunda shelf, which includes Borneo (Kalimantan),

was exposed during the Last Glacial Maximum (LGM) when sea

levels are estimated to have been approximately 110–140 m

lower than modern sea levels [88,89,90]. Multiple larger and

smaller depressions in the shelf have been recorded which

presumably represented palaeo-lakes during the LGM [24] that

could have become brackish marine lakes with the increase in

sea level. During the LGM the Sunda Land region was also

dominated by mangroves [91], and the water around the Sunda

area would have been brackish due to the multiple river outlets

[90]. These are both environments amenable for S. diversicolor.

Ancient lineages/endemics may have ‘hopped’ from lake to lake

or from mangrove to lake, as the lakes formed and subsequently

disappeared with the rise and fall in sea level during the Plio-

Pleistocene glacial cycles. Genetic signatures of glacial refugia

are expected to be characterized by high genetic diversity and a

mixture of ancestral and private haplotypes [92,93]. While

Kakaban matches this pattern, the lake could not have been a

refugium during LGM (it was dry), however there may have

been palaeo-lakes in the vicinity that served as such. Kakaban

may be an area where multiple putative refugia populations

have come into secondary contact, resulting in the high genetic

diversity and the high number of endemics. Molecular studies

on co-distributed taxa at larger scales including lakes from

adjacent regions in Palau and Vietnam will enhance our

understanding of the processes behind the unique marine lake

diversity.

Supporting Information

Table S1 List of Suberites diversicolor specimens studied. For each

specimen the following information is provided: lineage to which it

belongs (see Fig. 2) haplotype of Cytochrome Oxidase I (COI)

GenBank Accession Number for the COI haplotype genotype of

internal transcribed spacer region of nuclear ribosomal operons

(ITS) GenBank Accession Number for ITS genotype location of

collection (location codes indicated in Table 2) the color when
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alive substrate it resided on collection number within the Porifera

Collection of the Naturalis Biodiversity Center (RMNH POR).

(XLSX)

Table S2 Pairwise Wst values between all populations of the

sponge Suberites diversicolor lineage B based COI of Suberites

diversicolor (location codes indicated in Table 2). Values in bold

and with asterisk indicate significant values (p,0.05).

(XLSX)
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58. Pérez-Porro A-R, González J, Uriz MJ (2012) Reproductive traits explain
contrasting ecological features in sponges: The sympatric poecilosclerids

Hemimycale columella and Crella elegans as examples. Hydrobiologia 687: 315–33.

59. Dawson MN (2005) Five new subspecies of Mastigias (Scyphozoa: Rhizosto-
meae:Mastigiidae) from marine lakes Palau Micronesia. Journal of the Marine

Biological Association UK 85: 679–694.
60. Pronzato R, Manconi R (1994) Adaptive strategies of sponges in inland waters.

Bolletino di Zoologia 61: 395–401.

61. Barber PH, Palumbi SR, Erdmann MV (2006) Comparative phylogeography of
three co-distributed stomatopods: Origins and timing of regional lineage

diversification in the coral triangle. Evolution 60: 1825–1839.
62. Timm J, Kochzius M (2008) Geological history and oceanography of the Indo-

Malay archipelago shape the genetic population structure in the false clown

anemonefish (Amphiprion ocellaris). Molecular Ecology 17: 3999–4014.
63. Andreakis N, Luter HM, Webster N (2012) Cryptic speciation and phylogeo-

graphic relationships in the elephant ear sponge Ianthella basta (Porifera
Ianthellidae) from northern Australia. Zoological Journal of the Linnean Society

166: 225–235.
64. Vogler C, Benzie JAH, Tenggardjaja K, Barber PH, Wörheide G (2013)

Phylogeography of the crown-of-thorns starfish: genetic structure within the

Pacific species. Coral Reefs 32: 515–525.
65. Wörheide G, Hooper JNA, Degnan BM (2002) Phylogeography of western

Pacific Leucetta ‘chagosensis’ (Porifera: Calcarea) from ribosomal DNA sequences:
Implications for population history and conservation of the great barrier reef

world heritage area (Australia). Molecular Ecology 11: 1753–1768.

66. Wörheide G, Sole-Cava AM, Hooper JNA (2005) Biodiversity molecular ecology
and phylogeography of marine sponges: Patterns implications and outlooks.

Integrative and Comparative Biology 45: 377–385.

67. Wörheide G, Epp LS, Macis L (2008) Deep genetic divergences among indo-

pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae):

Founder effects vicariance or both? BMC Evolutionary Biology 8:24.

68. Lopez-Legentil S, Pawlik JR (2009) Genetic structure of the caribbean giant

barrel sponge Xestospongia muta using the I3-m11 partition of COI. Coral Reefs

28: 157–165.

69. DeBiasse MB, Richards VP, Shivji MS (2010) Genetic assessment of connectivity

in the common reef sponge Callyspongia vaginalis (Demospongiae: Haplosclerida)

reveals high population structure along the Florida reef tract. Coral Reefs 29:

47–55.

70. Xavier JR, van Soest RWM, Breeuwer JA, Martins AMF, Menken SBJ (2010)

Phylogeography, genetic diversity and structure of the Poecilosclerid sponge

Phorbas fictitius at oceanic islands. Contributions to Zoology 79: 19–129.

71. Mariani S, Uriz MJ, Turon X (2005) The dynamics of sponge larvae

assemblages from northwestern Mediterranean nearshore bottoms. Journal of

Plankton Research 27: 249–262.

72. Mariani S, Uriz M-J, Turon X, Alcoverro T (2006) Dispersal strategies in sponge

larvae: Integrating the life history of larvae and the hydrologic component.

Oecologia 149: 174–184.

73. Wulff JL (1991) Asexual fragmentation genotype success and population-

dynamics of erect branching sponges. Journal of Experimental Marine Biology

and Ecology 149: 227–247.

74. Wulff JL (1995) Effects of a hurricane on survival and orientation of large erect

coral-reef sponges. Coral Reefs 14: 55–61.

75. Maldonado M Uriz M.J 1999. Sexual propagation by sponge fragments. Nature

398: 476–476.

76. Shearer TL, Van Oppen MJ, Romano SL, Wörheide G (2002). Slow

mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular

Ecology 11: 2475–2487.

77. Hellberg ME (2006) No variation and low synonymous substitution rates in coral

mtDNA despite high nuclear variation. BMC Evolutionary Biology 6:24.

78. Wörheide G (2006) Low variation in partial cytochrome oxidase subunit I (COI)

mitochondrial sequences in the coralline demosponge Astrosclera willeyana

across the Indo-Pacific. Marine Biology 148: 907–912.
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